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ABSTRACT 
 

In this paper we present a new framework, based on subdivision surface fitting, for high rate compression and coding of 
3D models. Our algorithm fits the input 3D model, represented by a polygonal mesh, with a piecewise smooth 
subdivision surface represented by a coarse control polyhedron. Our fitting scheme, particularly suited for meshes 
issued from mechanical or CAD parts, aims at getting close to the optimality in terms of control points number, while 
remaining independent of the connectivity of the input mesh. The found subdivision control polyhedron is much more 
compact than the original mesh and visually represents the same shape after several subdivision steps, without artifacts 
or cracks, like traditional lossy compression schemes. This control polyhedron is then encoded specifically to give the 
final compressed stream. Experiments conducted on several 3D models have proven the coherency and the efficiency of 
our framework, compared with existing compression methods. 
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1. INTRODUCTION AND CONTEXT 
 
Advances in computer speed, memory capacity, and hardware graphics acceleration have highly increased the amount 
of three-dimensional models being manipulated, visualized and transmitted over the Internet. In this context, the need 
for efficient tools to retrieve, protect or reduce the storage of this 3D content, mostly represented by polygonal meshes, 
becomes even more acute. The context of our work is the SEMANTIC-3D project (http://www.semantic-3d.net) of 
which the principal issue is the transmission of 3D mechanical models through low bandwidth channels in a 
visualization objective on various terminals. The 3D model database to handle comes from the car manufacturer 
Renault, and contains thousands of quite irregular polygonal meshes representing CAD parts. Thus an efficient 
compression tool is needed to reduce the amount of data carried by this 3D content, knowing that the original NURBS 
information is not available. Many efficient techniques have been developed for encoding polygonal meshes1,2,3 but 
fundamentally, this representation remains very heavy in terms of amount of data (a large points set, on top of the 
connectivity has to be encoded). Moreover, lossy compression schemes like wavelet based ones4,5 produce artifacts, 
visually damaging for piecewise smooth mechanical objects. Other models exist to represent a 3D shape: NURBS 
surfaces or subdivision surfaces. These models are much more compact. A subdivision surface is a smooth (or piecewise 
smooth) surface defined as the limit surface generated by an infinite number of refinement operations using a 
subdivision rule on an input coarse control mesh. Hence, it can model a smooth surface of arbitrary topology (contrary 
to a NURBS model which needs a parametric domain) while keeping a compact storage and a simple representation (a 
polygonal mesh). Moreover it can be easily displayed to any resolution. Subdivision surfaces are now widely used for 
3D imaging and have been integrated to the MPEG4 standard6. For all these reasons, we have developed a new 
algorithm, based on subdivision surface fitting for efficiently compressing 3D meshes, for low bandwidth transmission 
and storage. The 3D models are first approximated by piecewise smooth subdivision surfaces, associated with control 
polyhedrons which are then encoded specifically to give the compressed bit stream. Hence the 3D model, once 
approximated, will be transmitted in the form of an encoded coarse polyhedron and, at the reception, displayed to any 
resolution, according to the terminal capacity, by iterative subdivisions. Note that this decompression process is very 
simple and therefore adapted for mobile terminals. Section 2 details the related work about mesh compression and 
subdivision surface fitting, while the overview of our method and the prior work are presented in section 3. Sections 4 
and 5 detail the two steps of our subdivision surface fitting approach: the initialization and the optimization of the 
subdivision surfaces. Finally section 6 presents the final control mesh construction and encoding, and the results of our 
experiments.  
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2. RELATED WORK 

