Ant Colony Systems and the Calibration of Multi-Agent Simulations: a New Approach

Benoît CALVEZ and Guillaume HUTZLER

IBISC Université d'Évry Val d'Essonne CNRS FRE 2873

{benoit.calvez,guillaume.hutzler}@ibisc.univ-evry.fr

Multi-Agents for modelling Complex Systems (MA4CS'07)

MA4CS'07

1/32

Plan

- Introduction
- The method
 - Overview
 - ADO Method
- Results
- 4 Conclusion

Introduction

- Discrete and spatial modelling
- Bottom-up approach
 - Entities-oriented modelling
 - Interaction-oriented modelling
- Agent behaviour is the composition of :
 - · Perception of the environment
 - Decision based on :
 - internal state
 - state of the environment
 - Action upon the environment
- Artificial world made up of agents in interaction in a simulated environment.

The dynamics of the system is the result of local actions of the agents and interactions between them.

Problem

But

Problem

But

- Huge parameter space in the design of a model
- Imperfect knowledge of some parameters
- Sensitivity of some models to the parameters

Objectives and Proposition

Objectives

- Find a parameter set that is compatible with the corresponding observations on the real system
- Determine the different classes of system's dynamics
- Compare different models

Objectives and Proposition

Objectives

- Find a parameter set that is compatible with the corresponding observations on the real system
- Determine the different classes of system's dynamics
- Compare different models

Our approach

- Automatic exploration of the parameter space
- Optimization problem

Naïve approach

- Black box
- Optimization algorithms like genetic algorithms

Naïve approach

Naïve approach

But

- Introduction of many parameters :
 - choice of the optimization algorithm : for instance, genetic algorithms, simulated annealing...
 - choice of the parameters of the optimization algorithm : for instance, mutation rate, number of chromosomes...
 - ...
- Black box approach
 - ⇒ doesn't take into account the particularities of the model
 - ⇒ only one parameter setting evaluated at each simulation

Plan

- Introduction
- The method
 - Overview
 - ADO Method
- Results
- 4 Conclusion

Plan

- Introduction
- The method
 - Overview
 - ADO Method
- Results
- 4 Conclusion

- To have a systematic approach
- Agent-based simulations are generally composed of several agents with the same behaviour
 - Use this particularity to explore the parameter space cleverly
 - Different settings for the different agents
- All regions of the parameter space aren't interesting
 - Division of parameters into intervals
 - Adaptive exploration

Agent initialization

Agent initialization

For each parameter

- Choice of an interval
- Choice of a value in this interval

Agent initialization

For each parameter

- Choice of an interval
- Choice of a value in this interval

Agent initialization

Simulation

Simulation

An example of an interval division

- When the number of rewards received by each interval is sufficient
- Choice of the interval that has the highest average of rewards
- Division into two intervals

An example of a interval division

- When the number of rewards received by each interval is sufficient
- Choice of the interval that has the highest average of rewards
- Division into two intervals

MA4CS'07

15/32

An example of a interval division

- When the number of rewards received by each interval is sufficient
- Choice of the interval that has the highest average of rewards
- Division into two intervals

Plan

- Introduction
- 2 The method
 - Overview
 - ADO Method
- Results
- Conclusion

General principle

- Swarm intelligence
- Inspired by the creation of trails of pheromones
- [Dorigo and Di Caro, 1999, Blum, 2005]

More specifically

- Taking inspiration from Ant Systems [Dorigo et al., 1991, Dorigo et al., 1996]
- Adding a heuristic information

Double-Bridge Experiment[Deneubourg et al., 1990]

General principle

- Swarm intelligence, more precisely Ant Colony Optimization
- Inspired by the creation of trails of pheromones
- [Dorigo and Di Caro, 1999, Blum, 2005]

More specifically

- Taking inspiration from Ant Systems [Dorigo et al., 1991, Dorigo et al., 1996]
- Adding a heuristic information

17/32

(IBISC) MA4CS'07

① Creation of a model: Agent initialization

① Creation of a model : Agent initialization

18/32

① Creation of a model: Agent initialization

Schema of the heuristic computation For each interval Computation of the heuristic Information for this interval Initialization of agents Simulation

① Creation of a model : Agent initialization

Probability of the choice of an interval :

$$\left[au_{ij}
ight]^{lpha} imes\left[\eta_{ij}
ight]^{eta}$$

3 Fusions and divisions of parameters

3 Fusions and divisions of parameters

Division :

$$au_{ij} > \overline{ au_i} + 2 imes \sigma_i$$

• Fusion:

$$au_{ij} < \overline{ au_i} - \sigma_i$$

Plan

- Introduction
- The method
 - Overview
 - ADO Method
- Results
- Conclusion

Model and parameters

- Model: Ants provided by the modelling environment platform Netlogo [Wilensky, 1998]
- 25 ants
- 500 simulation steps
- Fitness: quantity of food brought back to the nest at the end of the simulation

22 / 32

(IBISC) MA4CS'07

Model and parameters

Parameter

- speed: this parameter characterizes the speed of an agent. It varies between 0 and 20 patches per simulation step.
- patch_ahead: this parameter characterizes the number of patches looked ahead to "sniff" the chemical. It varies between 0 and 10 patches.
- angle_vision: this parameter characterizes the angle of vision. It varies between 0° and 360°.
- drop_size: this parameter characterizes the initial quantity of chemical that the agents drop in the environment when they come back to the nest with items of food. It varies between between 0 and 200.

(IBISC) MA4CS'07 23 / 32

Fitness evolution

Parameter evolution

Speed parameter

Parameter evolution

Artificial parameter

Plan

- Introduction
- 2 The method
 - Overview
 - ADO Method
- Results
- Conclusion

Conclusion

Aim: Automatic exploration of the parameter space of an agent-based-simulation

- Presentation of a new approach :
 - Very fast convergence with few simulation runs
 - "A kind of cartography" of the parameter space
- Validation of the approach on a simple model

Perspective¹

- Mix of different methods :
 - Begin with ADO method
 - From the parameter division, continue with the genetic algorithm
- Analysis of the cartographic result
- Application to "real" models

Thank you for your attention.

(IBISC) MA4CS'07 30 / 32

Bibliography I

- Blum, C. (2005).
 - Ant colony optimization: Introduction and recent trends. Physics of Life Reviews, 2(4):353–373.
- Deneubourg, Aron, S., Goss, S., and Pasteels, J. M. (1990). The self-organizing exploratory pattern of the argentine ant. Journal of Insect Behavior, 3(2):159-168.
- Dorigo, M. and Di Caro, G. (1999). The Ant Colony Optimization Meta-Heuristic, chapter New Ideas in Optimization, pages 11–32.
 - McGraw-Hill
- Dorigo, M., Maniezzo, V., and Colorni, A. (1991). Positive feedback as a search strategy. Technical Report No. 91-016, Politecnico di Milano, Italy, 1991.

Bibliography II

Wilensky, U. (1998). Netlogo ants model.

Center for Connected Learning and Computer-Based Modeling,

Northwestern University, Evanston, IL.

