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Abstract 
 
This paper presents a new and efficient algorithm for 
decomposition of 3D arbitrary triangle mesh into 
surface patches. Our method is an extension of that 
presented in [1]. The algorithm is based on the 
curvature tensor field analysis and presents two 
distinct complementary steps: a region based 
segmentation which decomposes the object into known 
and near constant curvature patches, and a boundary 
rectification based on curvature tensor directions, 
which corrects boundaries by suppressing their 
artefacts or discontinuities. Experiments were 
conducted on various models including both CAD and 
natural objects, results are satisfactory. Resulting 
segmented patches, by virtue of their properties (known 
curvature, clean boundaries) are particularly adapted 
to computer graphics task like parametric or 
subdivision surface fitting in an adaptive compression 
objective.  
 
Keywords: 3d mesh, Segmentation, Curvature 
tensor, Classification, Region growing, Region 
merging, Boundaries, CAD. 
 
1. Introduction 
 
Recent advances in the field of computer graphics 
(tools for acquisition, modelers, graphics hardware, 
etc…) have contributed to an amazing growth in the 
amount of 3d-models created and stored. With the 
expansion of the Internet, the need for transmission of 
these 3d-contents is more and more acute, this 
problematic results in the research of adaptive and 
multi-resolution compression methods, particularly for 
3d-meshes which is the most widespread model for 3d-
objects. 

In this context, the decomposition of 3d-objects, into 
surface patches, becomes attractive since it simplifies 
compression complexity and because it brings 
adaptiveness to algorithms. Within this framework, we 
present a curvature tensor based triangle mesh 
segmentation method, particularly adapted to optimized 
triangulated CAD objects, which decomposes a 3D-
mesh into connected known and near constant 
curvature regions with clean and regular boundaries. 
Resulting patches are particularly adapted to computer 
graphics tasks such as subdivision or parametric 
surface fitting in an adaptive compression objective.  
Section 2 details the related work about mesh 
segmentation, whereas the overview of our method is 
presented in section 3. Sections 4 and 5 deal with the 
two distinct steps of our method: the region 
segmentation and the boundary rectification. 
 
2. Related work 
 
Only few studies concern triangle mesh segmentation. 
Garland et al. [2] present a face clustering of which aim 
is to approximate an object with planar elements, but 
this algorithm is especially adapted for radiosity or 
surface simplification. Several approaches use discrete 
curvature analysis combined with the Watershed 
algorithm [3][4][5]. In the same way Zhang et al. [6] 
use the sign of the Gaussian curvature to mark 
boundaries, and process a part decomposition. These 
algorithms extract only regions surrounded by high 
curvature boundaries but fail to distinguish simple 
curvature transitions. Lavoué et al. [1] present a 
classification based method which allow to detect these 
transitions; the algorithm presented in this paper is an 
extension of this work. In a different way, Li et al.[7] 
present a method based on skeletonization and obtain 
nice segmentation results but induce a smoothing effect 
which can make disappear certain features. 



Most of these cited approaches have a major 
shortcoming: the boundaries between patchs are not 
correctly handled because they represent a minor 
problematic in these algorithms. As a result, either they 
are fuzzy (because only vertices are considered) [4][6], 
or they are jagged and present artifacts [1][3][5], or 
they are too straight and do not fit to the model [7]. 
Only Katz et al. [8] specifically handle the boundaries 
by using a fuzzy decomposition. Their method, based 
on geodesic distances and convexity, is well adapted 
for natural objects; but considering CAD object, their 
decomposition is not keen enough to be adapted to our 
surface fitting objective. 
 
