
Discrete analytical curve reconstruction without patches

Isabelle Sivignona,*, Rodolphe Bretonb, Florent Dupontc, Eric Andrèsb

aLaboratoire LIS—Grenoble, UMR 5083 CNRS, 961, rue de la Houille Blanche, St Martin D’Hères 38402, France
bLaboratoire SIC, Université de Poitiers, FRE 2731 CNRS BP 30179, Futuroscope Chasseneuil Cedex 86962, France

cLaboratoire LIRIS—Université Claude Bernard Lyon 1, FRE 2672 CNRS, Bâtiment Nautibus—8 boulevard Niels Bohr, Villeurbanne Cedex 69622, France

Received 16 January 2004; received in revised form 4 May 2004; accepted 29 June 2004

Abstract

Invertible Euclidean reconstruction methods without patches for 2D and 3D discrete curves are proposed. From a discrete 4-connected

curve in 2D, or 6-connected curve in 3D, the proposed algorithms compute a polygonal line which digitization with the standard model is

equal to all the pixels or voxels of the curve. The framework of this method is the discrete analytical geometry and parameter spaces are used

in order to simplify the algorithms. Moreover, the reconstructed polyline is more compact than classical methods such as the Marching

Cubes.

q 2004 Elsevier B.V. All rights reserved.

Keywords: Discrete object; Invertible Euclidean reconstruction
1. Introduction

The reconstruction of discrete objects is mainly

performed in practice with the ‘Marching Cubes’ method

[1] (and all its follow ups). For a couple of years another

approach, based on discrete analytical geometry, is

investigated in the discrete geometry community. The aim

is to decompose the boundary of a discrete object into

discrete analytical polygons and then these polygons into

Euclidean polygons. The method has to be invertible, i.e. the

discretization of the reconstructed boundary has to be equal

to the original discrete object. We do not want any

information to be added nor lost. The aim of this new

approach is to provide a more compact reconstruction.

Several other attempts have already been made in this

direction that are not satisfying and usually not invertible

(see Ref. [2] for details). Indeed, most the algorithms consist

in decomposing a discrete curve (surface) into discrete

segments (planes) [3,4] without looking for an exact

Euclidean equivalent of the discrete object.

Our method is based on Vittone’s recognition algorithm

[5] for the decomposition of the discrete boundary into
0262-8856/$ - see front matter q 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.imavis.2004.06.014

* Corresponding author. Tel.: C33 4768 26467; fax: C33 4768 26384.

E-mail address: sivignon@lis.inpg.fr (I. Sivignon).
discrete line pieces in 2D. The analytical framework is

provided by the standard discrete analytical model that

defines 2D and 3D discrete polygons [6].

In Ref. [7], we proposed a working algorithm for the 2D

case and some hints on how to tackle the 3D surface

reconstruction problem. The method we proposed for 2D

curves worked basically as follows: a discrete 4-connected

boundary is decomposed with Vittone’s algorithm [5] into

discrete line segments in 2D. For each discrete segment a

corresponding Euclidean line segment was chosen in the set

of all possible solutions (set provided by Vittone’s

algorithm). The problem we faced then was that these

different Euclidean lines could intersect outside the discrete

line segments losing the reversibility property. To avoid

that, patches (small line segments) where added that force

the different Euclidean lines to intersect inside the vertex

pixels of the discrete line segments preserving the

reversibility property. Nevertheless, extension to dimension

3 is not straightforward. Indeed, the equivalent of patches in

3D is small polygons, which are a lot more difficult to define

than segments. Although some 3D solutions where proposed

in Ref. [7], they are not very easy to set up.

For that reason, we propose in this paper another way of

reconstructing a discrete 4-connected curve without

patches. The method works basically as follows: we still
Image and Vision Computing 23 (2005) 191–202
www.elsevier.com/locate/imavis

http://www.elsevier.com/locate/imavis


Fig. 1. (a) A standard line of parameters (2, K5, 0); (b) a standard plane of

parameters (2, 3, 5, 0).

I. Sivignon et al. / Image and Vision Computing 23 (2005) 191–202192
use Vittone’s algorithm. Instead, this time, of performing a

recognition of discrete line segments and then replacing

them with Euclidean line segments, both are performed at

the same time. Indeed, the main idea is to force the first

extremity of the segments of the reconstructed polyline to

lie inside the discrete curve. Hence, the discrete segment

recognition algorithm is constrained by this fixed point.

Finally, post-treatments are no more needed to ensure the

reversibility of the solution.

A second part of this work shows how to extend this

algorithm to the polygonalization of 6-connected 3D

discrete lines. We first propose an algorithm to recognize

3D standard line segments and show how the polygonaliza-

tion process induces many simplifications of this algorithm.

Basically, the recognition algorithm relies on three

simultaneous 2D recognitions on the projections of the 3D

curve. We show that an extra condition has to be settled in

order to ensure the correctness of the algorithm. As to the

polygonalization process for 3D curves, it works mainly as

for the 2D curves.

This paper is organized as follows: Section 2 presents

some recalls on the tools of discrete geometry we need. In

Section 3, the new polygonalization algorithm for 2D

standard curves is presented and results are given. Section 4

deals with the 3D curve polygonalization problem: we

present a new algorithm to polygonalize in an invertible way

any 3D 6-connected curve. Some results are proposed.
2. Recalls on discrete geometry

In this section, we present some basic notions of discrete

geometry that are used in this work. We first introduce the

standard digitization model and then present the notion of

duality we use to recognize discrete segments.
2.1. The standard model

The standard digitization of a Euclidean object consists

in all the pixels (resp. voxels) that are cut by the object.

