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Abstract

In digital geometry, digital straightness is an important concept both for practical
motivations and theoretical interests. Concerning the digital straightness in dimen-
sion 2, many digital straight line characterizations exist and the digital straight
segment preimage is well known. In this article, we investigate the preimage associ-
ated to digital planes. More precisely, we present structure theorems that describe
the preimage of a digital plane. Furthermore, we present a bound on the number of
preimage faces.
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1 Introduction

Digital straightness is an important concept in computer vision. In dimension
two, for nearly half a century many digital straight line characterizations have
been proposed with interactions with many fields such as arithmetic or theory
of words (refer to [1] for a survey on digital straight line). A classical way
to define a digital straight line is to consider the digitization of an Euclidean
straight line on a unit grid. Hence, given a finite subset of a digital straight
line, called digital segment, we can characterize the set of Euclidean straight
lines whose digitization contains the digital straight segment. Many authors
have discussed about this set of straight lines, also called preimage, of a digital
segment [2-4]. An important result is that such a preimage is a convex polygon
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in the parameter space and this domain has got an important arithmetical
structure that limits to four the number of vertices. The interest of such a result
is double: on one hand we have a better understanding of this simple digital
object and on the other hand, we can design very efficient digital straight
line recognition algorithms. Concerning digital plane, some algorithms exist
in order to decide if a set of grid points in dimension three is a part of a digital
plane [5-9]. However, no results have been proposed concerning the structure
of the digital plane preimage. In this article, we present several results that
describe faces and vertices of the preimage polyhedron in the parameter space.

In section 2, we present major results on the digital straight line preimages.
The structure theorems for straight lines are then used to characterize digital
plane preimage in section 3. Finally, we present in section 4 a bound on the
number of faces of the digital plane preimage.

2 Digital straight line preimage

In the following, we use the notations proposed by Lindenbaum and Bruckstein
[4]. Consider a straight line y = gz + 5y (with 0 < ag, By < 1), the digitization
of this line using the Object Boundary Quantization (see [10] for a survey on
digitization scheme) on an N x N unit grid is the set of discrete points such
that Lo = {(z,y) € N X N | |apx + Bo — y] = 0}. The preimage of a digital
straight segment (DSS for short) Lo is defined by the set of straight lines
whose digitization contains Ly. The preimage of Ly, denoted D(Ly), is the set
of («, B) in the straight line parameter space satisfying:

D(Lo) = {(e, ) | V(z,y) € Lo, y S ax+ S <y +1} (1)

The preimage of a digital straight line on an N x NV grid is given by intersection
of linear inequations in the parameter space. Many works have been done con-
cerning the preimage analysis. In the following, we recall properties presented
by Dorst and Smeulders [2], Mcllroy [3] and Lindenbaum and Bruckstein [4].

Proposition 1 The domain D(Ly) is a convex polygon in the parameter space
with at most four vertices. If D(Ly) has four vertices, two of them have the
same « coordinate which is between the o coordinates of the other two vertices.

The figure 1 illustrates all the possible shapes of D(Lg) (see [4]) and a simple
proof can be found in [3]. Among all the various definitions of DSS, we retain
the one proposed by Reveilles [11] and based on the following definition:

Definition 2 An arithmetical naive straight line on an N X N grid, denoted
N(a,b,pn), with a,b,p € Z and ged(a,b) = 1 is defined by the set of pizels



satisfying:

N(a,b,p) ={(z,y) € N x N [ p < ax — by < pp+ max({al, |b]) } (2)

a/b is the slope of the digital line and p is the lower bound.

Fig. 1. Five possible shapes of the preimage D(Lg) of a digital straight segment.

If we consider a naive straight line such that 0 < a < b and thus max(|a|, |b|) =
b, we have an equivalence between this characterization and the previous one:

Theorem 3 (Reveilleés [11]) For all oy and By such that 0 < g, Fy < 1,
there exist a, b, p € Z with 0 < a < b such that Ly = N(a,b, u).

