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Abstract
In the field of bio-mechanical simulation, the complexity of the 3D models are usu-
ally high and require extensive calculations in order to apply the physics over the
simulated objects, but also it requires a minimum error in the mesh displacements
calculations. This makes the simulation of soft-tissue a delicate process where there
is a trade off between speed and precision depending on the desired application. A
Work-flow was implemented with the support of various existing tools. An error
criteria was then defined and implemented for the process of mesh comparison, this
helped to validate a tetrahedral mesh simulation with coarse resolution against a
standard mesh, it was explored the convergence of the model and the validity of the
error criteria and the adaptive meshing process.

Keywords: Simulation, Adatative remeshing, error estimation, soft tissue,
FEM, 3D Surfaces, Tetrahedra, tetgen, camitk, sofa.
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1
Introduction

The anatomical modeling and simulation towards high-fidelity remains a major chal-
lenge in computer graphics. Bio-mechanics focuses its efforts on achieving organ
simulations that not only are anatomically correct, but that reproduces the accu-
rate behavior of a particular organ. Depending on the organ considered, it can
be modeled in a simplified way as rigid body or it can be like in the case of soft
tissue, modeled by finite element where the simulation deformations are crucial in
the analysis of organ behavior. With the last decade of technology advances it has
been possible to simulate models that each time come closer to the reality, in visual
and mathematical terms, often with the help of robotics where the interaction with
real-time haptics feedback has helped to train clinicians around all over the world.

The main goal in the internship is to define a workflow in which it is possible to
realize simulations using different applications available in the market, this will allow
to test and verify results developed by the research team and by other researchers
as well. Having a common framework it’s a necessity when it comes to methods
and algorithms comparison, where being able to reproduce the conditions on which
a particular simulation was done is a critical step to validate the results.

This document shows the work developed in the six months internship as part
of the Master 2 in computer graphics, professional program. The internship was
done at the LIRIS laboratory within the SAARA (Simulation, Analysis, Animation
for Augmented Reality) research group.

1.1 Context
The use of computer graphics in the field of medicine is now a common tool to
help doctors and patients in different ways; Like flying simulators have been for
training pilots, the medical simulators are used mainly to train surgeons on difficult
or complex procedures. They also offer an alternative to the planification of new
techniques of surgery 1, where it is possible to visualize the effect of an operation
before proceeding into the real operation room 2, where different scenarios can be
tested and verified against the desired result. Simulations can also help on the
surgery process while is taking place, giving additional information to the doctors
during the process. Example of this is the deformation undergone by an organ,
regarding an pre-surgery taken image.

In general any of this type of simulators require a precise modeling from the
1http://www.insimo.com/helpmesee/
2http://www.simsurgery.com/
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1. Introduction

anatomical structures, in order to have faithful results in a medical context. In the
case of soft tissue they must represent the characteristics and behavior of the group
of organs in particular being modeled. This is a complex task, due to the fact that
bio-mechanic simulations may follow a non-linear, anisotropic and inhomogeneous
behavior.

In the process of simulation multiple challenges are faced, some are bound to
the model itself like non-linear or anisotropic behavior and can be approached from
different approximative and analytical methods, others are constrained not only by
the chosen method but also trough hardware and software implementations, like
precision or speed, where both will be a factor of major impact when a simulation
is intended to be executed during the process of surgery, or even before and time is
a critical factor.

In the context of the internship the increment of speed without penalizing
precision is one challenge that need to be tackled in order to be able to lay the base
to simulations without a 3D mesh references.

1.2 Proposed Objectives
Given a physiological model it will be degraded to move towards more interactive
simulations. This is reflected for example by the use of lower resolution meshes,
using laws of simpler behavior (linear, nonlinear). The work will go through a phase
of confrontation with the full model (taken as ‘ground truth’). The challenge will
be to control the error while ensuring the mechanical validity.

The main objectives of the internship are as follows:
• Literature review leading to the definition of a relevant error criteria, a poste-

riori.
• Software implementation (C++) of the adopted solution in the CamiTK plat-

form.
• Framework integration with a simulation software.

This document proposes a workflow that gives a path to follow in the process
of simulation of a given 3D mesh, from it’s representation in NURBS, to it’s final
tetrahedralized simulated mesh. It’s important to note that some are guidelines
on how to proceed in various parts of the process, while other issues involve the
coding and extension of various existing tools, necessary to semi-automate parts of
the process.

1.3 Working Team
The internship is developed at the LIRIS (Laboratoire d’InfoRmatique en Image
et Systèmes d’information) in the DOUA campus, it’s composed by more than 320
members from different universities, among the CNRS, INSA de Lyon, Université
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1. Introduction

Claude Bernard Lyon 1, Lyon 2 University and Central School Lyon. The focus of
the laboratory is the research in computer science and information technology.

The scientific activities from its 14 research groups are structured in six fields
of expertise :

(a) LIRIS organization

1.3.1 SAARA Team
The research works of the SAARA team is concerned by virtual human modelling.
These may involve external body movements (arms and joints, thoracic and abdom-
inal, facial expressions, etc.) or internal movements (respiratory system, parturient
pelvic organs interacting with the foetus, etc.).

Three areas are specially studied:
• Motion capture and movement analysis from
• Reconstruction, animation and simulation of virtual physiological human
• Multiphysics realistic simulation and shape modelling of virtual physiological

human
The internship will be developed under the direction of Fabrice Jaillet, member

of SAARA team.
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2
Problematic

One of the main goals of the internship was to integrate a set of existing tools (2.2)
that would allow the work on simulations in an more efficient and seamless way.
This corresponds to the technical aspect of the internship, where I was focused in
the exploration of the tools and development of code for the communication among
them. Being this a technical task it required a great amount of time to explore each
tool individually in order to find the correct approach at each piece of code due to
the size of the applications and, the different design patterns.