2.1. Mesh compression  
A lot of work has been done about polygonal mesh compression. This representation contains two kinds of information: 
geometry and connectivity, the first describing coordinates of the vertices in the 3D space, and the later describing how 
to connect these positions. The connectivity graph is often encoded using a region growing approach based on faces2, 
edges3 or vertices1. Others techniques consider progressive approaches which encode a base mesh and then vertex 
insertion operations7. Fewer efforts have been done about geometry compression which is often simply performed by 
predictive coding and quantization. Other researches have put more efforts on geometry driven mesh coding, using 
wavelets4,5 or spectral compression8. On the whole, better mesh compression methods give between 1 and 2 bytes per 
vertex; although this represents an excellent result, the output bit stream remains large for complex objects because of 
the high number of vertices to encode. Moreover lossy compression schemes4,5,7,8 often produce artifacts, visually 
damaging for smooth mechanical objects. That is why we have chosen to approximate input meshes with subdivision 
surfaces, of which control polyhedrons should contain much lesser faces to store or transmit, knowing that after several 
refinement steps, the subdivision surfaces will visually represent the shape of the original meshes (of which original 
connectivity will not be kept). 

2.2. Subdivision surface approximation 
Several methods already exist for subdivision surface fitting, most of them take as input a dense mesh, simplify it to 
obtain a base coarse control mesh9,10 and then displace the control points (geometry optimization) to fit the target 
surface. These simplification based approaches allow to easily extract a control mesh with the same topology than the 
target object, however, the control mesh connectivity strongly depends on the input mesh and therefore can give quite 
bad results if the input mesh is very irregular, which is the case for our CAD models. Hence, in our algorithm, in order 
to remain independent of the original connectivity, we first decompose the object into surface patches, and then we use 
the boundaries of the patches and the curvature information to construct a control polyhedron having the same topology 
than the target object. Some algorithms11,12 also remain independent of the target mesh, by iteratively subdividing and 
shrinking an initial control mesh toward the target surface. Unfortunately these methods fail to capture local 
characteristics for complex target surfaces. Once a coarse control mesh has been constructed, then the geometry has to 
be optimized by moving control points to match the subdivision surface with the target model. Lee et al.9 and Hoppe et 
al.13 sample a set of points from the original mesh and minimize a quadratic error to the subdivision surface. Suzuki et 
al.11 propose a faster approach, also used in Ref. 12: the position of the control points is optimized, only by reducing the 
distances between their limit positions and the target surface. Hence only subsets of the surfaces are involved on the 
fitting procedure, thus results are not so precise and may produce oscillations. Ma et al.10 consider the minimization of 
the distances from vertices of the subdivision surface after several refinements, to the target mesh; our algorithm follows 
this framework while using not a point to point distance minimization, but a point to surface minimization, by using the 
local quadratic approximants introduced by Pottmann and Leopoldseder14. This algorithm allows a more accurate and 
rapid convergence. To our knowledge, the optimality in terms of control points number and connectivity of the control 
polyhedron represents a minor problematic in the existing algorithms but seems particularly relevant for mechanical or 
CAD objects. Only Hoppe et al.13 optimize the connectivity (but not the number of control points) by trying to collapse, 
split, or swap each edge of the control polyhedron. Their algorithm produces high quality models but need of course an 
extensive computing time. Our algorithm optimizes the connectivity of the control mesh by analyzing curvature 
directions of the target surface, which reflect the natural parameterization of the object. The number of control points is 
also optimized by enriching iteratively the control polyhedron according to the error distribution. Moreover our 
approach allows to directly control the approximation error, whereas simplification based methods9,10 indirectly control 
the error by modifying the decimation level.  
 
 

3. OVERVIEW OF OUR ALGORITHM AND PRIOR WORK 

3.1. Overview 
Our framework for compression of 3D models is the following: Firstly the target 3D objects are segmented into surface 
patches (see Section 3.4), of which boundaries are extracted. Secondly, the network of boundaries is approximated with 
piecewise smooth subdivision curves (see Sections 3.3 and 3.5); this step provides a network of control polygons. 



Thirdly, for each patch a local approximating subdivision surface is created, using the subdivision control polygons 
representing its boundaries (see Sections 4 and 5). Finally, the control mesh defining the whole surface is created 
assembling every local control meshes, and encoded specifically to give the output bit stream (see Section 6). These 
steps are summarized and illustrated on Fig. 1. 

 
Figure 1: Overview of our compression framework. 