3. Method overview 
 

We present a decomposition algorithm of arbitrary 
triangle meshes into known and almost constant 
curvature surface patches with clean and regular 
boundaries. We address particularly the problem of 
CAD parts. Our approach is based on two steps:  

A curvature based region segmentation: firstly, a 
pre-processing step identifies sharp edges and vertices 
(see Section 4.1). This information is necessary for the 
continuation of the algorithm, particularly in the case of 
optimally triangulated meshes. Then the curvature 
tensor is calculated for each vertex according to the 
work of Cohen-Steiner et al. [9]. Then vertices are 
classified into clusters (see Section 4.2), according to 
their principal curvatures values Kmin and Kmax. A 
region growing algorithm is then processed (see 
Section 4.3) assembling triangles into connected 
labelled regions according to vertex clusters. Finally a 
region adjacency graph is processed and reduced in 
order to merge similar regions (see Section 4.4) 
according to several criteria (curvature similarity, size 
and common perimeter). 
A boundary rectification: firstly, boundary edges are 
extracted from the previous region segmentation step. 
Then for each of them, a boundary score is processed 
(see section 5.2) which notifies a degree of correctness. 
According to this score, estimated correct boundary 
edges are marked and are used in a contour tracking 
algorithm (see section 5.3) to complete the final correct 
boundaries of the object. 
 
4. The region segmentation process 
 
4.1. Sharp features detection. 
 
Our segmentation algorithm is based on the analysis of 
the curvature of each vertex. Prior to start the algorithm 
we must detect and take into account sharp edges, 
especially for CAD object. Indeed even if, in practice, a 

curvature value is associated to sharp edges, the 
curvature is not theoretically defined on these features. 
We cannot consider a sharp edge like any other high 
curvature edge; it defines only a boundary and not a 
region. That is why we process a sharp features 
detection. A sharp edge is defined as follow: an edge 
shared by two triangles whose normal vectors make an 
angle higher that a given threshold. Vertices that 
belong to a sharp edge are considered as sharp vertices 
(but an edge shared by two sharp vertices is not 
necessarily a sharp edge). 
This sharp features detection is useful within the 
region growing process (see section 4.3) and as a pre-
processing step to process a mesh enrichment on bad 
tessellated objects, particularly optimized triangulated 
CAD objects with contain a very small triangle 
number. For each triangle associated with three sharp 
vertices, we could not reasonably evaluate its curvature 
or associate it with a region; it ties up with the “no hard 
boundary” problematic raised by Razdan and Bae [5]. 
Therefore we subdivide these sharp triangles by adding 
a new vertex at the center (see Fig.7). The region 
segmentation is thus applied on this modified mesh and 
added vertices are removed at the end of the algorithm. 
 
4.2. Vertex classification 
 
Vertices of the mesh are classified according to their 
principal curvatures kmin and kmax. Moreover the 
boundary rectification process (see section 5) needs 
principal curvature directions dmin and dmax, thus we 
have to calculate these information for each vertex of 
the input mesh.  
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different evaluation procedures for curvature tensor 
estimation [9][10][11]. 
We have implemented the work of Cohen-Steiner et al. 
[9], based on the Normal Cycle. This estimation 
procedure relies on solid theoretical foundations and 
convergence properties. Moreover the tensor can be 
averaged over an arbitrary geodesic region, like in [12], 
therefore it is independent of the sampling; thus we 
have the possibility to filter noisy objects or consider 
only a queried size of details extraction for the 
segmentation method. For each vertex, the curvature 
tensor is calculated and the principal curvatures values 
kmin, kmax and directions dmin, dmax are extracted. 
They correspond respectively to the eigenvalues and 
eigenvectors of the curvature tensor, with switched 
order (the eigenvector associated with kmin is dmax 
and vice versa).  
Fig.1 presents samples of these fields for the “Plane” 
object. On the edges of the wings, we have a high 
maximum curvature, whereas kmin is null, it is a 
parabolic region. Kmin is positive on elliptic regions, 
like at the end of the wings, and negative in hyperbolic 
regions like at the joints between the wings and the 
body of the plane. We have represented the absolute 
value of kmin on the figure because its sign has no 
importance in our algorithm. The principal curvature 
directions have signification only on anisotropic 
regions (elliptic, parabolic and hyperbolic) where they 
represent lines of curvature of the object. On isotropic 
regions (spherical, planar), they do not carry any 
information. 
 