The standard lines (resp. planes) can be defined

arithmetically [8].

Definition 1. A discrete standard line (resp. plane) of

parameters (a, b, m) (resp. (a, b, c, m)) is the set of integer

points (x, y) (resp. (x, y, z)) verifying

Ku%ax Cbyðresp:CcyÞCm!u

where uZ ðjajC jbjðresp:C jcjÞÞ=2: A standard line (resp.

plane) is a 4-connected line (resp. 6-connected plane).

Remark that the standard digitization requires a so-called

orientation convention since the inequalities are not strictly

symmetric. This is done by ensuring that aO0 or if aZ0

that bO0 or, in the case of planes, if aZbZ0 that cO0. An

illustration of this definition is given in Fig. 1.
A 3D standard line is a 6-connected discrete line which

projections are 2D standard lines. The exact analytical

definition together with an example is given in Section 4.

If we denote St(O) the standard digitization of the object

O, the following useful properties can be derived from the

geometrical definition of this model: St(O1hO2)4St(O1)

hSt(O2) and St(O1gO2)ZSt(O1)gSt(O2).
2.2. Parameter space

In image processing and especially pattern recognition,

the dual transformation called Hough Transform [9] is

classically used (see Ref. [10] for an overview on this

method). This transformation is indeed very efficient to

recognize parametric shapes in a given image. The general

principle of this transformation is to work in a parameter

space where each point represents a shape of given

parameters. Thus, each selected point in an image is

represented by all the shapes that go through it in the

parameter space.

In this work, we use a parameter space (0ab) where a

point (a0, b0) stands for the Euclidean line of equation

a0xKyCb0Z0. Then, each point (x0, y0) in the Cartesian

space maps to the line ax0Ky0CbZ0 in the parameter

space. Fig. 2 shows the properties [11] which link the

Cartesian space with this parameter space. More recently,

many geometrical properties on Hough transforms have

been studied (see for instance Refs. [12,13]).

This parameter space P is also very useful in the

framework of discrete geometry. Indeed, consider a straight

line yZa0xCb0 (0%a0%1), the digitization of this line

along the Object Boundary Quantization (see Ref. [14]) on

an n!n grid is the set of grid point L ¼ fðx; yÞ2n!
nj b a0x þ b0 Ky c ¼ 0g: Then we can define the domain of

a set of discrete points.

Definition 2. Let S be a set of discrete points. The domain

of S denoted Dom(S) is the set of parameters (a, b)

verifying:

DomðSÞ Z fða; bÞjc ðx; yÞ2S; 0%ax Ky Cb!1g

Then, the domain of a set of pixels is either empty (if

the pixels are not collinear) or a convex set since it is



Fig. 2. Illustration of the links between the Cartesian space and the

parameter space.

I. Sivignon et al. / Image and Vision Computing 23 (2005) 191–202 193
defined as the intersection of linear inequalities in the

parameter space. Many works have been achieved in order

to characterize this domain [15–17], and an important

result is that if S is a connected discrete segment, then the

domain is a (3 or 4)-vertex convex polygon that can only

have one of the five shapes shown in Fig. 3.
3. Reconstruction of a 2D discrete simple curve

3.1. Principle

The reconstruction algorithm works on 4-connected

curves PZ(P1,.,Pn). The algorithm starts with a Euclidean
Fig. 3. The five possible shap
point p inside the starting point pixel P1 of the discrete

curve. A recognition direction is chosen once and for all.

There is a need to choose a recognition direction especially

in case of a closed curve since you can choose two

directions from a given starting point. A recognition process

determines if a set of pixels is a discrete line segment and if

there exists a Euclidean line d that passes through p and

through all the pixels of the discrete segment. As long as

that holds, a new point Pk of the curve, in the recognition

direction, is added. Once it does not, a new Euclidean point

on the Euclidean line d and inside the last but one pixel is

chosen, and the recognition process is started over along the

curve until we reach Pn.
3.2. Starting point and recognition direction

The method presented in this paper depends on the

starting point and on the recognition direction. For each

different choice of starting point and recognition direction

we get a different reconstruction. We propose a convention,

which defines a starting point and a recognition direction for

any curve. Thus, applying this convention, the reconstruc-

tion process always provides the same solution for a given

discrete curve. Open and closed simple curves lead to

different conventions:
†

es
an open simple curve: the starting point is the curve end-

point with lowest abscissa and lowest ordinate in the case

of two end-points having the same abscissa. Moreover,

the starting point chosen actually induces the recognition

direction.
†
 a closed simple curve: the starting point is the curve

point with lowest abscissa and lowest ordinate in the

case of multiple points having the same abscissa.

The clockwise direction is chosen as recognition

direction.

This strategy can of course be improved. Different

alternative solutions are under investigation. One improve-

ment could be provided by choosing discrete cusps as

starting points as in Ref. [7]. Other cases such as closed

non-simple curves or open curves with vertices of degree 3

or 4 (a discrete point has at most four 4-connected

neighbors) can be treated pretty much in the same way, as

what is presented in Section 3.3.2 except that there are

more constraints. This is, however, still under investigation
of the solution set.