3.2. Subdivision surface presentation 
The basic idea of subdivision is to define a smooth shape from a coarse polyhedron by repeatedly and infinitely adding 
new vertices and edges according to certain subdivision rules. Doo and Sabin15, and Catmull and Clark16 first introduced 
subdivision schemes based on quadrilateral control meshes. Their schemes respectively generalized bi-quadratic and bi-
cubic tensor product B-splines. Today, many subdivision schemes have been developed, based on quadrilateral or 
triangular meshes17. Moreover special rules have been introduced by Hoppe et al.13 to handle sharp edges. Subdivision 
surfaces offer many benefits: Firstly, they can be generated from arbitrary meshes (arbitrary topology), this implies no 
need of trimming curves (which are necessary for NURBS). Secondly they can be generated at any level of detail, 
according to the terminal capacity for instance. And thirdly, subdivision surfaces are at least C1 continuous (except 
around sharp edges of course). 

 
Figure 2: Example of quad/triangle subdivision. (a) Control mesh. (b,c) One and two subdivision steps. (d) Limit surface. 

 
Figure 3: Smoothing masks for Loop (a), Catmull-Clark (b) and the quad-triangle scheme (c) (extracted from Ref. 18). 

Within our approximation framework, we have to choose a subdivision scheme, among all these existing rules. For a 
given surface to approximate, the choice of the appropriate subdivision scheme is critical. Indeed, even if in theory any 
triangle can be cut into quads or any quad can be tessellated into triangles, results are not equivalent. The nature of the 
control polyhedron (quads or triangles) strongly influences the shape and the parameterization of the resulting 



subdivision surface. The body of the cylinder, for instance, is much more naturally parameterized by quads than by 
triangles. These reasons have led us to choose the hybrid quad/triangle scheme developed by Stam and Loop18. This 
scheme reproduces Catmull-Clark on quad regions and Loop on triangle regions. At each subdivision step, the base 
mesh is firstly linearly subdivided: Each edge is splitted into two, each triangle into four and each quad into four (see 
Figure 2). Secondly, each vertex is replaced by a linear combination of itself and its direct neighbors. When a vertex is 
entirely surrounded by triangles or quads we use smoothing masks of Figure 3.a and Figure 3.b and otherwise we use 
the mask from Figure 3.c, which depends on the numbers of edges ne and quads nq surrounding the vertex. 

3.3. Subdivision curve presentation 
A subdivision curve is created using iterative subdivisions of a control polygon. In this paper we use the subdivision 
rules defined for surfaces by Hoppe et al.13 for the particular case of sharp or boundary edges: New vertices are inserted 
at the midpoints of the control segments and new positions Pi' for the control points Pi are computed using their old 
values and those of their two neighbors using the mask: 
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We also consider specific rules (those defined by Hoppe et al.13 for corner vertices) to handle sharp parts and 
extremities: Pi’ = Pi. This subdivision curve will coincide with the boundary generated by commonly used subdivision 
surface rules like Catmull-Clark16, Loop17 or the quad-triangle scheme from Stam and Loop18.  

3.4. Segmentation into patches 
The problem of subdivision surface fitting is quite complex to resolve, particularly in our case, since we aim at 
remaining independent of the target mesh connectivity. Hence we have chosen to previously segment the object into 
near constant curvature surface patches. Benefits are numerous: The inverse subdivision problem is simplified whereas 
boundaries of the patches can be used to retrieve the topology. Moreover this decomposition may bring adaptivity to the 
fitting process or for the visualization (we can imagine, once we have the complete control polyhedron, subdivide only a 
desired part of the object). The segmentation method is based on the curvature tensor field analysis and presents two 
distinct complementary steps: A region based segmentation which decomposes the object into near constant curvature 
patches, and a boundary rectification based on curvature tensor directions, which corrects boundaries by suppressing 
their artifacts or discontinuities. This method is detailed in Ref. 19. Resulting segmented patches, by virtue of their 
properties (constant curvature, clean boundaries) are particularly adapted to subdivision surface fitting (see 
segmentation in Fig. 4). 

 
Figure 4: Illustration of segmentation, boundaries extraction and subdivision curve approximation. 