We choose the Reveilles digital straight line representation scheme because
it allows simple illustration of the geometry in the primal space of preimage
vertices. More precisely, we can define characteristic points, called leaning
points, defined as follows: upper leaning points (resp. lower leaning points) of
a digital straight line N(a,b, u) are grid points (z,y) satisfying ax — by = u
(resp. ax — by = p + max(|al,|b]) — 1). We denote U (resp. U’) the upper
(resp. the lower) leaning point of N(a, b, 1) with minimum z coordinate (resp.
maximum z coordinate). In a same way, we define L and L’ from lower leaning
points, the figure 2-(a) illustrates these definitions. Using these arithmetical

Fig. 2. Illustration in the primal space of the preimage vertices using arithmetical
digital line formalism: (a) an arithmetical digital straight line N(1,3,1) with lower
and upper leaning points, (b) its associated preimage and (c) illustration in the
primal space of the preimage vertices.

digital lines, the preimage vertices can be expressed using U, U’, L, L' (see
figure 2):



the vertex D corresponds to the straight line (UU’) in the primal space ;
the vertex B corresponds to the straight line (L,L’) where L, (resp. L) is
L (resp. L') translated by the vector (0,1) ;

the vertex A corresponds to the straight line (L,U’) ;

the vertex C' corresponds to the straight line (LLU).

(
the coordinates of D and B are respectively (%, %) and (%, ££1).

If the preimage has only three vertices, similar results can be derived. In a

digital line recognition point of view, the following results can be derived from
[11] and [4]:

Theorem 4 Let N(a,b, ) be a digital naive line on an N X N grid, and a
pizel p at the left (or right) side of N(a,b, ) and such that p belongs to this
straight line. The preimage of the digital line on an (N + 1) x (N + 1) grid
remains unchanged if and only if p is not a leaning point of N(a,b, ).

3 Digital plane preimage
3.1 Notations and definitions

We consider now a cubic unit grid of size N. The digitization F, of an Eu-
clidean plane given by the normal vector (g, Bo,7) € [0,1]? x [0, 1[ is the set
of grid points (called vozels in 3D) satisfying:

PO:{(x,y,z)€N3 | Loz + Boy + Y0 — 2] =0} (3)

In the same manner as in 2D, we can define the preimage of the digital plane
P, considering the set of parameters («, 8,7) such that the digitization of the
associated plane is Py:

Dsp(Py) = {(, 8,7) € [0,112 x [0,1] | V(z,y,2) € Py, 2 < az + By + v < z + 1}(4)

The preimage, denoted Dsp(P,), is a convex polyhedron in the («, §,7) pa-
rameter space because it is the intersection of linear inequalities. We also
consider a characterization of the digital plane based on arithmetical naive
plane [11]:

Definition 5 An arithmetical naive plane in a N3 grid, denoted P(a,b,c, 1),
with a,b, c, p € Z and gcd(a,b,c) =1 is defined by the set of voxzels satisfying:

P(a,b,c,p) = {(z,y,2) € N* | p < az + by + cz < p+ max(|al, [b], |c[) }(5)



(a,b,¢)T is the digital plane normal vector and p is the lower bound.

In the following, we consider naive plane such that 0 < a < b < ¢ and
thus max(|al, |b],|c|) = c¢. The digital plane characterization is the same as
the definition given by equation 3: for each plane Py given by (o, So,70),
there exist a,b,c,u € Z with 0 < a < b < ¢ such that Py = P(a,b,c, ).
In this arithmetical plane, we can also define special voxels, so called upper
and lower leaning points: the upper leaning points are voxels satisfying ax +
by + cz = i and lower leaning points are voxels satisfying ax + by + cz = p +
max(|al, |b], |c|) —1. Since these points are respectively coplanar, we also define
the upper leaning polyon, denoted L,, (resp. lower leaning polygon denoted
Liow) by the 2D convex hull of upper leaning points (resp. lower leaning points).
The figure 3 illustrates these definitions.

In the next section, we present links between preimage faces and leaning poly-
gon vertices.
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Fig. 3. Illustration of an arithmetical digital plane P(7,17,57,0), lower and upper
leaning points and lower and upper leaning polygons with N = 15.

3.2 Duigital plane preimage characterization

We first introduce vertices and faces of Ds;p(P) given by leaning polygons:

Proposition 6 Let P(a,b,c, i) be a piece of naive plane. Then, the polyhe-
dron containing all the Euclidian planes D3p(P) in the parameter space has
the following properties :

e Two particular vertices with coordinates Ly, (2,2, ) and L} (2, 2, EEL) which
corresponds to the planes containing the leaning polygons L., and L, in
the primal space;

e the polyhedron’s faces adjacent to Ly, (resp. Ly,) result from the lower
(resp. upper) leaning polygon’s vertices.