4.2.2. Curvature classification. Vertices are classified 
according to the values of their principal curvatures 
Kmin and Kmax (see Fig.4), associated with the 
Euclidian distance (in the curvature space). This 
classification is independent of the spatial disposition 
of the vertices. More complex and complete 
comparative measures exist between two tensors 
[13][14] but for our purpose we just need to consider a 
basic curvature information and not complex tensor 
features like shape or orientation. Moreover Kmin and 
Kmax carry complementary information. Kmin can be 
negative, but we consider only its absolute value, it is 
not necessary to differentiate positive and negative 
values in our classification. The clustering is done via a 
K-Means algorithm (a usual unsupervised fast 
classification method) [15], completed by a cluster 
regularization (merging of small or similar clusters). 
At the end of the algorithm each vertex is associated 
with a Cluster Ci and an associated classified curvature 
value ci (ci is in fact a two scalars vector which contains 
classified values for Kmin and Kmax). The number of 
clusters K, in the curvature space, is fixed by the user, 
but is not critical for the final segmentation result 

because of the region growing and merging steps. Fig.4 
shows the vertex classification process applied to the 
“Plane” object (2506 vertices). The number of clusters 
in the curvature space was fixed to 5 for this example 
(clusters colors are yellow, orange, blue, dark blue and 
green). 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Vertex classification of the Plane mesh in 5 
curvature clusters. 

4.3. The region growing process 
 
Once vertices have been classified, we want to recover 
triangle regions with similar curvature. This 
transmission of the curvature information from vertices 
to triangles is not a trivial operation. A triangle 
growing and labeling operation is performed as 
follows: for each triangle of which curvature is 
completely defined (seed triangle), a new region is 
created, labeled and extended. This process is repeated 
for every other seed triangle not yet labeled. 
 
4.3.1. The seed triangle determination. There exist 
three situations where a triangle is considered as a seed: 
• Its three vertices belong to the same cluster Ci, thus 

the curvature value ci of this cluster is assigned to 
the corresponding created region. 

• It is composed with two vertices from the same 
cluster Ci and a sharp one. Thus ci is assigned to 
the region. (see Fig.5.a). 

• It contains two sharp vertices, thus the curvature 
cluster value ci of the third vertex is assigned to the 
created region. 

In every other cases, we cannot assign a curvature 
value to the triangle, thus we cannot consider it as a 
seed to grow a region. 
 
4.3.2. The growing mechanism. When a seed triangle 
is encountered, a new region is created, containing this 
triangle, associated to a new label L and a curvature 
value cL.  



 

Figure 3. Considered features for the region growing 
process.  
Then a recursive process extends this region (see 
Fig.6): for each triangle tL belonging to the region, for 
each non sharp edge ei of this triangle, we consider the 
associated neighboring triangle ti and its opposite 
vertex vi. If vi is a sharp vertex or if it has the cL 
curvature value, thus the considered triangle is 
integrated to the region. This process is repeated for 
every other triangle marked as seed and not yet labeled. 
With this process, it remains, sometimes, not labeled 
triangles at the end of the algorithm. A simple crack 
filling process fit these holes by integrate these 
triangles to the most represented region of their 
neighborhoods. Fig.7 shows the region growing 
process for the Fandisk object, starting from a 18 
clusters vertex classification. The region growing 
extracts 128 connected regions (regions colors are 
randomly chosen). 

Figure 4. The region growing process for the “Fandisk” 
mesh (Regions colors are randomly chosen). 
 
4.4. The region merging process 
 
The region merging process aims to: 
• Reduce the over-segmentation resulting from the 

growing step. 
• Suppress the algorithm dependency to the number 

of curvature clusters issued from the K-Means 
vertex classification.  

The reader is referred to [1] for a more detailed 
presentation of this algorithm which is just summarized 
here. 

4.4.1. General algorithm. Once connected regions 
have been extracted by the region growing algorithm, a 

. The distance Dij 
sed in our method is equal to the curvature distance 

region adjacency graph is processed. Each node 
represents a connected region (i.e. a connected subset 
of the mesh), and each edge represents an adjacency 
between two regions. Edges are evaluated by a 
curvature distance between the two corresponding 
regions. The reduction of the graph is then processed: 
at each iteration the smallest edge of the graph is 
eliminated, thus the corresponding regions are merged; 
then the graph is updated. This graph reduction stops 
when the number of regions reaches a queried number 
chosen by the user, or when the weight of the smallest 
edge is larger than a given threshold. 
 