3.5. Boundaries approximation 
One of the most relevant problems in the fact of approximating an object by patches is the apparition of cracks because 
each patch will be approximated by a different surface whose boundary will not be perfectly matched with the others. A 
solution is to add constraints during the fitting process but the complexity will highly increase. Indeed if each patch has 



constraints with its neighbors, the algorithm will become a global optimization problem. Another solution is to treat 
these cracks after the fitting process but the approximating surfaces will be modified, compared with the first 
approximation. Our solution is simpler and more effective. The subdivision surface approximation problem is divided 
into two sub-problems: The piecewise approximation of the boundaries of the patches and the construction of the final 
subdivision surfaces by interpolation of the found boundaries and approximation of the interior data. Accordingly, for 
each patch the boundary is divided into pieces of boundary corresponding to the different adjacencies with its 
neighboring regions (see Boundaries extraction in Fig. 4). Then the pieces of boundary are approximated with 
subdivision curves following our algorithm described in Ref. 20, which are then glued together (see Boundaries 
approximation in Fig. 4). According to subdivision properties, the associated control polygon will represent the 
boundary of the control polyhedron of the approximating subdivision surface. Then, for each patch, our process will 
attempt to connect control points of the control polygon, to create the initial control polyhedron.  
 

4. LOCAL SUBDIVISION SURFACE INITIALIZATION 

4.1. Principle  
Considering a surface patch, once the control polygon representing its boundary has been constructed, the purpose is to 
create edges and facets by connecting these control points. For this purpose, we consider the lines of curvature of the 
original surface, represented by local directions of minimum and maximum curvature. Control lines of a subdivision 
surface are strongly linked to the lines of curvature. Indeed the topology of a control polyhedron will strongly influence 
the geometry information of the associated limit surface, which is also carried by lines of curvature21. This coherency 
between control lines and lines of curvature is shown in the example on Figure 5. 

 
Figure 5: The coherency between control lines (a), minimum (b) and maximum (c) directions of curvatures. 

 
Figure 6: Mechanism for edge score definition. 

 
Thus, for each couple of control points from the boundary control polygon, a Coherency Score (SC) is calculated, taking 
into account the coherency of the corresponding potential control edge with the lines of curvature of the corresponding 
area on the target surface. The mechanism is illustrated on Figure 6: For each potential edge E, we consider its vertices 

P0, P1 and their respective limit positions ∞
0P , ∞

1P . Then we calculate the pseudo geodesic path between these limit 



positions, to simulate the control line, by applying the Dijkstra algorithm on the vertices of the original surface. Finally 
we consider the curvature tensors of the n vertices Vi of this path, and particularly their curvature directions. The 
coherency score SC for this potential edge E is: 
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where iminθ  (resp. imaxθ ) is the angle between the minimum (resp. maximum) curvature direction of the vertex Vi 

and the segment ∞
0P ∞

1P . This score SC ∈[0,90] is homogeneous to an angle value in degrees. 

4.2. Algorithm  
Our algorithm is the following: At each iteration, we consider the potential edge associated with the smallest score SC 
(dotted segments in Figure7.b) and we cut the boundary control polygon along this edge. This operation is repeated until 
it remains only plane polygons. Then for each of them, we check its convexity; if it is convex, we create a facet, and if 
not, we decompose it into convex parts. By assembling created facets we obtain our initial control polyhedron (see 
Figure 7.c) of which limit surface (see Figure 7.d) represents in most case a quite good approximation of the original 
surface (see Figure 7.a). 

 
Figure7: Example of local subdivision surface initialization. 

5. LOCAL SUBDIVISION SURFACE OPTIMIZATION 
 
The initial subdivision surface often represents a sufficient approximation of the target surface patch, even if the 
initialization process considers first of all the boundary information. Indeed, owing to the curvature based segmentation 
step, surface patches are quite simple surfaces, of which most of the geometry information is carried by the boundaries. 
However, in some cases some more control points may be needed to correctly approximate the target shape. 
Considering this purpose, we have defined two complementary mechanisms: An enrichment mechanism which adds 
points and optimizes the connectivity according to the error position and distribution, and a geometry optimization 
algorithm, generalizing Pottmann and Leopoldseder method14 for the complex quad-triangle subdivision rules. 