In order to create a workflow that allow the easy integration of different li-
braries, a ‘proxy’ application is needed, one that permits to plug-in the different
‘know-how’, embedded in existing libraries and applications. It’s important to men-
tion that in order to being able to develop for said proxy application, it is ideal
that the applications themselves are Open-Source, while this is not an obligatory
condition of the project, it would allow the development (without paid licensing)
of the requirements of the internship and, other requirements that might arise due
to multiple researchers working on similar fields, either bio-mechanical simulation,
medical prototyping, image segmentation, etc. A tool with this characteristics would
be considered the main axis of the workflow, from where most of the code could be
developed, without the necessity of extend multiple applications at once.

Part of the work done in the internship involved the definition of these tools,
taking into account multiple variables like: licensing, portability, stability or matu-
rity of the application, open community, documentation and maintainability among
other. This task led to the exploration of a wide variety of tools and the study of
its advantages amid other similar applications. The selected ones and the reasons
behind the decisions are presented in this chapter (see 2.2).

2.1 a posteriori error estimation
Having computed a FEM solution, it is possible to obtain a posteriori error estimates
which give a more quantitative information about the accuracy of the solution where
some properties are desired[16].

• Accurate measure of the discretization error for a range of mesh spacings an
polynomial degrees.

• The procedure should be inexpensive relative to the cost of obtaining the FEM
solution.

• A technique that uses multiple estimate of pointwise errors which can subse-
quently be used to calculate error measures in several norms, against a specific
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2. Problematic

norm.
There are four categories for a posteriori error estimates[16].

1. Residual error estimates: Local finite elment problems are created on ei-
ther an element or a subdomain and solved for the error estimate. The data
depends on the residual of the FEM solution

2. Flux-projection error estimates: A new flux (or flow) is calculated by
post processing the FEM solution. This flux is smoother than the original
finite element flux and an error estimate is obtained from the difference of the
two fluxes.

3. Extrapolation error estimates: Two finite element solution having dif-
ferent order or different meshes are compared and their differences used to
provide an error estimate.

4. Interpolation error estimates: Interpolation errors bounds are used with
estimates of the unknown constants.

a posteriori error estimates provide accuracy evaluations that are necessary to
terminate an adaptive procedure. However, optimal strategies for deciding where
and how to refine or move a mesh or to change the basis are rare. a posteriori
error estimates in a particular norm are computed by the sum of their elemental
contributions as:

‖E‖ =
∑
‖E‖2

e (2.1)

For each element in the mesh ‖E‖2
e of the error estimate ‖E‖2 to element e. It’s

assumed that large errors come from regions where the local error estimate ‖E‖e is
large ad this is where it should refine the mesh.

One of the goals of the research team SAARA, is to work towards a simu-
lation process where the a posteriori error estimation can be discarded thanks to
the knowledge acquired on an specific simulation process i.e, childbirth simulation,
moreover when the desire is to realize a real-time simulation where the mesh can
be coarse but medically and mathematically accurate. That’s why the a posteriori
error estimation will be taking into account ‘Extrapolation error estimates’ due to
the advantage that offers to work on simplified meshes.

2.1.1 Refinement Criteria
The refinement criteria for the model re-meshing can be chosen from the a posteriori
error estimator, regardless of the magnitude the simplest approach is to refine a
fixed percentage of elements having the largest error indicator refine all elements e
satisfying:

εe ≥ λmax
1≤j≤n

εj (2.2)

A typical choice of the parameter λ ∈ [0,1] is 0.8[16]. We can dynamically
change this percentage to try a more aggressive criteria when the method is not
producing enough new elements.
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We will consider that the process of refinement is over when no new elements
are added to the mesh, having this mesh fewer elements than the reference.

2.2 Used Applications
On the internship objectives CamiTK (2.3) was proposed as the one of the applica-
tions of the workflow, the described need was to integrate it to a simulator, some
simulators where discussed, among them: Abaqus1, libMesh2, Vega3 and SOFA (see
2.4). This was a technical task that required a detailed evaluation of the capabilities
on each application, similarly was the case with other software such as the mesh-
ing libraries. It was very important to choose from the beginning a fit application
to integrate, that could be extended and portable in order to pull together all the
pieces of the workflow. This section will present the applications selected in the
process, the capabilities of each one, the limitations considered and the role that
each application or framework played in the workflow of the proposed solution.

2.3 CamiTK
CamiTK, is a specific modular framework that helps researchers and clinicians to
collaborate in order to prototype Computer Assisted Medical Intervention (CAMI)
applications by using their knowledge and know-how during all the required steps.
CamiTK is an open-source, cross-platform generic tool, written in C++, which
can handle medical images, surgical navigations and bio-mechanical simulations[5].
CamiTK is developed with the idea to be a core connector between end-user (usually
medical expert) and image based developers, where the ‘know how’ of each area can
be easily integrated. Its general design is inspired by component-based software
engineering (CBSE).

CamiTK like other applications aimed on biomechanics [6, 7, 5] has a basic
set of tools already available out of the box like rigid body transformations, mesh
clipping, gradient calculations, etc. but, added to these basic functionalities, it
provides very intuitive interfaces that allow a fast prototyping of medical models.
This application was chosen to be the core of the workflow, due to its functional
architecture. It also has the advantage of an on-line community, which develops and
contribute for the application, and that offer fast solutions to code issues through
the forum.

2.3.1 Cmake
In order to have a multi-platform application, a build system that is compiler in-
dependent is required, Cmake4 has this advantage and was also present as default
build system for SOFA and CamiTK. Cmake played a big role in the integration

1http://www.3ds.com/products-services/simulia/
2http://libmesh.github.io/index.html
3 http://run.usc.edu/vega/index.html
4http://www.cmake.org/
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[5]
(a) CamiTK architecture
Overview

(b) Full featured VTK 2D/3D
renderer

process due to its capability to include external libraries which was crucial for the
implementation of the workflow. It is also an application that runs on multiple
platforms like Windows, Mac OSX and linux distributions.

