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Introduction

Neighbourhoods are a widespread concept in studies from diverse domains such as health,
social sciences, or biology. For instance, Japanese researchers investigated the relationships
between social factors and health by taking into account behavioral risks and housing and
neighbourhood environments (Takada et al., 2014). In a British study, authors describe how
living areas impact physical activities, from which they determine a walkability index at the
neighbourhood level for improving future urban planning (Frank et al., 2010). Another survey
describes the luxury effect, i.e., the impact of wealthy neighbourhoods on the surrounding
biodiversity (Leong et al., 2018). Several works focus on qualifying neighbourhoods using
social networks. For instance, the Livehoods project defines and computes neighbourhoods
dynamics (Cranshaw et al., 2012), while the Hoodsquare project detects similar areas based
on Foursquare check-ins (Zhang et al., 2013). Crowd-based systems are interesting but may
sometimes be biased, and they require technical skills to extract relevant data. DataFrance is
an interface that integrates data from several sources, such as indicators provided by the Na-
tional Institute of Statistics (INSEE), geographical information from the National Geographic
Institute (IGN), and surveys from newspapers for prices (L’Express). DataFrance enables the
visualization of hundreds of indicators but makes it difficult to judge the main characteristics
of a neighbourhood and is limited to France. Despite all of these existing applications, there
is no simple tool to visualize and predict insights about neighbourhoods.
The Predihood tool fills this gap by defining neighbourhoods, their characteristics, and vari-
ables to be predicted. It also includes a cartographic interface for searching and displaying
information about neighbourhoods. Domain experts can provide a few examples of annotated
neighbourhoods, and Predihood provides a configuration interface for using popular machine-
learning algorithms in order to predict variables for the remaining neighbourhoods. One of the
most recent applications of Predihood was measuring the impact and influence of a neigh-
bourhood’s environment on the decision-making process when people move to another city
(Barret et al., 2020).
Predihood mainly targets non-programmers users (e.g., researchers in social sciences or history)
due to its simplicity for running and configuring predictive algorithms. It can be extended to
other application domains: measuring the pollution degree in neighbourhoods, determining
whether a certain neighbourhood is suitable as a stopover for migratory birds, predicting
neighbourhood evolution based on historical data, etc. This paper describes the main features
of Predihood and how to extend them.

Methodology

Predihood provides the following functionalities:
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• adding new neighbourhoods and indicators to describe them;
• predicting variables of a neighbourhood by configuring and using predefined algorithms;
• adding new predictive algorithms.

To facilitate understanding, we describe and illustrate these functionalities based on a simple
example that aims to evaluate which neighbourhood is preferable for migratory birds to make
a temporary stop. We only include three indicators per neighbourhood: the percent of greens,
the percent of buildings and the degree of human pressure. A single variable migration zone
qualifies a neighbourhood from favorable to unfavorable.

Adding new datasets

As Predihood is a general-purpose application, it enables contributors to add their own
datasets. The key concept of a dataset is the neighbourhood, which is represented as a
GeoJSON object including:

• a geometry (multi-polygons), which describes the shape of the neighbourhood. This
crucial data is not only useful for cartographic visualization but also enable automatic
calculations such as area;

• properties, which are divided into two categories. Descriptive information (e.g., name,
city postcode) mainly aims to improve display while a set of quantitative indicators is
used to predict the values of the variable.

Besides, some neighbourhoods have to be manually annotated, a task typically performed by
domain experts. To add a new dataset, it is necessary to store them as GeoJSON and make
them accessible by Predihood, for instance, in a document-oriented database.
To build a dataset for the bird migration example, it is necessary to collect and integrate
data sources about neighbourhoods located in the studied geographic area. Values for the
three indicators should be provided, and a value to the migration zone variable should be
assigned to a few neighbourhoods.

Predicting

Machine learning algorithms require data preparation by grouping relevant properties and
variables. We illustrate this step on the bird migration dataset, as shown in Figure 1. Predi-
hood produces a table composed of the identifier and the name of the neighbourhood (grey
columns), its indicators (yellow columns) that could be normalized by factors such as den-
sity of population (green columns), and optionally the assessment of researchers for the
migration zone variable (blue column). The objective of Predihood is to automatically
fill question marks for neighbourhoods that are not yet assessed.