5.1. Enrichment and connectivity optimization 
In this section we present how to modify and optimize the connectivity of our control polyhedron. We have two 
mechanisms to consider: An enrichment of the mesh, consisting in the addition of new control points, and an 
optimization of the connectivity, insuring that, for a given set of control points, the associated connectivity (set of faces 
and edges) is the better possible regarding to the resulting error. This mechanism is quite complex to implement, 
therefore, since the connectivity has been optimized in the initialization step, we will just try to limit its departure. 
Hence we have integrated these two mechanisms into a single algorithm, which considers the error distribution to enrich 
precisely the polyhedron, while trying to keep a near optimal connectivity. 
Considering a target surface and a corresponding initial subdivision surface, the first step of this algorithm is the 
principal error field extraction. The goal is to extract not only the maximum error point but an area (a set of error points) 
corresponding to the error field in order to be able to analyze the error distribution. For this purpose we consider sample 
points Sk, on the subdivision surface and associated distances dk to the corresponding projections on the target surface. 



Then, we extract and add to our error set, Skmax corresponding to the maximum error dkmax, and every sample points 
corresponding to a similar error (we have fixed a threshold T = dkmax/2) and connected to an other point of the error 
point set. This extraction is shown for a 2D case in Figure 8. Once we have the principal error field, we study its 
dispersion to modify the control mesh. If several control faces Fk are concerned by the error field (they contain at least 
one error point) it means that the topology in this region is not correct, hence, we merge these faces and then add a point 
in the resulting face and connect it with its neighbors. Figure 9.a shows a target surface and Figure 9.b shows the initial 
subdivision surface with the corresponding error field (error points are marked in red). Corresponding faces (Figure 9.c) 
have been merged, before adding a new control point (see Figure 9.d and e).  

 
Figure 8: Principal error field extraction (2D example). 

5.2. Geometry optimization 

5.2.1. The approximate squared distance 
The subdivision surface geometry optimization requires a convergence process. The purpose, starting from an initial 
surface is to fit this surface to the target data by displacing iteratively the control points by minimizing an energy term. 
This optimization problem ties up with the smooth parametric curve and surface approximation problematic. Several 
algorithms exist for this purpose22,23. They are mostly based on a data parameterization which is very complex to 
optimize. Other approaches24 construct a regular grid on the data to overcome this parameterization problem, but these 
techniques are not adapted for subdivision surfaces which do not rely on a parametric formulation. Hence, we have 
chosen to generalize the Active B-Spline approach from Pottmann and Leopoldseder14 which is based on the 
minimization of local approximate squared distances from the target data and thus does not require parameterization. 
We have extended this method, which has proven to converge much faster than traditional ones, for subdivision 
surfaces. Their principal contribution is the definition of local approximants of the squared distance from a point to a 
surface. Thus the minimization of this point to surface distance is much faster than traditional point to point distance. 
The local approximant of point to surface quadratic distance is defined as follows: Considering a smooth surfaceΦ, we 
can define at each point t0, a Cartesian system (e1,e2,e3) whose first two vectors e1,e2 are the principal curvature 
directions and e3 is the normal vector. Considering this frame, the local quadratic approximant Fd(p) of the squared 
distance of a point p at (0,0,d) to the surface Φ is given by Ref. 14:  
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where x1, x2 and x3 are the coordinates of p with respect to the frame (e1,e2,e3) and 1ρ  (resp. 2ρ ) is the curvature radius 
at Φ(t0), corresponding to the curvature direction e1 (resp. e2).  

5.2.2. Algorithm 
Our algorithm for geometry optimization is the following: 

§ The curvature is calculated for each vertex of the target surface, using the estimator described in Ref. 25. 