2.4 Sofa Framework
SOFA (Simulation Open Framework Architecture) is an open-source C++ library
primarily targeted at interactive computational medical simulation. It was devel-
oped with the idea to facilitate the collaborations between specialists from various
domains, by decomposing complex simulators into components designed indepen-
dently and organized in a scene-graph data structure. Each component encapsulates
one of the aspects of a simulation, such as the degrees of freedom, the forces and
constraints, the differential equations, the main loop algorithms, the linear solvers,
the collision detection algorithms or the interaction devices[8]. The simulated ob-
jects can be represented using several models, each of them optimized for a different
task such as the computation of internal forces, collision detection, haptics or vi-
sual display. These models are synchronized during the simulation using a mapping
mechanism.

(a) Sofa Multi-mapping mecha-
nism

7
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Sofa uses for its simulations the visitors coding pattern which traverse the scene
top-down and bottom-up, and call the corresponding virtual functions at each graph
node traversal. Algorithmic operations on the simulated objects are implemented
by deriving the Visitor class and overloading its virtual functions processNodeTop-
Down() and processNodeBottomUp().
CamiTK was previously integrated with SOFA[5], through an extension called MML
(Markup Monitoring Language. See 2.6), this integration provided the communica-
tion Sofa and CamiTK, where the only exchange was the coordinates of the mesh
being simulated.

2.5 TetGen
TetGen is a software designed to generate tetrahedral meshes for 3D (weighted)
points, it can generate the Delaunay and weighted Delaunay as well as the Voronoi
diagram power diagram. Additional to the mentioned methods For a 3D polyhe-
dral domain, TetGen generates the constrained Delaunay tetrahedralization and an
isotropic adaptive tetrahedral mesh of it. Domain boundaries (edges and faces) are
respected and can be preserved in the resulting mesh. Written in C++ it uses only
C standard library, this allows an easy multi-platform integration.

Besides of it’s computational efficiency, TetGen, doesn’t have special require-
ments to compile, it’s easy and fast to build and an be called from outside trough
the main method when compiled as an dynamic library.

(a) PLC Mesh (b) Tetrahedral Mesh (c) Dual - Voronoi

2.5.1 Mesh Adaptation, Mesh Sizing Functions
During the first weeks of the internship I worked mostly in the literature review
of adaptive re-meshing methods, in order to define an error criteria for mesh com-
parison, this is one of the research objectives proposed in the internship. After a
exploring some articles on the subject it was clear that a fair amount of literature
related to adaptive meshing existed, mostly focused to improve the accuracy of finite
element methods. An example of the vast literature is Oden and Demkowicz that
worked on a numerical survey[11], while Jones and Plassmann did a geometric sur-
vey of hierarchical mesh refinement[12]. Moving mesh methods where presented by
Budd, Huang, and Russell [14]. In general adaptive methods are a specialized form
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2. Problematic

of dynamic meshing, and they are effective for adding detail only where needed, but
they have the drawback that the deformation field is always anchored to the original
coarse mesh[17].
Common procedures for mesh adaptation are the classified as follows:

• local refinement and/or coarsening of a mesh (h-refinement),
• relocating or moving a mesh (r-refinement),
• locally varying the polynomial degree of the basis (p-refinement).

The principal idea in the internship is to achieve a good model of mesh approx-
imation by mesh refinement, for this strategy a coarse mesh will the starting point
and it will be refined gradually, yielding ideally, the accuracy needed against a fine
mesh. This strategy might not be optimal due to local meshing, where is possible
to left untouched regions in some cases, this hypotesis will be tested with tetgen.

2.5.2 Mesh Quality, Tetrahedron Shape Measures
There are many definitions for ‘mesh quality’ and they are usually bounded to the
application and the employed method see [10]. As a general rule, elements with very
small and large angles (and dihedral angles) should be avoided since they downgrade
the accuracy and performance of numerical methods. A tetrahedron shape measure
is a continuous function which evaluates the shape of a tetrahedron by a real number.
The shapes can be as follows:

(a) Tetrahedra of different shapes.[17].

The most used shape measure for a simplex is the aspect ratio, for a tetrahe-
dron its represented by η(τ) where τ is the ratio between the longest edge length
lmax and the shortest hight hmin : η(τ) = lmax/hmin. It measures the ‘roundness’
of a tetrahedron in terms of a value between

√
2/
√

3 and +∞. A low aspect ratio
implies a better shape. Other possible definitions of aspect ratio exist, such as the
ratio between the circumradius and inradius.

Choosing a good quality measure for the current work represents a challenge,
because a small number in the quality measure can change the response over the
simulation, this is important to note because it will deviate the model from its ideal
solution, but also because in some cases will render the solution unstable. Our model
will only explore isotropic meshes generated with Delaunay triangulation methods,
this means that the elements should have a low aspect ratio. Aditionally, three
quality measures will be tested (1.2 ), (

√
2) and (2 ) [16, 9], in order to test the

sensibility of the quality in the meshing method.
The quality of the produced mesh will undergo multiple possible ways of topo-

logical transformations. This transformations are going to be necessarily bounded

9



2. Problematic

to the quality chosen for the meshing process. In many cases topological transforma-
tions will occur, changing the mesh topology by removing elements from a mesh and
replacing them with a different set of elements occupying the same space. Figure
2.1a shows some of these transformations 2-3 flips, 3-2 flips, 4-4 flips, and 2-2 flips.
Where the first digit denotes the number of tetrahedra removed and the second the
number that are created.

(a) Examples of topological transformations[17]

2.6 XML Languages
One of the main issues when creating a mechanical model, can be its physical repre-
sentation. This happens because these physical representations are usually bounded
to the application and technologies that can process them. This makes difficult to
share or to verify results of particular methods due to the lack of a generic repre-
sentation of these models. Moreover when the models store different parameters
relevant to its field of study, it’s cumbersome to pass from one format to another,
even if the models have similar characteristics, like being discrete representations of
a figure, or a more elaborated object.

XML5 ‘Extensible Markup Language’ is a markup language designed to encode
the data in a human-readable as well as machine-readable way. Like its name says
it, XML is a language which is mainly concerned with its extensibility, this means
that it is a set of rules to represent data in a structured way more than a static
language. This makes easy to generate subsets of rules that can represent a very
particular database of information. It’s extensibility and flexibility is an advantage
when representing unstructured data, like the case of HTML.