PROOF. In the (o, 3,7) parameter space, each point p(z,y, z) in P intro-
duces two linear constraints Cy(p) : ax + By +v— 2z > 0 and Csy(p) : ax +
By +v—2z—1<0 with (o, 8,7) € [0,1]* x [0, 1[. Since (c, 8,7) are positive
and according to Preparata and Shamos [12], the domain D3p(P) is given by
computing the lower envelope of constraints Cy, by computing the upper en-
velope of constraints C; and by merging these two envelopes. In other words,
we can treat separately constraints C; and Cs.

Hence, we consider the constraints {Cs} of points p; in P and the leaning
plane containing the upper leaning polygon L. Since all points p; are below
the leaning plane by definition of this plane, all half-planes defined by the con-
straints {Ca(p;)} contain the point L} in the parameter space. Thus, since all
upper leaning points have constraints 02 going through Ly, Ly is necessarily
a vertex of the lower envelope of constraints {C} and so, L, is necessarily
a vertex of the polyhedron Ds;p(P). Using same arguments, we prove that
L}, is a vertex, in the parameter space, of the upper envelope of constraints
{Ci(ps)} and thus, Lj  is also a vertex of D3p(P). Coordinates of L}, and
Ly, are given by definition of leaning points.

If we consider now the adjacent faces to the point L} of D3p(P), each face
with normal vector (z;,v;, z;)T is created by the upper leaning point with
coordinates (z;, i, 2;). We denote {e‘};. ,, the vertices of the leaning polygon
Ly, and v a coplanar voxel to points {€'};. ., inside the polygon. Since L., is
the planar convex hull of upper leaning points, we have: v = Y- | w;e’, where
{wi}1..m are vectors in R?® with positive coordinates. Then, the constraint
generated by v in the dual space contains Ly, and has a normal vector which
is linearly dependent with positive weights to normal vectors of faces {ei}l___m
(see figure 4). Thus, v is not an adjacent face to Ly, in D3p(P). Finally, all
the adjacent faces to Ly, are only generated by the upper leaning polygon’s
vertices. Similarly, all the adjacent faces to Ly, in the parameter space are
generated by lower leaning polygon’s vertices. O
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Fig. 4. Tllustration of proposition 6: (left) vertices {e‘}1. , of the upper leaning
polygon and the point v lying inside this polygon, (right) the constraint generated
by v has a normal verctor linearly dependent with positive weights to normal vectors
of faces {€'}1. ., in the parameter space.




At this point, we have proved that the preimage Dsp(P) has two character-
istic vertices associated to the leaning planes and particular faces created by
the leaning polygon’s vertices. In the following, we prove that, with some hy-
pothesis on the digital plane, the preimage Ds;p(P) does not contain other
faces.

Definition 7 Let P(a,b,c, ) (with 0 < a < b < ¢) be a piece of naive plane.
We define the double-cone in the parameter space associated to P and de-
noted by D one(P) the domain where faces are generated by leaning polygons’
vertices and with two characteristic points generated by leaning planes.

The two following theorems show that we have D3p(P) = D ope(P) with some
hypothesis on P.

Theorem 8 Let P(a,b,c,u) (with 0 < a < b < ¢) be a piece of naive plane
where each point (x;,Yy;, z;) is such that (z;,y;) lies inside the projections onto
the plane z = 0 of both leaning polygons. Then we have D3p(P) = Deope(P).

PROOF. Let consider a voxel v that belongs to the digital plane P(a, b, c, p)
and that satisfies theorem hypothesis. Let us first consider the constraint Cy(v)
and we show that Cy(v) does not intersect D ppe(P).

Since v belongs to P, Ca(v) necessarily contains the point Lf (%,% &) in
the parameter space. In other words, the plane Cy(v) crosses the straight lines

(LiywLyp) at a point p with  coordinate greater than the v coordinate of L},

(see figure 5). If Cy(v) crosses the domain D, pe(P), then the translation of

Cs(v) by the vector prlp> crosses the domain. This transformation translates
the plane Cy(v) into a plane C' that goes through Ly . In the primal space,
this translation corresponds to a vertical projection of the voxel v onto the
upper leaning plane. According to the hypothesis on the digital plane voxels,
this vertical projection of v lies inside the upper leaning polygon. Thus, using
the same arguments as in the proof of proposition 6, the normal vector of C’
is linearly dependent with positive weights of the face normal vectors created
by upper leaning polygons’ vertices. Hence, C' does not belong to the lower
envelope of constraints {C5} and does not cross the domain D, ,,(P). Then,
C5(v) does not cross the domain too.