§ Several sample points Sk are chosen on the subdivision surface, they correspond to vertices of the subdivided 
polyhedron at a finer level l0. The associated footpoints (projections of the sample points on the target surface) are 
extracted. For each of them, we calculate the curvature tensor, by a linear interpolation of those of the surrounding 
vertices, using barycentric coordinates. This tensor allows us to construct the Frame (e1,e2,e3) and the curvature 



radiuses 1ρ  and 2ρ , useful for the point to surface distance computation (see Equation 3). Sample points Sk can be 

computed as linear combinations of the initial control points 0
iP (see Section 3.2); they correspond to control points 

0l
iP  at the finer level l0. 

)P,...,P,P(CS nkk
00

2
0

1=                    (4) 
 
The functionals Ck are determined using iterative multiplications of the l0 subdivision matrices Ml associated with 
our subdivision rules, which give the new positions of control points according to the old ones. These subdivision 
matrices Ml are such as 1−×= l

l
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L  is the limit matrix which gives the limit positions, proposed by Stam and Loop18, of the considered control 

points at the level l0. 

§ For all Sk, local quadratic approximants k
dF  of the squared distances to the target surface are expressed according to 

the frames (e1,e2,e3) at the corresponding Footpoints. The minimization of their sum F gives the new positions of the 

control points 0
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The minimization of this quadratic function leads to the resolution of a linear squared system.  
 
Concerning the choice of the number of sample points Sk , we have chosen l0=2 refinements for all examples in this 
article. As for each refinement, the number of vertices will increase by a factor of at least four, the number of equations 
will be about sixteen times the number of unknowns. That ensures a stable solution when solving equation (6) in the 
least squares sense. This algorithm provides a very fast convergence, which is critical since this geometry optimization 
is a computationally costly procedure. 

 
Figure 9: Connectivity and geometry optimization example. (a) Original surface. Initial (b,c), enriched (d,e) and optimized 

(geometry) (f,g)  subdivision surface. 



5.3. Whole optimization algorithm 
Our algorithm for the optimization of local subdivision surfaces is the following: 
 
Begin Subdivision Surface Optimization  

While (E>ELimit) 
// E is the approximation error and ELimit a threshold value. 
While (E>ELimit  and m<m0) 

// m is the geometry optimization iteration number and m0  a maximum number. 
Call the geometry optimization procedure (see Section 5.2). The subdivision surface is moved toward the 
target surface, by minimizing a sum of quadratic distances.  

End While 
If (E>ELimit) 

A new control point is inserted onto the subdivision surface according to the error distribution (see Section 
5.1). 

End If 
End While 

End Subdivision Surface Optimization  

m0  was fixed to 5, in order to limit the number of iterations for the geometry optimization, since its convergence is very 
fast (often 3 or 4 iterations) and seeing that this process remains computationally costly. Note that boundary control 
points are fixed, to insure that no crack will appear later, during the construction of the final whole control polyhedron 
containing every control meshes of the different patches. Figure 9 shows the complete process. Boundaries of the target 
surface (see Figure 9.a) have been approximated and an initial subdivision surface has been constructed (see Fig. 9.b) 
associated with a control polyhedron (see Fig. 9.c). The associated approximation L1 error is E=30.7×10-3. Then the 
error distribution is analyzed and corresponding faces are merged. A new point in inserted (see Figure 9.d and 9.e) and 
the surface geometry is optimized (3 iterations) (see Figure 9.f and 9.g). The final approximation error is E=5.8×10-3. 
 
6. CONSTRUCTION AND CODING OF THE FINAL CONTROL POLYHEDRON AND RESULTS 

6.1. Encoding 
Once each patch has been fitted with a subdivision surface, the final control polyhedron for the whole object is created 
by assembling local control polyhedrons while marking local boundary control edges as sharp (specific subdivision 
rules which respect sharpness of the edges). This control polyhedron containing triangles, quadrangles, higher order 
polygons and marked edges is then encoded. Concerning connectivity information, we have chosen to implement the 
Face Fixer3 algorithm seeing that this encoding scheme is based on edges and allows to process arbitrary polygonal 
meshes and not just fully triangulated ones. In addition this scheme, which provides quite good compression rates, is 
able to encode easily face groupings which can be useful, in a perspective way, to transmit the segmentation results 
within the object. This algorithm encodes the connectivity graph by a list of n labels among k (k~10, depending on 
the maximum face degree), with n the number of edges. The corresponding bit stream is created using an arithmetic 
coder which achieves quite good results. Concerning geometry encoding, a 10 bit quantization is performed. Then we 
eliminate some coordinates, indeed, once the positions of three vertices of a planar face are known, we have to encode 
only 2 coordinates for the remaining vertices. Flags on the edges (sharp or not) are represented by a n sized binary 
vector, encoded by a run length algorithm. Thus the total size of the compressed stream is the sum of the connectivity 
(C), geometry (G) and flags (F) sizes (see examples in Fig. 10, C, G and F are given in bytes). 