I. Sivignon et al. / Image and Vision Computing 23 (2005) 191–202194
because for multiple neighboring regions, topological

information is helpful.
3.3. Recognition process

The recognition process is based on the recognition

algorithm proposed by Vittone [18]. This algorithm tells if

a set of 8-connected pixels is a discrete line segment and

provides the domain of this set of pixels in the parameter

space (see Section 2 and Ref. [19] for more details).

The recognition algorithm proposed by Vittone updates

the domain in the parameter space as new points of the

discrete curve are added. When the parameter space

polygon is empty, the given set of pixels is not a discrete

straight line segment anymore.

Different modifications to Vittone’s algorithm needed

however to be done to adapt it to our problem. Firstly,

Vittone’s algorithm works with 8-connected curves whereas

we consider 4-connected curves. A simple shear transform

maps the pixels of a 4-connected curve to the pixels of a

8-connected curve: for instance, a pixel (x, y) of a curve

lying in the first octant maps to the pixel (xCy, y). Secondly,

Vittone’s algorithm provides parameter values that do not

correspond to what’s usual for a discretization. Let us

consider the first octant. Vittone’s algorithm recognizes a

discrete straight line 0!axKbyCm!b (with bRaR0) as a

line with parameters (a/b, m/b). If we have a Euclidean line

axKbyCmZ0 (with bRaR0) the 8-connected discretiza-

tion of this line provides the following discrete analytical

line: K(b/2)%axKbyCm!(b/2). It is a centered solution.

Vittone’s algorithm would, therefore, recognize the

discretization of the straight line axKbyCmZ0 as a straight

line of parameter (a/b, m/bC1/2) and not (a/b, m/b) as

expected. A translation of the solutions is needed to correct

this. Table 1 presents these corrections. These transform-

ations lead to translations of the domain’s vertices, and in

the following, the so-called "domain" stands for this

translated polygon.
3.3.1. Polygonalization algorithm

The polygonalization algorithm is described in Algor-

ithm 1. We detail each step of this algorithm referring to its

line numbers.
Table 1

Résumé of the different translations from a 8-connected curve to

a 4-connected one.

8-Connected Shear trans. 4-Connected

Vittone’s

settings

0%axKbyC

m!b
����/bZbKa 0%axK(bKa)yC

m!b

YmZmKb=2 YmZmKb=2

After

translation

0%axKbyC

mKb/2!b
����/bZbKa 0%axK(bKa)yC

mKb/2!b
The aim is to reconstruct a Euclidean polyline (p1,.,pj)

from a 4-connected simple curve given by the ordered set of

pixels PZ(P1,P2,.,Pn). The first point P1 is the starting

point of the discrete curve. A Euclidean point p1 is chosen

inside the pixel P1 (line 2). Usually the center of the pixel is

chosen unless other constraints exist.

Let us suppose that we have already reconstructed the

discrete points (P1,.,Pi) into the Euclidean polyline

(p1,.,pk). Then the discrete points (pi,.,pn) remain

(line 4). The Euclidean point pk is inside the pixel Pi.

A few transformations are needed before the recognition

step. Vittone’s algorithm works on lines lying in the first

octant (for lines axKbyCmZ0 where bRaR0). But the

series of 4-connected discrete points can have an arbitrary

direction. The general direction (octant) of the discrete point

series is determined using the Chain code of the set of

pixels. Indeed, it is well known that the Chain code of a

discrete segment is composed of at most two different

directions [20]. From those two directions we derive the

octant in which the line lies (line 5). A symmetry is then

applied in order to transpose the set of pixels into the first

octant. Next the shear transform defined in Section 3.3

is applied and transforms the 4-connected set of pixels

(Pi,PiC1,.,Pn) into the 8-connected one (P 0
i,P

0
iC1,.,Pn).

The same transformation is also applied to the Euclidean

point pk which results in p 0
k (line 6). The Euclidean point

p 0
kZ(uk, vk) corresponds to the Euclidean line dk: ukxCyK

vkZ0 in P (line 7). Each point of dk corresponds to a

Euclidean line in C that goes through p 0
k.

We can now use Vittone’s algorithm. The points P 0
iCj,

jO0 are added one by one in the discrete segment sk until

the domain of sk does not intersect the Euclidean line dk

anymore (lines 8–12). When that happens, if we denote P 0
iCm

the last solution pixel, we know that the discrete points

(P 0
i,.,P 0

iCm) are recognized as a discrete straight line



Fig. 4. (a) A set of pixels that has been recognized as a discrete line segment. (b) The domain of the pixels and the Euclidean line corresponding to p 0
k in the

parameter space. (c) The solution p 0
k in the parameter space is a Euclidean line (in (a)) going through p 0

k.

I. Sivignon et al. / Image and Vision Computing 23 (2005) 191–202 195
segment. The intersection between the polygon and the

straight line dk in P (denoted I in Algorithm 1) corresponds to

all the Euclidean lines in C going through p 0
k and containing

(P 0
i,.,P 0

iCm) in their digitization (Fig. 4(a) and (b)).

We choose the middle point p 0
k of I as the Euclidean

reconstruction of the discrete points (P 0
i,.,P 0

iCm) (line 17).

The point p 0
k in P corresponds to a Euclidean line that

contains pk
0 in C (Fig 4). The transformations described in

Table 1 are applied back so that we get a Euclidean straight

line D that passes through pk and all the pixels Pi,.,PiCm

(line 18). The straight line D intersects the pixel PiCm as an

interval. The center of this interval is the point pkC1 in the

reconstruction process (line 19). The recognition steps start

then all over with the discrete points (PiCm,PiCmC1,.,Pn)

and the Euclidean point pkC1 (line 20).
3.3.2. End of the polygonalization process

For a simple curve the recognition process ends simply

when we have reached the last discrete point Pn of the curve.