Considering the constraint C;(v), similar arguments are used with projection
onto the lower leaning plane. Finally, if all voxels of P are such that the
vertical projection of such points lies inside both leaning polygon projections,
the voxel v does not change the preimage and thus: D3p(P) = Deope(P). O

In the following we prove that for a digital plane containing at least three
leaning points on each line along the y axis or the z axis, Dsp(P) does not
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Fig. 5. Illustration of the proof of theorem 8 in the 2D case.

contain more faces than those described in proposition 6. In order to prove
this statement, we use the theorem 4 on digital line preimage presented in
section 2 and the following decomposition of a digital plane into digital lines.

Proposition 9 Let P(a,b,c, ) be a naive plane. Let us define the decompo-
sition of P into 3D digital straight lines along the y azis : S; = {(z,y,2) €
P | y=j}. Then we have:

P = USJ and D3D(P) = mD:’.D(Sj) (6)

If we denote P(a,b,c, u) the digital naive plane, we can map each set of vox-
els Sj to a digital naive line in the (Ozy) plane. This map is one to one and
onto, and the digital line is exactly N(a,c, 4+ bj). In the parameter space,
the preimage of S; is a prism such that the basis (for # =0 and 8 = 1) is the
preimage of N(a,c, u+ bj) and such that the directional vector is (0,1, —75).
Figure 6 shows an example of a 3D line {S;} preimage and figure 7 illustrates
the digital plane preimage computation based on the {S;} preimage intersec-
tions. Note that the digital plane leaning points are also the leaning points for
N(a,c, p+ bj).

Y

<

Fig. 6. Preimage of the 3D digital straight line defined by y = 1 in the plane
P(1,3,4,0)

From this decomposition we can derive the following theorem :
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Fig. 7. (a) A piece of plane P(1,3,4,0); (b) preimages of 3D digital straight lines in
parameter space (a, 3,7); (¢)-(d) the preimage of the piece of plane is the intersec-
tion of the digital lines preimages, arrows aim at Ly, (figure (c)) and Ly, (figure

(d))-

Theorem 10 Let P(a,b,c, 1) a piece of discrete naive plane.
Let P = U; S; with S; = {(z,y,2) € P | y = j}. Then, if each {S;} contains
at least three leaning points, we have Dsp(P) = Deone(P).

PROOF. Let us consider the decomposition of P into 3D digital lines {S;}.
Since, for all j, S contains at least 3 leaning points, according to what we
saw, the preimage of {S;} is based on the preimage of the digital straight
line N(a,c, p + bj). Let us consider a voxel v(z,y,z) which is not a leaning
point of P, this voxel belongs to one and only one line of the decomposition,
Sy. Now let us consider the projection of this line in the 2D space (Ozz),
and denote it Proj(Sy). As S, contains at least three leaning points, the
digital line Proj(Sy) also have at least three leaning points. Furthermore, if
v is not a leaning point for the digital plane, v is not a leaning point for
Proj(Sy). According to theorem 4, preimage of Proj(S,) does not change
after the insertion of the voxel v and thus the preimage of Sy does not change
too. This means that the constraints resulting from the voxel v contain entirely
the preimage of S,.

Finally, since D3 (P) is the intersection of all {S;} preimages and since v does
not modify the Sy prism, v does not change the domain Dsp(P). Then, we
obtain the expected result. O

4 Bounds on the number of faces

It has been proved in previous theorems how to construct the preimage of a
digital plane. In this section, we present a bound on the number of faces of
this preimage. Let us suppose a digital plane P(a, b, ¢, i) satisfying hypothesis



of theorems either 8 or 10 (or both). The number of faces of Dsp is exactly
the number of both leaning polygons’ vertices.