2.6.1 PML and LML
During the internship multiple formats where considered for the representation of
the models, once CamiTK was chosen to be the medium between the model and the
simulator, PML ‘Physical Model Markup’ and LML ‘Loads Markup Language’ where
a natural selection for the representation of the models. Chabanas and Promayon

5https://www.w3.org/XML
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[13] proposed these generic languages that allowed to represent both continuum and
discrete models, and also a library in C++ that allows to manipulate the formats.

The PML format regroups concepts that are used on different physical models,
briefly those are :

• Atoms: this is the structure that holds the 3D coordinates, because this struc-
ture allows properties, it can represent also the mass of a spring system, for
example, or a node in the finite elements method.

• Cells : The cells are the structure that regroups multiple atoms, to this struc-
ture it is also possible to associate properties, which means that they can
represent a spring in a discrete model or an element from a continuum model
with defined Poisson coefficient for each element for example. The cells are
described by its geometry this being: triangle, hexahedron, tetrahedron, quad,
etc.

The advantage of this generic approach is that gives a granular control over
the model, where it can be a standard model or a topologically mixed one i.e Tetra-
hedra paired whit hexahedra, with different physical or mechanical parameters for
each atom or group of atoms.

LML is also a generic description based in XML, that describes the loads that can
be applied to the model, these loads can be External forces, pressure, displacements,
etc.

• Target: The target is any structure defined in the PML file, being this Atoms
and Cells or any other structure created by the user, like groups of cells

• Type: Defines the kind of force to be applied like pressure, displacement,
rotation or just a force.

• Direction: this is a 3D vector that defines in which direction the force is
going to be applied

• Value: This defines the time in which the force is going to be applied, there
can be multiple values. It comes in pairs, one for start value and the next one
for the stop.

s

2.6.2 MML
The Monitoring Markup Language ‘MML’[1] developed by Deram came as a neces-
sity to follow the data being simulated, it unifies both PML and LML, and adds
a set of monitoring tools for the simulations. It is divided in two parts MML_in
and MML_out. MML_in describes the input data, that ranges from the simulator
used in the process, SOFA in this case, a link to the PML file that contains the
geometry to the monitors being registered, such as position, geometric deviation,

11



2. Problematic

(a) PML example code

AB

C

D

x

y

z

(b) Simple PML Tetrahedra
representation

stability criteria, etc. A complete explanation of the monitors is given in 2.6.2.1.
MML_out it’s a file that contains the results of the simulation. this can be used
as a data base for comparison, due to its capacity to store the different monitors at
each simulation step.

PML	
  
Geometry	
  

Law	
  of	
  
behavior	
  

parameters	
  

LML	
  

Border	
  condi9ons	
  	
  
Forces	
  

Transforma9ons	
  

MML	
  in	
   Parameters	
  of	
  
simula9on	
  

Monitors	
  
Stop	
  Criteria	
  

Simula9on	
  Engine	
  

Figure 2.1: Description of PML, LML and MML_in relationships
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2.6.2.1 MML Monitors

The MML component include many practical metrics (see 2.2). The component for
CamiTK developed by Deram[1] include metrics captured through the simulation
process and they serve to multiple proposes, this task is done with the capability
included in the MML_in file, the monitors.

A monitor follows the the information of a metric during the simulation. This
information can be taken directly from the simulator i.e, positions or can be a
calculated metric like the geometric deviation. The monitors have the following
control tags:

• Target: it makes reference to the PML atoms or Cells. PML allows to use tags
on each structure, so it’s possible to target a group of structures by tag.

• Time condition: Like the LML control sequence ‘Value’, Time allows to choose
when the monitored structures are going to start and stop being recorded.

• Monitor or Metric: This is the monitor we want to follow in the simulation(see
2.2). The metrics can be calculated in base a reference mesh, this means that
we can monitor the value of a specific structure against an analytical solution
for example, or just against different simulations.

One major drawback of the monitoring system is that is topology dependent,
this means that if a model follows a dynamic meshing, the monitors would not be
able to trace the metric. The monitors are a point-to-point based system, which is
only functional when the reference has the exact same topology.

13
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Figure 2.2: Monitors available in the MML [1]

To face this problem of point-to-point monitor, a point-to-element error was
defined (see Results), where an a posteriori error estimate is presented.
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3
Methods

The work done in the intenship was directed to define a workflow to treat bio-
simulations in general, this section of the document describes the problems encoun-
tered and the proposed solution to those problems.

3.1 Implementation
For the internship all the implementation code was done in C++ and QtCreator.
The first reviewed application was Tetgen, which was partially integrated as a CEP
‘CamiTK Extension Project’. It allowed to do a tetrahedralization based on a surface
mesh, this meshing process was done with the help of VTK1 functions. In order to
be able to re-mesh a volumetric mesh, an extension of the class Tetrahedralize was
done, where the VTK_CELL where passed though the library and fed back to tetgen
in a VTK object. It is important to note that most file extensions (i.e, .pml, .vtk,
.msh, .node etc.) use different conventions to express its atomic elements. Tetgen
used an inverted index like shown in figure 3.1a. Not acknowledging this for example
would drastically change the topology of the object being processed.

(a) Vtk vs Tetgen indexation

Once the tretrahedralization base process was implemented, the PML exten-
sion was included and compiled. CamiTK included an additional set of tools for the
pml extension, this tools where no longer compatible with the changes done with
the folder structure in the main application and library name changes, this problem
was solved trough cmake. Some changes in the cmake files where proposed in the

1https://www.vtk.org
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forum of CamiTK2, and where later pushed to the main svn of the application. A
similar issue arose with SOFA, where the constant developments of both applica-
tions didn’t kept backwards compatibility with some of its extensions. This task
although technical in essence, was time consuming, moreover the lack of documen-
tation available on the simulation integration obliged a careful study of the complete
Sofa and CamiTK source code, where through debugging a solution was found. The
solution was also posted to the forum and late in the internship pushed to the SVN
main project by the developers of the application along with a revamp of some PML
features.