A Euclidean vertex is set inside the last pixel as last point of

the reconstructed polyline. The matter becomes, however, a

little more difficult when we deal with a closed curve. For a

closed curve we have P1ZPn. It is of course reasonable to

expect a close Euclidean polyline as result of a closed

discrete curve. This means that the last discrete straight line

segment that is reconstructed has to have pkC1Zp1. This

corresponds to an additional condition that has to be setup is

Vittone’s algorithm. When we reach the last discrete points

of the curve (when PnZP1 is one of the possible points

that will be recognized at this step), we have to ensure

that both the Euclidean line dk (corresponding to p 0
k

Fig. 5. Same comments as in Fig. 4 except that we look for a Euclidean line joinin

parameter space.
and the Euclidean line d1 (corresponding to p 0
1) intersect

the polygon in the parameter space (see Fig. 5). The

recognition algorithm progresses as long as the intersection

point of both lines belongs to the parameter polygon. If this

goes as far as point PnZP1 then the reconstruction process

is finished. If this condition is not verified it means that

the Euclidean line pkp1 does not contain the discrete points

(PiCmK1,.,Pn) and we start over with pkC1.

Fig. 6 presents a result obtained with this algorithm.
4. 3D Discrete curve polygonalization

In Section 3, we have presented a new algorithm to

polygonalize any 2D discrete 4-connected curve without

post-processing treatments in an invertible way. In this

section, we extend this method to 6-connected 3D curves in

a three-dimensional cubic grid.
4.1. Principle

The principle of the algorithm is exactly the same as in

the 2D case. The reconstruction algorithm works on 3D

6-connected curves VZ(V1,.,Vn). The algorithm starts

with a Euclidean point p inside the starting voxel V1 of the

discrete curve. A recognition direction is chosen, and a 3D

digital line recognition process is applied: it determines if a

set of voxels is a discrete 3D line segment and if there exists

a Euclidean line d that passes through p and through all the

voxels of this segment. The voxels are added one by one

along the recognition direction as long as this holds.
g both points p 0
k and p0

1. In (b) and (c) we can see how this translates in the



Fig. 6. Result of the polygonalization algorithm: on the left, a discrete curve and a zoom on the woman hand; on the right, the polygonal curve computed by

Algorithm 1 and the same hand detail.

I. Sivignon et al. / Image and Vision Computing 23 (2005) 191–202196
Once this condition fails, a new Euclidean point is chosen

inside the last but one voxel and the recognition process

starts over along the curve until the voxel Vn.
4.2. Parameter spaces and domains

The parameter space used in the 2D case has been presented

in Section 2, and we present here the parameter spaces

(extensions of the 2D parameter space) used in this part.

We denote by C the usual Cartesian space and by (x, y, z)

a point in this space. In 3D, we can define three parameter

spaces Px; Py and Pz and the three polymorphic operators

Cx, Cy and Cz which link the parameter spaces with the

Cartesian space. Their definitions are given in Table 2.

The operators C from P to C link one basic geometrical

object of P with its representation in C : a point maps

to a plane, a plane maps to a point and finally a line maps

to a line.

Let us also consider the intersection between those

spaces and the planes aZ0 and bZ0. Those intersections

define six two-dimensional parameter spaces (Table 3)

included in the three three-dimensional parameter spaces.

For instance, the two-dimensional parameter space Pxz is
Table 2

Definitions of the three 3D parameter spaces

Cx: Px /C

(a, b, g)1xCayCbzCgZ0

xCayCbzCgZ01(x, y, z)

Cy: Py /C

(a, b, g)1axCyCbzCgZ0

axCyCbzCgZ01(x, y, z)

Cz: Pz /C

(a, b, g)1axCbyCzCgZ0

axCbyCgCzZ01(x, y, z)
equal to Px h ðaZ0Þ: Those spaces can be considered

either as restrictions of a 3D parameter space or as two-

dimensional parameter spaces. Thus, one point of Pxz can

be considered either as a plane perpendicular to the plane

yZ0 in C or as a line in the 2D Cartesian space (0xz). An

example which illustrates those definitions is depicted in

Fig. 7.

The preimage or domain of a set of voxels is defined

according to those spaces and the standard digitization

scheme St presented in Section 2.

Definition 3 (domain). Consider a set of voxels V. The

preimage or domain of V along the x coordinate, denoted

Domx(V) is

DomxðVÞ Z fða;b;gÞ2PxjV 3StðCxða;b;gÞÞg

where St denotes the standard digitization scheme. Domy(V)

and Domz(V) can be defined in the same way according to

Py and Pz:

The domain of a given set V is the set of Cartesian planes

containing V in their standard digitization. This set of planes

can be represented in the three three-dimensional parameter

spaces up to a projection operation (see Ref. [19]) and in the

following, we use the notation Dom(V) when no particular

parameter space needs to be precised or when we deal with

the domains of 2D standard lines (see Section 2).
Table 3

Definitions of the six 2D parameter spaces in 3D

Cxz: Pxz /C Cxy: Pxy /C

(b, g)1xCbzCgZ0 (a, g)1xCayCgZ0

Cyz: Pyz /C Cyx: Pyx /C

(b, g)1yCbzCgZ0 (a, g)1axCyCgZ0

Czy: Pzy /C Czx: Pzx /C

(b, g)1byCzCgZ0 (a, g)1axCzCgZ0



Fig. 7. Illustration of the parameter spaces and operators definitions: the image of the point p0 2Px (left) by the operator Cx is the plane xCb0zCg0Z0. This

equation is either the equation of a plane in the 3D space (0xyz) (upper right) or the equation of a line is the 2D space (0xz) (lower right).