Figure 1: A subset of the bird-migration dataset.
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To perform prediction, a selection process first selects subsets of relevant indicators, since too
many indicators may degrade performance. The tool automatically reduces the number of
indicators, e.g., by removing indicators with a unique value or those highly correlated using
Spearman coefficient. Then, Predihood generates 7 lists of indicators, containing from 10
to 100 indicators. The current version of Predihood includes 8 predictive algorithms from
scikit-learn (e.g., Random Forest, KNeighbours) (Pedregosa et al., 2011), depending on the
algorithm, small or large lists of indicators may be more effective.
Predihood provides a cartographic web interface based on Leaflet and Open Street Map, as
shown in Figure 2. For this example we use the search query “lyon” (left panel) and all
neighbourhoods containing this query in their name or their city names are shown in blue
on the map. We select the neighbourhood Le parc and run the Random Forest classifier:
migration is considered very favorable in this area (for the seven lists of indicators). Indeed,
this park seems relevant for bird migration as it has nice green areas for birds and it is a
healthy environment for them.

Figure 2: Screenshot of the cartographic interface of Predihood.

Adding new algorithms

Because prediction is a complex task, testing specific algorithms tuned with different param-
eters and comparing their results may help increase the overall quality. In order to facilitate
this task, Predihood proposes a generic and easy-to-use programming structure for machine
learning algorithms, based on Scikit-learn algorithms. Thus, experts can implement hand-
made algorithms and run experiments in Predihood. Adding a new algorithm only requires 4
steps:

1. Create a new class that represents your algorithm, e.g. MyOwnClassifier, which inherits
from Classifier;

2. Implement the core of your algorithm by coding the fit() and predict() functions.
The fit function aims at fitting your classifier on assessed neighbourhoods while the
predict function aims at predicting variable(s) for a given neighbourhood;

3. Add the get_params() function, which returns a dictionary of parameters along with
their value, in order to be compatible with the Scikit-learn framework;
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4. Comment your classifier with the Numpy style (Harris et al., 2020) so that Predihood
automatically extracts its parameters and enables their tuning in the dedicated interface.

Below is a simple example to illustrate the aforementioned steps. Note that new algorithms
are directly loaded into Predihood.

# file ./algorithms/MyOwnClassifier.py
from predihood.classes.Classifier import Classifier

class MyOwnClassifier(Classifier):
"""Description of the classifier.
Parameters
------------
a : float, default=0.01

Description of a.
b : int, default=10

Description of b.
"""

def __init__(self, a=0.01, b=10):
self.a = a
self.b = b

def fit(self, X, y):
# do stuff here

def predict(self, df):
# do stuff here

def get_params(self, deep=True):
# suppose this estimator has parameters "a" and "b"
return {"a": self.a, "b": self.b}

To facilitate experiments, Predihood provides an interface for easily tuning and testing al-
gorithms on a dataset, as shown in Figure 3. The left panel stands for the selection of an
algorithm and the tuning of its parameters and hyper parameters, such as training and test
sizes. Note that two options enable to remove outliers and under-represented neighbourhoods
(for a given variable) without directly modifying the dataset. On the right, the table illustrates
the accuracies obtained for each list of indicators (generated during the selection process) and
each variable. Results can be exported in XLS with the blue download icon. Here, we notice
that the new algorithm MyOwnClassifier has been chosen, and its parameters (a and b) can
be configured. We have performed 2 runs, the former with the Random Forest classifier and
the latter with MyOwnClassifier. Best predictive results are achieved with all indicators (green
cells).

Barret et al., (2021). Predihood: an open-source tool for predicting neighbourhoods’ information. Journal of Open Source Software, 6(61),
2805. https://doi.org/10.21105/joss.02805

4

https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard
https://doi.org/10.21105/joss.02805


Figure 3: Screenshot of algorithmic interface of Predihood.

Current applications of Predihood

Our Predihood tool was presented during the DATA conference (Barret et al., 2020) posing
the evaluation of whether people choose a similar neighbourhood environment when moving
elsewhere as the main research challenge. The tool is bundled with data from France us-
ing the mongiris project (in which unit divisions named IRIS stand for neighbourhoods), this
dataset contains about 50,000 neighbourhoods with 640 indicators (about population, shops,
buildings, etc.). Six environment variables have been defined (building type, building usage,
landscape, social class, morphological position and geographical position), and 270 neighbour-
hoods were annotated by social science researchers (one to two hours per neighbourhood to
investigate building and streets pictures, parked cars, facilities and green areas from services
such as Google Street View). Prediction results achieved by Predihood using 6 algorithms
from Scikit-learn range from 30% to 65% accuracy depending on the environment variable,
and designing new algorithms could help improving these results.
The open-source project is available here: https://gitlab.com/fduchate/predihood.
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