4.4.2. Region distance measurement

ei tL ti vi 

Region L 

Growing 
Mechanism 

u
DCij, between the two corresponding regions Ri and Rj 
weighted by two coefficients: Nij, which measures the 
nesting between the two corresponding regions and Sij 
of which aim is to eliminate the smallest regions. 
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Each coefficient is detailed in the following 
paragraphs.  
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object (Swivel). Results are shown on Fig.11. For the 
“Fandisk” object we obtain patches with almost 
constant curvature. Our method allows detecting 
curvature transition or inflexion points and not only 
regions separated by high curvature boundaries, or 
sharp boundaries, like traditional watershed method. 
Even for the bad tessellated “Swivel” object, we obtain 
good results after the enrichment of detected sharp 
triangles. 
Our purpose is to obtain clean patches with constant 
curvature in a subdivision or parametric surface fitting 
objective. 
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Figure 11. Segmentation “Fandisk” and “Swivel” objects. 

4.5. Experiments and results 

Fandisk (6475 vertices) 
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Results of the mesh 
 enrichment 
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Other side 

cu
objective. Our r
n
from the 3D-objects, and gives good qualitative results 
in terms of general shape and disposition of the 
segmented regions. Nevertheless, boundaries of the 
extracted patches are often jagged, like for most of the 
existing segmentation methods, and present artefacts 
particularly when we consider a high number of 
curvature clusters (see Fig.10). Fig.12 presents an 
example discontinuity, blue and yellow regions in the 
red ellipse are not correct, their boundary is not 
straight. In this context, the objective of the boundary 
rectification process is to suppress these artefacts, in 
order to obtain clean boundaries corresponding to real 
natural boundaries of the object.  
The rectification method is composed of two principal 
steps: firstly, segmented object boundary edges are 
extracted and for each of them a correctness score is 
processed. Then, starting from t
boundary edges, the object final boundaries are 
completed using a contour tracking algorithm. 
 
5.2. The Boundary Score definition 
 
The goal of this score is to define a no
co
previous region segmentation. For this p
c
dmax (see section 4.2.1) which define the lines of 
curvature of the object. Indeed, they represent pivotal 
information in the geometry description [12]. The 
curvature tensors at the natural boundaries of an object 
tend to be very anisotropic with a maximum direction 
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following the curvature transition and therefore 
orthogonal to the boundaries. Thus the boundaries will 
tend to be parallel to the lines of minimum curvature 
(see Fig.16.b). Therefore the angle between a boundary 
edge and its vertices minimum curvature directions can 
represent a good evaluation of its “correctness”. 
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Figure 14. Elements taken into account for 
calculation of the Boundary Score of the edge ie . 

The score also consider the angles i1maxϑ  and 

i2minϑie

),( i2i2 KminKmax

the 

2i  

incipal
ccoun
stance

curvatures Kmin and Kmax in order  into a t 
isotropic region, like the corner of th e for in  
(see Fig.13). Thus the angle score Sa  is processed 
according to the following equation (6): 

to take
e cub

( )

( )i2i2i2

i1

i1i1i1i1

i maxKmaxmin
KminKmax

KminmaxKmaxmin

eSa
×+×

+
×+×

+=
ϑϑ

ϑϑ

)(  

maxϑ
between the edge ie and its vertices maximum 
directions, weighted by the values of the pr  

i2i2

i2

i1

KminKmax
Kmin

+

  (2) 

each not closed boundary contour, we extract the edges 
potentially being able to complete it (we call them 
“potential edges”). They are edges adjacent to one CBE 
at the extremity of an open contour. Fig.15.a shows a 
piece of contour formed by two CBEs (in black), with 
associated potential edges (PE) (in dotted black) which 
are candidates to complete the open contour. Then, 
each potential edge is associated with a weight P which 
will determine its possibilities to be integrated to the 
contour; the smallest is this weight, the more the edge 
has possibilities to be considered as a CBE.  