Having a functional integration with the simulator and the PML framework,
the passage from PML to VTK was done in the library, this was needed because the
simulations only work with the MML extension and not over a simple mesh (i.e vtk,
msh). This allowed to remesh PML files and to work with both VTK and PML in
the simulator and in the remeshing process. Moreover the large calculations where
done over the VTK data structure where its speed and complete set of algorithms
gave an advantage to work over the PML data structure, that is based on XML
libraries.

3.1.1 Mechanical parameters
For the current work the mechanical parameters used in the simulation carry little
to none weight this is in the sense that they do not follow a particular object or set
of constraints, meaning that regardless of the behavior of the mesh, our interest is
to verify that due to the use of a coarse mesh with little number of elements the
behavior is still close to the one projected by the ‘golden standard’ or the reference,
this is to say that regardless of the material, in predefined conditions the mesh
should follow similar displacements.

3.1.2 Algorithms
The general algorithm implementation of the main process is described below. The
process is simple in general, the main difficulties lay in the file format changes (i.e.
mml, pml, vtk, msh) and the mesh processing parameters. Because the work was
mainly done with unstructured meshes, not all file formats can be processed the
same way, this obliges to do a robust filtering process before being able to pass the
data to the tetgen library.

Mesh <− load Mesh s t r u c tu r e
// proces s mesh q u a l i t y parameters and f i l e t y p e .
process_mesh ( ) ;
Reference <− load Mesh r e f e r e n c e s t r u c tu r e
i f ( p l c ) {

ex t rac t_sur f a c e ( ) ;
t e t r a h e d r a l i z e ( ) ;

}
2https://forge.imag.fr/forum/forum.php
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e l s e {
//map o f nodes aga in s t the r e f e r ence mesh ‘ i n t e r p o l a t i o n ’
create_node_map ( ) ;
f o r node=0: l enght (Mesh . nodes ) {

Mesh . get_monitored_data ( ) ; // from MML component
Reference . ca l cu la t e_ren (Mesh ) ;

}
set_volume_constra ints ( ) ;
t e t r a h e d r a l i z e ( ) ;

}

3.2 Point-to-Element Metric
The standard REN ‘Relative Error Norm’ is a local metric that represents the dis-
tance between the simulated positions and the reference positions normalized over
the displacement of the reference. If P0 is the initial position of a point P will be
its position at stability after the simulation, Q′ will be the position of the point in
the reference mesh. The norm is expressed as:

N = ‖P −Q
′‖

‖P0 −Q′‖
(3.1)

Because this metric is point-to-point at is definition, the implementation made
a variation that allowed to determine the reference position Q′ under the assumption
that the model is lineal, so it behaves in a predictable way for the forces applied and,
that both models (reference and coarse mesh) have the same envelope or surface.

In order to calculate the error a search of correspondence had to be done in the
reference mesh, this search was first done with a KD-tree search for the coordinates,
but later on changed for more robust VTK search function on unstructured meshes.
These VTK functions allowed to do a fast search to locate the closest point in
the reference mesh, having this information the tetrahedra containing the point
was deduced. A limitation of the method is that if the surface mesh or envelope
of the mesh has a different coordinate system or a different surface that the one
being simulated, the search won’t yield valid distance values, and the enveloping
tetrahedron won’t be found.

Once all the nodes have a correspondence with a tetrahedron on the reference
mesh, its barycentric coordinates are calculated, and stored in a std::map structure,
so later we can decide which tetrahedrons of the simulated mesh have the major
contribution of error over the simulation. This calculation replaces the value Q′ in
the equation 3.1.
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(a) REN - Point to element inter-
polation

General Algorithm for the proposed REN calculation.
Y : Simulated Mesh
X : Reference Mesh
X0 : Reference Mesh at r e s t pos t i on
f o r i : l enght (X0){

// r e t r i v e i n t e r p o l a t e d va l u e s and c a l u c u l a t e the
// expec ted s imu la ted p o s i t i o n .
posRef = f ind_re ference_pos (node_map(X0 . at ( i ) ) )

i f ( d i s t ance ( posReff , X. at ( i ) ) == 0 | |
d i s t ance ( posRef , Y. at ( i ) == 0 ) {
Error = 0 . 0 ;

}
e l s e {

REN_point = ( d i s t anc e ( posRef , Y. at ( i ) ) /
d i s t ance ( posRef , X0 . at ( i ) ) ) ;

}
}

}
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Reference position and map building algorithm.
X : s imulated mesh
X0 : s imulated mesh at r e s t p o s i t i o n
Y0 : r e f e r e n c e mesh at r e s t p o s i t i o n
f o r i =1: l enght (X) {

po int = X0 . at ( i ) −> f ind_c lo s e s t_po in t (Y0)
tet ra_id = point −> f ind_enc lo s ing_te t ra (Y0 ) ;
po int −> ca l cu l a t e_ in t e rpo l a t i on_we igh t s ( t e t r a ) ;
node_map −> add ( point , weights , t e t ra_id ) ;

}

The calculated error for a tetrahedron was based on the sum of each one of
its nodes ∑ ‖Ee‖ where the top 20% of tetrahedra (See Refining Criteria) with
the biggest error where meshed. This meshing involved two criteria, a constrained
volume reduction and a quality factor, both criteria where passed to Tetgen as
parameters.

3.3 Workflow
The implemented workflow had as an challenge to group different applications
throughout an adaptive meshing process. The exploration of the tools that exist
is a long task, where many are specialized over specific domains or don’t have an
integration mechanism which other tools could benefit from.

The workflow was divided in two parts: the first consisted in the specific-
patient data acquisition, this is done generally with scanning technologies that will
render a model usually this model is a NURBS representation, from that point to
the tessellation of the model into different study cases, require advanced applications
that are not often publicly available or require licensing. this part of the project
was outside the scope of the internship, but nevertheless some investigation on the
possible applications was made. For the reading and modification of the model
a 3D modeling software like Rhino3D3 or OPEN Cascade4 can be used, this will
produce models in BREP format, at least for the study cases, later a tessellation of
the surfaces is needed in order to transform the curves in a finite elements mesh.
OPEN Cascade provides this functionality. Once the model is tessellated it can be
rendered into any available file format that exists in CamiTK, being those (stl, obj,
msh, vtk, off).