I. Sivignon et al. / Image and Vision Computing 23 (2005) 191–202 197
4.3. 3D Standard line segment recognition

Let us first recall the definition of a standard 3D line

[6,8].

Definition 4 (3D standard line). Consider a 3D straight

line of directional vector (a, b, c), and going through the

point (x0, y0, z0). Then the standard digitization of this line

is the set of integer points fulfilling the conditions given by

the following double inequalities

K
jajC jbj

2
%bx Kay Cay0 Kbx0!

jajC jbj

2

K
jajC jcj

2
%cx Kaz Caz0 Kcx0!

jajC jcj

2

K
jbjC jcj

2
%cy Kbz Cbz0 Kcy0!

jbjC jcj

2

where the double inequalities are oriented along the

standard convention (see Section 2 and Refs. [6,8]).

In order to design a 3D standard line recognition

algorithm, we rewrite this definition using the operators

of projection in the Cartesian and discrete spaces and the

notion of compatible parameters.

Consider a set of voxels V in Z
3 and an Euclidean object

F 3R
3: We define three projection operators denoted by p

for the discrete space and three others denoted by p for the

Euclidean space as:
pxðVÞ Z fðy; zÞ2Z
2jd ðx; y; zÞ2Vg pxðVÞ Z fðy; zÞ2R

2jd ðx;

pyðVÞ Z fðx; zÞ2Z
2jd ðx; y; zÞ2Vg pyðVÞ Z fðx; zÞ2R

2jd ðx;

pzðVÞ Z fðx; yÞ2Z
2jd ðx; y; zÞ2Vg pzðVÞ Z fðx; yÞ2R

2jd ðx;
An illustration of a 3D standard line, a 3D straight line

and their projections is given in Fig. 8.

Definition 5 (compatible). Consider the three projections

px(S), py(S) and pz(S) of a 3D discrete segment S.

Those projections have compatible parameters if and only

if there exists a 3D straight line L such that for the three

coordinates c2{x,y,z}, the standard digitization of pcðLÞ

contains the pixels of pc(S). In other words, the parameters

of pcðLÞ have to belong to the 2D domain (see Section 2) of

the set of pixels pc(S).

Hence, a 6-connected 3D discrete curve S is a standard

3D line segment if and only if:
(1)
y; zÞ

y; zÞ

y; zÞ
the three projections px(S), py(S) and pz(S) are 2D

standard line segments
(2)
 the parameters of those 2D standard line segments are

compatible.
As a consequence, the recognition of a 3D standard line

is done in two steps: first check that the projections of this

line are 2D standard lines, and next, ensure that there exists

a solution 3D straight line.

We use the 2D standard line recognition algorithm

presented in the previous section to compute the domains

related to the three projections of S. Each point of the 3D
2Fg

2Fg

2Fg



Fig. 8. Illustration of a discrete and a straight line and their projections.

I. Sivignon et al. / Image and Vision Computing 23 (2005) 191–202198
curve may induce a modification of two out of the three

projections.

Each domain of the projections is a convex polygon (see

Section 2) that can be represented in two out of the six two-

dimensional parameter spaces presented in Section 4.2. For

instance, the domain of the projection pz(S) can be
Fig. 9. Representation of the projections’ domains of
represented in Pxy and in Pyx: Hence, two out of the

three projections’ domains can be represented in each

3D parameter space. Fig. 9 shows the embedding of

the projections’ domains in the parameter spaces for a

given set of voxels S.

In order to ensure the compatibility property in the

parameter spaces (i.e. during the recognition process), a

characterization of the preimage of a 3D Euclidean line is

required.

Proposition 1. Let LC be a straight line in the Cartesian

space of direction (a, b, c), with bs0 and cs0, and let LP

be the image of LC in the parameter space PxðLPZ
CK1ðLCÞÞ: Then the point LPh ðaZ0Þ maps to the line

pyðLCÞ; and the point LPh ðbZ0Þ maps to the line pzðLCÞ:

Proof. Let be LC the 3D straight line defined by LC Z
fðx; y; zÞ2R

3jd t 2R; ðx; y; zÞZ ðx0; y0; z0ÞC tða; b; cÞg;

with bs0 and cs0. Then the projection of LC onto the

plane (0xy) is the line pzðLCÞ : bxK ayC ay0 K bx0 Z 0:

Similarly, its projection onto the plane (0xz) is the line

pyðLCÞ : cxK azC az0 K cx0 Z 0: In the parameter space

Px; those lines map to the two points mzZ(Ka/b, 0, ay0/bK
x0) and myZ(0, Ka/c, az0/cKx0), respectively. The two

equations of pzðLCÞ and pyðLCÞ are also the equation of two
S in the three parameter spaces Px; Py and Pz:



I. Sivignon et al. / Image and Vision Computing 23 (2005) 191–202 199
planes in which the 3D line LC lies. Since the domain of the

3D straight line LC is the 3D straight line LP representing all

the planes containing LC; the two points my and mz lie on LP:

Finally, we have my Z LP h ðaZ 0Þ and mz Z LP h ðbZ
0Þ; which ends the proof. ,

This Proposition is shown in Fig. 10(a) and (b). We can

now give the following result:

Proposition 2. Let S be a 3D discrete segment. Then any

line in the parameter space Px that crosses both Dom(pz(S))

and Dom(py(S)) represents a 3D line L in the Cartesian

space such that pzðLÞ belongs to Dom(pz(S)) and pyðLÞ

belongs to Dom(py(S)).