As given in definition 5, an arithmetical plane P(a,b,c, ) is composed of
a set of arithmetical nets given by the solution of the diophantine equation
azx + by + cz = r with r in the interval [y, u + max(|al, |b], |¢|)[. Given a digital
plane on a unit grid of size NV, the problem is to bound the number of vertices of
upper (resp. lower) leaning point convex hull. First note that the upper (resp.
lower) leaning net can be projected onto the (0zy) plane without changing the
number of vertices of the convex hull. The problem is to consider the convex
hull size of the bidimensional net ax 4+ by = r in a N x N window. We first
construct two vectors, denoted U(p, ¢) and V (s, t), that compose a basis of the
net using the classical Blankinship’s algorithm in number theory [13]. In other
words, all upper leaning points are generated by these two vectors. Using scale
changes on the grid axis, we can construct a net defined by canonical vectors
(1,9) and (1, h—g). This one to one and onto mapping from the net generated
by [U, V] to the net generated by [(1, g), (1, h—g)] does not change the number
of convex hull vertices (given two vectors in the plane, the transformation does
not change the sign of the determinant of those vectors).

The net generated by [(1,9),(1,h— g)] in an h x h window (see figure 8-(a)),
is exactly the net {(i,¢7 mod h)} with 0 < i < h. As proved by Reveilles
and Yaacoub in [14], the number of vertices of the convex hull of such points
is in O(log(g)) (authors illustrate links between such a net and continued
fraction of g/h). Over a square [0, h[x [0, h[, the complexity is known. On this
specific window, we can define the farthest point in the north, south, east
and west direction. Since we have a general window [0, m[x[0,n[ whose size
depends on the size of the digital plane under study, we first consider the square
[0, k.h[x[0,{.h[ (with k,1 € Z). In each period the position of the north point
is the same, thus upper part of the convex hull in the square [0, k.h[X[0, l.A[
is a horizontal segment between the north points of the periods [0, k.A[x[(I —
1).h,l.h[. In a same way, the lower part of the convex hull is ahorizontal
segment defined by south points, the left and right) part are vertical segments
respectively defined by west points and east points. Hence, on a [0, k.h[ %[0, l.A[
window, the convex hull can be decomposed into four horizontal and vertical
segments and four parts of convex hull on [0, A[x[0, h[ (see figure 8-(c)). The
size of such a convex hull does not depend on k£ or [. As a consequence,
we can reduce the study of the complexity to the complexity of the convex
hull over the square [0, 2.A[x[0, 2.h[. In such a square, the complexity is thus
bounded by four times the complexity of the convex hull over one period.
With the result of Reveilles and Yaacoub, we deduce that the complexity
is still O(log(g)). We consider now the square [0, m[x[0,n[. We can defined
the farthest point in the north, south, east and west directions as previously.
Using the same argument we reduce to a sub-square of [0,2.h[Xx[0,2.h] that
is [0, h +m mod h[x[0,h + n mod h[ (see Figure 8-(c)). On such a window,
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we can decompose the convex hull into four parts corresponding to the four
periods of the net. The convex hull is thus the connection of these four parts
by four edges. Hence, the size of the convex hull is bounded by four times
the size of the polygonal arcs in the four periods. However, each part of the
convex hull is a convex polygonal curve inscribed inside the convex hull of one
period of the net. Thus, its length in number of edges if bounded above by the
length of the border of the convex hull of the points of one period. We know
this bound to be log(g) and thus the complexity of the complete convex hull
is still in log(g).

Fig. 8. (a) set of points generated by {(i,¢¢ mod h)} with ¢ = 5 and h = 17; (b)
convex hull computation on a [0, k.h[x[0,[.h[ window; (¢) convex hull computation
on a [0, m[x[0,n] window.

Theorem 11 Let P be a digital plane on an N3 unit grid satisfying hypothesis
of theorems either 8 or 10 (or both). Then the number of faces of the preimage
of P is bounded by O(log(N)).

5 Conclusion

In this paper we have presented some results about digital plane preimage. We
have shown that with some hypothesis on the piece of digital plane, the shape
of the preimage is a double-cone which structure is very similar to the one of
2D digital straight segments preimages. Nevertheless, we conjecture that this
property is true for any digital plane segment without any assumption.

We have also introduced the decomposition of a digital plane segment into 3D
digital straight segments, which suggests interesting arithmetical properties
on the polyhedron’s faces and vertices. Indeed, each 3D digital line segment
preimage face is resulting from a side of a 2D digital segment preimage which
have known arithmetical structure.

Finally, we have shown that under some hypotheses, the number of faces of
a digital plane segment preimage is bounded by O(log(N)) if the piece of

11



plane is in a N3 grid. As in 2D, such a result together with the other ones of
this paper can lead to the design of a very efficient digital plane recognition
algorithm.
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