Once the mesh is in any of the formats mentioned before the second part of
the workflow (Process outside of the box see ??) is done. In order to simulate,
the file must be tetrahedralized. This is done trough TetGen, it’s important that
the meshing process defines various quality measures for the tetrahedra building,
later on the behavior of the model can be analyzed based on the resulted meshing.
The mesh can be then simulated through the use of a MML file, this file will only
contain the simulator, and the metrics we want to simulate. This job is usually

3http://www.rhino3d.com/
4http://www.opencascade.com/
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done but the medical expert, it’s his task to point the sensible areas that need to
be followed or the constraints or forces that need to be applied in order to do the
required medical analysis. This forces are defined in an LML file as explained before.
CamiTK will generate a simulation scene (.scn file) for SOFA. This scene will have
the required nodes, including physical simulation parameters like, mass, Poisson
coefficient, Young Modulus, FEM technique (co-rotational, St. Venant-Kirchhoff,
etc.) to the kind of solver to be used. Some made where done to the automatic file
generation in order to update the needs of the project. but it can also be manually
edited trough the Modeler application of SOFA. Assuming a first simulation of a
model exists, it can be then produced a coarse mesh with TetGen based on the
tessellated surface, and launch the adaptive process of re-meshing.

(a) Workflow interaction diagram
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4
Results

4.1 Validation of the Model
In order to validate the error criteria proposed and the pertinence of the meshing
algorithms of Tetgen, some validations where made. A validation was done for an
uniform model, where the amount of elements of the mesh was uniformly created,
all having the same geometric quality.

4.1.1 Validation of Uniform Model
Test done in a horizontal beam for the uniform model:
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Figure 4.1: Convergence Plot for Uniform Model

As seen in the plot ?? as the mesh have more elements, the calculated REN
(point-to-element) showed in the section 3.2, diminish. The table ?? shows the
average error values for the points.

21



4. Results

Points Tetras Avg. REN
32 42 0.732431
48 66 0.772317
126 312 0.637018
153 384 0.654031
304 972 0.457136
368 1188 0.432246
675 2496 0.341864
1813 7776 0.244312
2120 12348 0.000042

Table 4.1: Uniform Meshing Convergence Error

From the previous table it can be deduced that the error calculation trough the
proposed REN is valid for an uniform meshing process. A small error is introduced
by numerical precision when the reference mesh is compared against itself, as shown
in the last element of the table

4.1.2 Validation of Adaptive Model
For the adaptive model three criteria for tetrahedra quality where tested 1, 2 −
sqrt(2) − 2, although any quality measure > 2 is considered bad because it can
cause ‘silver’ tetrahedra, it was tested to verify the speed of convergence and the
sensibility of the simulation with different quality parameters. This simulation was
done on a Vertical Beam fixed on top that had 3824 vertices and 12267 tetrahedra.
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Q : 1.2
Q : sqrt(2)
Q : 2

Figure 4.2: Convergence Plot for Adaptive Model

The meshing process was considered finish when no more tetrahedrons were
added after a given iteration. For the different parameters the behavior wasn’t
similar.

The quality measure 1.2 was the one that produced on each iteration by far
the biggest amount of subdivisions, unexpectedly this divisions did not contributed
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to the convergence of the model, on the contrary each subdivision of the elements
incremented the error. For the second quality measure sqrt(2), it does in fact reduce
the error, but is not necessarily a steady reduction. Even though the meshing
method created the most accurate meshes its solution does not converge, at the
end no more tetrahedra are generated to to volume constraints and quality factors.
When the volume of an tetra can not be reduced without generating elements with
bad quality, tetgen simply ignores the volume constraints imposed by the REN error
calculation, and does not modify the mesh.

Points Tetras Avg. REN
26 44 0.410276
62 142 0.331183
86 244 0.371915
123 396 0.49101
303 1167 0.337192
612 2503 0.34695
777 3290 0.374771
1026 4566 0.470078
1236 5719 0.953979

Points Tetras Avg. REN
26 44 0.410276
52 112 0.325443
60 138 0.352635
64 156 0.356394
74 189 0.402189
78 206 0.40539
165 525 0.255699
182 575 2.29452
185 587 0.301611

Table 4.2: REN table for meshes with Quality Measure 1.2 and sqrt(2) respectively

As discussed before in the section 2.5.2 a quality superior to > 2 is not con-
sidered a good quality. Nevertheless the test was done and it was found that the
library stop generating elements very fast due to the inability to respect the quality
against the demanded volume reductions imposed by the REN calculation.

Points Tetras Avg. REN
26 44 0.410276
43 92 0.361613
49 111 0.374963
58 143 0.391735

Table 4.3: REN for mesh generated with quality criteria 2

From all the measures tested the one that yielded best results was sqrt(2)
but it was still far from the desired solution. the images 4.3d, 4.3b, 4.3c show the
results visually. The Blue mesh in the images is the reference mesh against which
the models where compared.
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(a) Beam Best appraxi-
mation.

(b) Beam Multiple Itera-
tions.