The proof of this proposition is straightforward using

Proposition 1. Fig. 10(c) and (d) shows this result.
Fig. 10. Illustration of Propositions 1 and 2: (a) a straight line LC in the Cartesian

parameter space; (c) same as (a) plus a discrete segment S, part of LC standard di

projections of LC belong to Dom(py(S)) and Dom(pz(S)), respectively.
Then, according to Proposition 2, any 3D line which

crosses the domains of the projections of S in the parameter

space maps to a 3D line LC such that two out of its three

projections are solutions for the projections of S. But to

ensure the compatibility of the domains, pxðLCÞ must also

belong to Dom(px(S)). It is not straightforward to check this

condition algorithmically in the parameter spaces we have

presented by now. Indeed, such a verification implies to

check every couple of points in Dom(pz(S)) and Dom(py

(S))—this defines a line in the Cartesian space—then to

compute the parameters of the third projection of this line

and finally to check whether those parameters belong to

Dom(px(S)) or not. If the answer is ‘yes’ for one couple,

then the domains are compatible. Otherwise, S is not a 3D

standard line segment. This checking has to be exhaustive to

give the exact result.
space and its projections; (b) representation of LC and its projections in the

gitization, and its projections; (d) the points my and mz which represent the



I. Sivignon et al. / Image and Vision Computing 23 (2005) 191–202200
In the next part, we see how the compatibility checking

can actually be simplified in a 3D curve segmentation

process.
4.4. Polygonalization of a 3D curve

The segmentation process aims at decomposing the 3D

discrete curve into 3D discrete segments sk with correspond-

ing straight line segments rk of extremal points rk
1 and rk

2. As

for the 2D case, the main idea is to fix the first extremity of

each real segment rk to a given real point vk. In the

parameter spaces, a point v is represented by a plane as

shown in Fig. 11. Seeing that, for a given segment sk, all the

solution 3D lines have to contain vk, this condition is

transposed in the parameter space saying that we only

consider the lines included in Cx
-1(vk). Consequently, the

domains are no more polygons but simply segments (see

Fig. 11).

Consider the two domains Dom(pz(S)) and Dom(py

(S)). As said previously, any couple of points in those

domains defines a Cartesian line LC: To ensure the

compatibility, we have to check that there exist two

points m1 and m2 in the parameter space, the first one in

Dom(pz(S)) and the second one in Dom(py(S)) such that

the third projection of the line LC defined by m1 and m2

lies in Dom(px(S)). The computation of the third

projection’s parameters from the two points m1 and m2

is given by the following property:

Proposition 3. Let LC be a Cartesian line, and let m1Z(a1,

b1) (resp. m2Z(a2, b2)) be the point in Pxy (resp. Pxz)

associated to pzðLCÞ (resp. pyðLCÞ). Then, the projection px

ðLCÞ maps to the point (Ka2/a1, (b1Kb2)/a1) in the

parameter space Pyz:

Proof. The line LC is defined by the two points m1 and m2,

which correspond to the system of equations

x Ca1y Cb1 Z 0

x Ca2z Cb2 Z 0
:

(

Fig. 11. Representation of what happens in the parameter space when a point v is
Then we get a1yKa2zCb1Kb2Z0. If a1s0, we can

divide by a1, and this equation becomes yK(a2/a1)zC
(b1Kb2)/d1Z0, which corresponds to the point (Ka2/a1),

(b1Kb2)/a1) in Pyz: Otherwise, if a1Z0 and a2s0, we can

divide by a2 and get the same result in the parameter space

Pzy: Finally, the case a1Z0 and a2Z0 is a degenerate case

which can be handled algorithmically using infinite

domains. ,

Since all the domains are embedded in a plane, all the

parameters of the third projection computed from any m1

and m2 in Pxy and Pxz lie on the same line in Pyz: Moreover,

this plane is not perpendicular to the (0ab) plane. Then,

all the domains, which are segments, can be defined by the

a-coordinates of their extremities. For instance, Dom(pz(S))

which is equal to the segment [Az, Bz] in Pxy is defined by

the interval IzZ[azA, azB] where azA is the a-coordinate of

point Az and azB is the a-coordinate of point Bz. In the same

way, if Dom(py(S))Z[Ay, By], we denote it by the interval

IyZ[ayA, ayB] in Pxz: Then we have the following property:

Proposition 4. Consider a discrete segment S and the

domains of its projections in Pxy; Pxz and Pyz denoted Iz, Iy

and Ix. Let f be the function defined as: f ða;a0ÞZKa0=a:

Then the domains are compatible if and only if Ix-

h[min(f(a1,a2)), max(f(a1,a2))]s: where a1ZazA or

a1ZazB and a2ZayA or a2ZayB.

