

UE MIF25 : Traitement du signal et communications numériques Travaux Pratiques

1 Prise en main de Matlab

Lire le manuel de prise en main disponible ici :

https://perso.liris.cnrs.fr/florent.dupont/Enseignement/matlab TS APB.pdf

Tester rapidement les diverses fonctionnalités.

Quelques rappels:

- le ";" à la fin d'une ligne évite l'affichage du résultat.
- (0:8) renvoie le vecteur (0,1,2,...,8)
- (0:2:8) renvoie le vecteur (0,2,4,...,8)
- est un produit matriciel, .* un produit point à point.
- ones (1,N) renvoie un vecteur de taille N rempli de 1
- zeros (1,N) renvoie un vecteur de taille N rempli de 0
- x(p:q) renvoie les valeurs de x d'indice p à q.
- x=[x₁ x₂] concatène x₁ et x₂
- X=fft(x,N) calcule la FFT de x sur N points (voir aide pour les détails)

Signal d'entrée

- Construire un vecteur t, de longueur N = 1000, allant de 0 à N 1;
- Construire le signal sinusoïdal $x = cos(2 \pi f_0 t). u(t t_0)$ avec $f_0 = 0.01$ et $t_0 = 15$

2 Etude de quelques systèmes linéaires et invariants simples

a- Retard pur

Construire la réponse impulsionnelle h_1 d'un retardateur idéal de durée $t_1=100$ En utilisant la fonction conv de matlab, calculer la sortie y_1 du système pour l'entrée x Tracer les deux signaux d'entrée et de sortie et vérifier que le système réalise la fonction souhaitée

b- Moyenneur

Construire la réponse impulsionnelle h_2 d'un filtre moyenneur de longueur M=100. h_2 est un vecteur de longueur M, dont toutes les valeurs sont égales à 1/M.

En utilisant la fonction conv de matlab, calculer la sortie y_2 du système pour l'entrée x Tracer les deux signaux d'entrée et de sortie. En régime permanent (t>M) comparer la forme des signaux x et y_2

Qu'observe-t-on lorsque l'on remplace le signal sinusoïdal d'entrée par d'autres signaux (square, sawtooth...) ?

Refaire le travail précédent pour un signal sinusoïdal de fréquence variable entre 0 et 0.080 avec un pas de 0.001.

Pour chaque fréquence, on déterminera l'amplitude Y_2 du signal de sortie (amplitude maximale du signal après le régime transitoire)

Tracer la courbe représentant Y_2 en fonction de f.

c- Cellule du premier ordre

On considère maintenant un filtre passe-bas passif constitué d'une cellule RC.

Pour ce filtre, la réponse impulsionnelle est : $h(t)=\frac{1}{RC}\;e^{-\frac{t}{RC}}\;$ et la fréquence de coupure à 3dB est $f_{c}=\frac{1}{2\;\pi\;RC}$

Construire la réponse impulsionnelle h_3 de ce filtre, de longueur M=100, avec RC=16. Pour un signal sinusoïdal de fréquence variable entre 0 et 0.080 avec un pas de 0.001, déterminer l'amplitude Y_3 du signal de sortie (amplitude maximale du signal après le régime transitoire)

Tracer la courbe représentant Y_3 en fonction de f. Vérifier que pour f_c , Y vaut $\sqrt{2}/2$.

Calculer le gain en dB du système : $Y_3(dB) = 20 log_{10}(Y_3)$

Tracer $Y_3(dB)$ sur une échelle de fréquence logarithmique (diagramme de Bode).

Ajouter sur le graphe le segment $(f_c, 0) - (10f_c, -20)$ et comparer avec le tracé de Y_3

3 Création d'une image

On veut générer un signal bidimensionnel I de dimension 256x256. Pour un pixel situé sur une ligne y et une colonne x de l'image, la valeur de I est donnée par :

 $I(y,x)=127*(1+\cos(4f\theta))$ où f représente le nombre de périodes du signal sur le secteur angulaire de $\pi/2$.

Créer et afficher l'image I