The rectification algorithm is composed of two steps: 
the marking of the correct boundary edges coming 
from the region segmentation and the contour tracking 

.3.1. Correct boundary marking. For every 
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onsidered as a correct boundary edge (CBE), else the 
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5
boundary edges coming from the region segmentation 
step, the Boundary Score previously defined is 
processed. Then, a threshold ST is fixed; for each edge, 
if its Boundary Score is b

i1i1

c
edge is no more considerate. Fig.16.c and Fig.17.c 
show this marking process, starting from the region 
segmentation (see Fig.16.a, Fig.17.b), CBEs are 
represented in green, and others in red.  
 
5.3.2. Contour tracking. The second step of the 
rectification algorithm is the contour tracking. Once 
CBEs have been extracted, they form pieces of 
boundary contours; our purpose is to complete these 
contours to obtain a set of close
c



The weight P of a potential edge depends of its score 
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neighboring CBE, because, we try to limit the deviation 
of the boundary.  
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Figure 17. The different steps of the Boundary 
ectification for an artificially bad segmented CAD 
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organize them into a sorted list. Then the contour 
tracking algorithm starts; its mechanism is the 
following: once we have the potential boundary edges 
(PE) sorted list, the PE associated with the lowest 
weight P is extracted a

organize them into a sorted list. Then the contour 
tracking algorithm starts; its mechanism is the 
following: once we have the potential boundary edges 
(PE) sorted list, the PE associated with the lowest 
weight P is extracted a
boundary contour, and therefore this PE becomes a 
CBE. Then the list is updated (the PEs are 
redistributed) and the list reduction continues until 
every boundary contour is closed. Fig.15 presents three 
iterations of the contour tracking algorithm. In Fig.15.a, 
there are two CBEs which form an open contour (in 
black), thus there are six PEs candidates to complete 
the contour (in dotted black). The PE inside the red 
ellipse is considered as the one with the smallest weight 
P, thus at the next iteration it is extracted and integrated 
to the contour (see Fig.15.b). The position and number 
of the PEs is thus updated. The process continues in 
Fig.15.c, with another PE integrated to the contour. 
 
5.4. Experiments and results 
 
The rectification method is especially adapted to CAD 
or mechanical objects, where there exist real defined 
regular boundaries. On natural or organic objects 
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Fig.16 presents results for “Fandisk”. Artefacts coming 
from the region segmentation are all suppressed; we 
obtain surface patches with very clean and regular 
boundaries, adapted for tasks like parametric or 
subdivision surface fitting. We have also conducted 

etects 
y curvature transition and thus allows segmenting the 

 and near constant curvature regions 
 the object along its hard edges. The 

national project (http://www.semantic-

tests on artificially bad segmented objects, in order to 
see if the rectification method could repair a bad 
segmentation and not only suppress some small 
imperfections. Fig.17 shows results on a bad segmented 
object. We can observe that bad boundary edges are 
eliminated whereas correct ones are correctly extracted 
and completed to give a very correct set of surface 
patches. Even with very few correct boundary edges, 
final boundaries of the object are well extracted. 
 
6. Conclusion 
 
This paper presents an original segmentation method to 
decompose a 3D-mesh into near curvature constant 
surface patches with clean boundaries.  
The simple and efficient curvature classification d
an
object into known
nd not just cuttinga

triangle growing process well transmits regions 
information from vertices to triangles even for bad 
tessellated CAD objects. 
Our original boundary rectification method based on 
curvature tensor orientation, allows suppressing 
boundaries defects commonly produced by most of the 
segmentation algorithms, even if they are important. 
We obtain, in the case of CAD or mechanical objects, 
the real natural boundaries corresponding to an 
intuitive hand made segmentation of the object. This 
method is independent of the previous region 
segmentation and can be used as a post process of a 
hard edges detection, for example to complete hard 
edges contours of an object. 
About perspectives, we plan to consider variance and 
histogram distribution of curvature, in order to improve 
the curvature classification method, and also to be able 
to automatically process the region merging threshold 
which remains a critical parameter of our method. This 
work is part of a larger compression process. The 
objective is to fit the segmented sub-surfaces with 
subdivision or parametric surfaces, in order to obtain 
the object in the form of a set of ”light” patches, which 
will allows adaptive and scalable compression and 
transmission. 
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