The proof of this proposition is straightforward seeing

that the function f, which is part of the function defined in

Proposition 3, is continuous and monotonic over positive or

negative intervals. If Iz or Iy contains both positive and

negative values, then it is simply split into one negative and

one positive intervals.

Algorithm 2 describes the global polygonalization

algorithm for a 3D curve taking into account all the

elements presented so far. This algorithm requires an

ordered set of voxels denoted VZ{V1,.,Vn} as input

parameter. This curve may be open or closed. The output of

this algorithm is a set of ordered discrete segments sk

together with a corresponding real segment rk which
fixed: on the right, the domains we consider are now straight line segments.



Fig. 12. Result of the polygonalization algorithm for 3D 6-connected

curves.

Fig. 13. Influence of the fixed real points chosen.

I. Sivignon et al. / Image and Vision Computing 23 (2005) 191–202 201
standard digitization is sk.

Let us give some precisions and explanations on this

algorithm.

In the first line, two variables are set: i is used to track all

the voxels of the curve and k counts the number of segments

found by the algorithm. On line 2, the first extremity of the

first real segment is chosen: this real point v1 has to belong

to the voxel V1.

The ‘while’ loop that begins in line 3 and ends in line 29

is the global tracking of the voxels of the curve. Inside this

loop, the discrete segment sk is initialized with the current

voxel Vi (line 4). The extremity of the first real segment rk is

set to the current fixed real point vk (line 5). The last

initializations are those of the domains: as shown in Fig. 11,

those domains are first lines and then segments after the first

voxel addition (lines 6–8).

While those domains are not empty, the parameters are

compatible and the end of the curve is not reached, the

following voxel of the curve is added to the current discrete

segment sk (line 12). The projections of the new voxel

induce some reductions of the three domains (line 13). Next,

the image of the two intervals Iz and Iy is computed and

intersected with Ix in order to check the compatibility of the

domains (lines 14–19). When one condition of the while

loop (line 10) is no more fulfilled, if Vi is not the last voxel

of the curve, then the voxel ViK1 is defined as the last voxel

of the segment sk (line 22). One solution lk is chosen for

the 3D line and the real point vkC1 (line 26) is both rk last

point and rkC1 first point (lines 25–27).

Finally, the recognition process starts all over from line 3

with ViK1 as first voxel of the next segment skC1 and vkC1 as

first extremity of the real segment rkC1.

In the case of closed curves, the same trick as for the 2D

case can be used for the end of the recognition process.

Indeed, if the discrete curve is closed, the Euclidean curve

reconstructed should also be a closed curve. This can be

achieved fixing not one extremity but the two extremities of

the maybe last real segment and check if its discretization

contains the set of last pixels (see Section 3.3.2 for details).

Finally, let us study the complexity of this algorithm All

the operations on lines 2, 4–9 and 11–12 can be done in

constant time. The reductions of the intervals on line 13 a

done either in constant time with a simple line/line

intersection computation, or in logarithmic time if the same

trick as in Ref. [18] is used. In practice, this second method is
often the fastest mean to compute the intersection of two

rational lines. Operations on lines 14–19 can also be done in

constant time since f(Iz, Iy) is an interval. In line 25, the choice

of the solution is also done in constant time taking the middle

point of the solution interval. In line 26, the new real point is

computed as the middle of the segment lkhVi (Vi is the last

voxel of the discrete segment) which is done in constant time.

At last, the global complexity of this algorithm is Oðn logðnÞÞ

where n is the length of the curve.

4.5. Results

Algorithm 2 has been implemented in C using the multi-

precision arithmetic library called GMP [21]. Using this

library enables to work with rational numbers of any

precision without rounding any value. The Figs. 12 and 13

present some results on synthetic curves.



I. Sivignon et al. / Image and Vision Computing 23 (2005) 191–202202
The algorithm decomposes the curves into discrete and

Cartesian segments, one Cartesian segment for one discrete

segment. The polygonal line computed is represented by a

polygonal dark line, and its digitization is exactly the input

discrete curve. The darkest voxels are the extremities of the

discrete segments recognized. Remark that each dark voxel

contains one extremity of a Cartesian segment.

The curve of Fig. 12(a) and (b) are, respectively,

decomposed into 12 and 13 segments and the curve of

Fig. 13(a) is divided into six segments.

Note that the curve of Fig. 13 could theoretically be

decomposed into three discrete segments only. Indeed, the

choice of a fixed real point extremity for each Cartesian

segment (used to ensure the reversibility) constraints also the

discrete segments. In Fig. 13(a), the first real point chosen is

the point of coordinates (x0, y0, z0) which are the coordinates

of the first voxel center, whereas in Fig. 13(a), the first real

point chosen is the point of coordinates (x0C1/4, y0K1/4,

z0C1/4). Even if the number of segments computed is the

same for the two cases here (it could be different), note that

the extremities of the segments are different.
5. Conclusions and future work

In this paper, we described a framework to find a

polygonal curve from a discrete curve with an invertible

method in dimension two and three. In 2D, the method

proposed in Ref. [7] has been improved and leads to a new

algorithm to vectorize a discrete curve without post-

treatment patches. We use the Vittone’s algorithm for line

recognition and force the vertices of the reconstructed

polygon to be inside the curve setting one extremity of each

real segment to a chosen point before the recognition

process. This ensures the reversibility of the reconstruction.