(c) Beam Multiple Itera-
tions overlapped.
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(d) Close Up of solutions against the ref-
erence (Blue Mesh)
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5
Conclusion

An implementation of a workflow was made with the intention of generate coarse
model of a given mesh and gradually adapt it to an ideal solution by mesh refine-
ment. Multiple criteria were used in order to make the gradual refinements, one of
the proposed criteria was a residual error estimate (point-to-mesh REN) where the
local estimation of the error gave the indications of the places where the refinement
had to be made, although the criteria was tested with an uniform model, it per-
formed poorly for the adaptive model. The reasons of this performance could be
caused by a decisions of refinement made by the remeshing library (Tetgen) or they
could also obey to the criteria itself. The analysis of the algorithms of the TetGen
library where out of the scope of the internship, that’s why is not possible to pin-
point the real origin of the issues encountered in the adaptive meshing process.
Several modifications and suggestions where made trough the CamiTK forum in
order to re-establish the tools and plug-ins that where not compatible with the last
version of the application, this problems where later solved by the developer group
and introduced into the code repository.
In order to have a more efficient communication between formats some tools where
introduced as form of plug-ins to the CamiTK application. This included the trans-
formation from file formats like PML and VTK. Many techniques of code develop-
ment seen in some of the applications were unknown to me, during this internship
I had the opportunity to learn from applications like SOFA that used the Visitors
Pattern, by CamiTK that used the Signals and Slots and from cmake, which I only
used before as an end user. This process of search, research and coding, contributed
greatly to my professional and academic formation.
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A
Mathematical Background

Depending on the chosen application, a medical simulation can be defined either
by generic data, average data or patient specific data on the patient. For instance
a simulator based on the training can use data that are not bound to a specific
patient, then a diagnostic or planning simulator must ideally be based on the specific
information data of the patient under study.

Generally the last kind of simulator require different phases such as: Acquisi-
tion of the patients organ geometry, segmentation of the input, 3D reconstruction,
measurement of the mechanical parameters of the soft tissue, application of the de-
formation algorithm, interactions detection and management, haptic return force
management and finally the analysis of the parameters during the simulation pro-
cess.

In our case, some of the phases mentioned before are out of the scope of the
internship and won’t be explored through the document. We’ll assume that the
input data is a 3D surface model that can be given in any physical format, either
STP, obj, msh, vtk etc. and for the propose of the research it will represent a generic
case of study.

A.1 Soft tissue models
Mathematical models are often used in medical simulations to describe the behavior
of soft tissue. This section is barely a scratch on the domain of those methods, but
it will lay grounds on the mechanisms used by the simulator during the internship1.

Generally the deformation models can be based over a physic logic or a de-
scriptive one. The models physically based, describe the intern works of the modeled
phenomenon. If the phenomenon at hand is well understood its precision will de-
pend then on the resolution of the mesh. The descriptive models on the other hand
reproduce directly the behavior of the phenomenon without any previous knowledge,
making its precision depend solely on the skills of the person who made the model
and the given parameters or external constraints in order to find the closest visual
solution to the reality. In medical simulation the physic models are the most used,
because it allows the users to make predictions over its behavior contrary to the
descriptive models. There are two main representations in order to describe a de-
formable object, these are the Lagrangian representation that follows the particles
over time, regardless of its position and the Eulerian representation that tracks a

1https://www.sofa-framework.org/
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given position rather than the particle itself, this means that that the observation
is fixed and we analyse all the particles that pass over our field over the time [2][1].

A.2 Model Types
In the field of soft tissue simulation there are two main physical model categories,
those are: continuum and discrete models. The first are based on purely physical
sense, that is to say that their mathematical model based on knowledge of the
physical processes of deformation of continuous media. The passage of the equations
of continuum mechanics to a digital model is through a method of resolution, the
most famous being the finite element method. The discrete models are based on
a discretization of the model from the mathematical formulation. These models,
although always based on reproducible physical processes are more descriptive than
continuous models, i.e. Mass-Spring systems.[1]

The next section will introduce the mathematical models in which the simula-
tions are based, it intends to be more a mathematical tool presentation for the basis
of most medical simulators, for a complete explanation on the subject see [3].

A.2.1 Continuum Model
Displacements
Upon deformation of a body, each point of which the initial position is given by the
vector x0 is found at a position x. The displacement u(x) for this point corresponds
to the vector between the deformed position and the rest position, u(x) = x− x0
Deformation
A body which is just translated, that is to say, the displacement is the same at
any point does not undergo a deformation. Deformations at a point are due to
variations in the displacement field around this point; so we can characterize by
using the gradient of the displacement field. The classic approach to characterize
the deformation at a point is the Green-Lagrange tensor, defined by :

E = 1
2

[
(∇Xu)T +∇Xu + (∇Xu)T · ∇Xu

]
(A.1)

Stress Tensor
The stress is an homogeneous variable which characterizes the mechanical actions
exerted on the material for a given point and a given direction. This is a second
order tensor, with nine components σij that completely define the state of stress at
a point inside a material in the deformed placement or configuration.

Laws of Behavior
The laws of behavior that govern an object, characterizes the response of the object
to external forces. For elastic objects (such as organs) this law is defined by:

σ = f(ε) (A.2)

The laws as shown in [1] consist in 5 major behaviors briefly described below:
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1. Elasticity:
Elasticity is the ability of a body to resist a distorting influence or stress and to
return to its original size and shape when the stress is removed. Solid objects
will deform when forces are applied on them. If the material is elastic, the
object will return to its initial shape and size when these forces are removed.

2. Linear Elasticity :
For small deformations, most elastic materials such as springs exhibit linear
elasticity and can be described by a linear relation between the stress and
strain. This relationship is known as Hooke’s law. This law can be stated as
a relationship between force F and displacement x.

F = −kx (A.3)

where k is a constant known as the rate or spring constant. It can also be
stated as a relationship between stress σ and strain ε:

σ = Eε (A.4)

where E Is known as the elastic modulus or Young’s modulus.
In order to be able to use this law the material must be isotropic (Same
behavior in all directions). In terms of Young’s modulus and Poisson’s ratio,
Hooke’s law for isotropic materials can then be expressed as:

σ = 2µε+ λ tr(ε)I (A.5)

where σ is the stress, ε the strain tensor, I the identity matrix and tr(·) the
trace function.

3. Hyper-elasticity :
For many materials, linear elastic models do not accurately describe the ob-
served material behavior. The most common example of this kind of material is
rubber, whose stress-strain relationship can be defined as non-linearly elastic,
isotropic, incompressible and generally independent of strain rate. Hyperelas-
ticity provides a means of modeling the stress-strain behavior of such materials.
The simplest hyperelastic material model is the Saint Venant–Kirchhoff model
which is just an extension of the linear elastic material model to the nonlinear
regime. This model has the form:

S = λ tr(E)1 + 2µE (A.6)

where S is the second Piola–Kirchhoff stress and E is the Lagrangian Green
strain, and λ and µ are the Lamé constants.