Then, we extended this algorithm for 3D curves. As in

2D, one extremity of each segment of the reconstructed

curve is set before the recognition process. This process is

composed of three 2D discrete segments recognitions,

which are done simultaneously. Moreover, a new constraint,

called compatibility constraint, ensures that those three

recognitions can lead to a solution 3D line.

The results for the polygonalization of 2D curves are

good, but we can notice that the number of real segments

obtained is greater than what we got with the algorithm

presented in Ref. [7]. Nevertheless this could be improve by

relaxing the constraint of a fix extremity for each real

segment while keeping the reversibility property: for

instance, we may force each real segment to go through

one part of the previous segment which is inside the curve

instead of one given point. This should give better results.

In 3D, we presented first results for this problem. We can

consider implementing the same improvements as in the 2D

case in order to reduce the number of segments found.

Moreover, in the context of surface polygonalization, this
algorithm may be adapted to polygonalize the border of a

discrete plane (coplanar curve). From a discrete surface

segmentation into discrete plane pieces, such an algorithm

would give an analytical modeling of a discrete surface.
References

[1] W. Lorensen, H. Cline, Marching cubes: a high resolution 3D surface

construction algorithm, in: SIGGRAPH’87, Computer Graphics J.,

vol. 21, Anaheim, USA, 21, 1987, pp. 163–169.

[2] D. Cœurjolly, Algorithmique et géométrie discrète pour la caractér-

isation des courbes et des surfaces, PhD Thesis, Université Lumière,

Lyon 2, France, December 2002.

[3] I. Debled-Rennesson, Étude et reconnaissance des droites et plans

discrets, PhD Thesis, Universit Louis Pasteur, Strasbourg, France,

December 1995.

[4] R. Klette, H.J. Sun, Digital planar segment based polyhedrization for

surface area estimation in: C. Arcelli, L.P. Cordella, G.S. di Baja

(Eds.),, International Workshop on Visual Form 4, Vol. 2059 of Lecture

Notes in Computer Science, Springer, New Jersy, 2001, pp. 356–366.

[5] J. Vittone, J.-M. Chassery, Recognition of digital naive planes and

polyhedrization, in: Discrete Geometry for Computer Imagery, Vol.

1953 of Lecture Notes in Computer Science, Springer, New Jersy,

2000, pp. 296–307.

[6] E. Andrès, Discrete linear objects in dimension n: the standard model,

Graphical Models 65 (1–3) (2003) 92–111 Special Issue DGCI 2002.

[7] R. Breton, I. Sivignon, F. Dupont, E. Andrès, Towards an invertible

Euclidean reconstruction of a discrete object in: I. Nyström, G. Sanniti

di Baja, S. Svensson (Eds.),, Discrete Geometry for Computer

Imagery, Vol. 2886 of Lecture Notes in Computer Science, Springer,

New Jersy, 2003, pp. 246–256.

[8] E. Andrès, Defining discrete objects for polygonalization: the standard

model in: A. Braquelaire, J.-O. Lachaud, A. Vialard (Eds.),, Discrete

Geometry for Computer Imagery, Vol. 2301 of Lecture Notes in

Computer Science, Springer, Bordeaux, France, 2002, pp. 313–325.

[9] P.V.C. Hough, Method and means for recognizing complex patterns,

United States Patent, n3, 069, 654, December 1962.

[10] H. Maı̂tre, Un panorama de la transformation de Hough, Traitement

du Signal 2 (4) (1985) 305–317.

[11] R.O. Duda, P.E. Hart, Use of the Hough transformation to detect lines and

curves in pictures, Communications of the ACM 15 (1) (1972) 11–15.

[12] A. Rosenfeld, I. Weiss, A convex polygon is determined by its Hough

transform, Pattern Recognition Letters 16 (1995) 305–306.

[13] P. Milanfar, On the Hough transform of a polygon, Pattern

Recognition Letters 17 (1996) 209–210.

[14] A. Jonas, N. Kiryati, Digital representation schemes for 3D curves,

Pattern Recognition 30 (11) (1997) 1803–1816.

[15] L. Dorst, A.N.M. Smeulders, Discrete representation of straight lines,

IEEE Transactions on Pattern Analysis and Machine Intelligence 6

(1984) 450–463.

[16] M.D. McIlroy, A note on discrete representation of lines, AT&T

Technical Journal 64 (2) (1985) 481–490.

[17] M. Lindenbaum, A. Bruckstein, On recursive, OðnÞ partitioning of a

digitized curve into digital straight segments, IEEE Transactions on

Pattern Analysis and Machine Intelligence 15 (9) (1993) 949–953.

[18] J. Vittone, Caractérisation et reconnaissance de droites et de plans en

géométrie discrète, PhD Thesis, Université Joseph Fourier, December

1999.

[19] P. Veelaert, Geometric constructions in the digital plane, Journal of

Mathematical Imaging and Vision 11 (1999) 99–118.

[20] H. Freeman, Boundary encoding and processing, Picture Processing

and Psychopictorics 1970; 241–266.

[21] GMP library. URL http://www.swox.com/gmp/.

http://www.swox.com/gmp/

	Discrete analytical curve reconstruction without patches
	Introduction
	Recalls on discrete geometry
	The standard model
	Parameter space

	Reconstruction of a 2D discrete simple curve
	Principle
	Starting point and recognition direction
	Recognition process

	3D Discrete curve polygonalization
	Principle
	Parameter spaces and domains
	3D Standard line segment recognition
	Polygonalization of a 3D curve
	Results

	Conclusions and future work
	References