4. Viscoelasticity :
Viscoelasticity is the property of materials that exhibit both viscous and elastic
characteristics when undergoing deformation. Viscous materials, like honey,
resist shear flow and strain linearly with time when a stress is applied. Elastic
materials strain when stretched and quickly return to their original state once
the stress is removed.
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5. Plasticity :
Plasticity describes the deformation of a material undergoing non-reversible
changes of shape in response to applied forces. For example, a solid piece of
metal being bent or pounded into a new shape displays plasticity as permanent
changes occur within the material itself.

A.2.1.1 Mathematical Model

The mathematical model then that determines the displacements of a ‘body’ it’s
given by :

• Behavior Law : σ = f(ε)
• Relation between deformations and displacements : ε = g(u) corresponding

to the selected tensor (Linear - non-linear)
• Equation of local equilibrium : div([σ]) + fextv = ρü

with fextv being the external volumetric forces, et ρ the volumetric mass.
When this formulation has no analytical solution, Finite Elements Method is used.

A.2.1.2 Finite Elements Method - ‘FEM’

The principle of FEM is to provide an approximate solution of partial differential
equations, where the idea of the method is to discretize the object in a number
of ‘finite elements’ on which the partial differential equations can be solved. This
discretization is translated into a mesh, where the elements are simple geometric
shapes (triangles, quads, tetras, hexagons, etc.), and the vertices are nodes. The
physical properties are continually interpolated on each element according to the
values of the nodes, so the precision of the solution depends directly on the mesh
and the chosen interpolation methods. Once the the mesh and the interpolation
functions are chosen, the solution follows these steps:

1. Approximation of displacement of the points of each element e as a function
of displacement ue of its nodes.

2. Calculation of the deformations as a function of the nodal variables.
3. Calculation of the constraints as a function of nodal variables using the be-

havior laws.
4. Use of the theorem of virtual works. For each element is obtained a relation

on the form:
Fe = [Ke]ue (A.7)

where F e represents the force over the nodes of the element and [Ke] is the
stiffness matrix of the element e

5. Sum of the contribution of forces of each element.
Finally in the static case we obtain a system of the type:

F = [K]u (A.8)

With u being the unknown vector containing the displacement of all nodes, K the
global stiffness matrix obtained by the sum of all element matrices and F the forces
applied to all the nodes in the mesh. On the dynamic case we obtain a system of
the type:

F = [M ]ü + [D]u̇ + [K]u (A.9)
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with M the mass matrix and D the damping matrix. The calculated solution on the
nodes can be then interpolated over each point of the object.

In the static case if the matrix K don’t depends on U the solution can be
achieved simply by inversion of the K matrix, or by applying iterative methods
like the conjugate gradient. If K matrix depends of U (non linearity), the system
can be solved by the iterative Newton-Raphson method. In the dynamic case, the
equations are solved by numerical integration, see [15].

A.2.2 Discrete Model

A.2.2.1 Mass Spring systems

This is one of the most known discrete models for deformable object representation.
In this system, the mass of deformable object is discretized in n points of mass mi

that are attached to ideal springs (without mass). At each step of time t, each point
i has a position xi. the force Fi in each point es calculated in function of the springs
attached and additional external forces. The equation that describes the movement
for each point i is :

F = ma = m
d2x

dt2 = mẍ = −kx. (A.10)

Where k is the stiffness coefficient of the spring (positive constant). F can be
decomposed in :

F = Fext + Fint − c
dx
dt (A.11)

Being cdx
dt

the damping on the system in relation to the preceding step of t. Fext

is for example the weight, and Fint are the forces applied over the point i by other
particles, and because springs react proportionally to the displacement compared to
the resting position, the internal forces are equivalent to :

Fint =
n∑

j=1

xj − xi

‖xj − xi‖
(kij(‖xj − xi‖ − lij)) (A.12)

k is the stiffness and l is the length of the spring, both between points i and j. In
A.9 it was shown the particular case for one point, for multiple points the equation
becomes a system of multiple equations:

Fext = [M ]d
2x

dt2 + [D]dxdt + [K]x (A.13)

with M, D and K being matrices 3x3 representing the mass, damping and stiffness,
and x a 3n vector with the positions of all points. The Mass-Spring system is widely
used for soft tissue simulation due to it’s simplicity of implementation and reduced
speed of calculation, but it yields results less realistic. For an extended version of
the mass-spring method on soft tissue [4] can be consulted.
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A. Mathematical Background

A.3 Time Integration Schemes
In order to simulate soft tissue, it is necessary to have the coordinates of each point
at each time step. The methods mentioned before allow to reach an equation where
the positions of the points in each time step are not explicitly given but implicitly:

ẍ = f(ẋ, x, t) (A.14)

Where x(t) is a vector holding the group of positions at the time t and f is one
function that depends on the selected model. Because it can’t be solved in an
analytical way, we must use numerical integration.

Once we fix a time step dt the goal is to find the approximate value at different
x(δt). We wan rewrite the second order equation as follows:ẋ = v

v̇ = f(v, x, t)
(A.15)

To find the values of x(t+ dt) they are different methods of integration. If x(t+ dt)
is dependent of the values in t+ dt then the method is implicit otherwise is explicit
(A.15).

A.3.1 Explicit integration
The most used method is the Euler method :x(t+ dt) = x(t) + dtv(t)

v(t+ dt) = v(t) + dtf(v(t), x(t), t)
(A.16)

This method is generally stable, but it can present problems of stability when dt is
bog

A.3.2 Implicit integration
The Backward Euler method or implicit method is given by:x(t+ dt) = x(t) + dtv(t+dt)

v(t+ dt) = v(t) + dtf(v(t+dt), x(t+dt), t)
(A.17)

This method is more costly to calculate, but unconditionally stable, which means
we can use larger time steps to find a faster convergence of the system. This method
was used in sofa to solve the equations system.
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