6.2. Results and discussions 
Our compression scheme was tested on the mechanical database from Renault, these models are issued from CAD, and 
thus associated with highly irregular connectivity (see mesh examples on Figure 11). Figure 10 presents the results for 
the Fandisk mesh (Figure 10.a) and for several objects from Renault database. All these experiments were conducted on 
a PC, with a 2Ghz XEON bi-processor; processing times are between 5 and 10 seconds for the whole compression 



process (the decompression is instantaneous). The models have been scaled in a bounding box of length equal to 1. 
Figure 10 shows initial objects (with patch boundaries in green), control polyhedrons and associated limit surfaces while 
detailing the number of vertices and faces of the original objects and of the corresponding control polyhedrons. Original 
and compressed sizes, in bytes, are also highlighted. Control polyhedrons have widely less faces and vertices compared 
with initial surfaces and the approximation errors remain very low (limit surfaces are very close from original objects). 
Mean L1, L2 and maximum errors are shown on Table I, they are calculated between the original object and the 
subdivision surface after 4 refinement steps. Table I shows original binary sizes (BS), sizes of these binary files 
compressed with the Zip coder (ZIP) and associated compression rates (ZIP CR). Although the ZIP coder is lossless 
without any quantization, these values can be compared with compressed file sizes (CS) obtained with our compression 
algorithm, which achieves extremely high compression rates (CR=BS/CS).  
 

 
Figure 10: Results of our fitting scheme for different mechanical parts. Initial objects (patch boundaries are marked in green), control 
polyhedrons (sharp edges are marked in red), and limit surfaces.  
 

 
Figure 11: Examples of mesh connectivity of our 3D model database and corresponding letters on Figure 10. 



Table I: Original binary sizes (BS), Zipped binary sizes (ZIP) and associated rate (ZIP CR). Compressed size (CS) with our 
algorithm, associated compression rates (CR) and associated L1, L2 and maximum errors. 

 BS 
(Bytes) 

ZIP 
(Bytes) 

ZIP CR CS 
(bytes) 

CR L1 Error 
(10-3) 

L2 Error 
(10-3) 

Max Error 
(10-3) 

Fig10.a 233 772 59 438 3.93 292 801 0.887 0.012 10.18 
Fig10.b 45324 5420 8.36 287 158 0.664 0.006 7.17 
Fig10.c 98 748 29 680 3.33 183 540 0.985 0.014 5.94 
Fig10.d 156 708 16 849 9.30 192 816 0.765 0.011 7.31 
Fig10.e 298 608 45 539 6.56 208 1436 2.588 0.043 21.66 
Fig10.f 80 784 12 014 6.72 387 209 0.953 0.012 33.09 

 
Table II shows a comparison, for the Fandisk object, with different state of the art algorithms: Alliez and Desbrun 
progressive encoding [8] and the wavelets based algorithms from Khodakovsky et al. [4] and Valette and Prost [5]. Our 
algorithm achieves drastically better compression rates (~800), while keeping a low geometric error. Coders from Alliez 
and Valette are presented in their lossless versions, thus the geometric error is limited to the quantization error QE (a 10 
bits quantization, like ours).  

Table II: Compressed sizes, associated compression rates and L2 errors for several compression algorithms applied to Fandisk. 

 Alliez at al. [8] Valette and 
Prost [5] 

Khodakovsky et 
al. [4] 

Our scheme 

Size (bytes) 14 075 10 603 6 063 292 
CR 17 22 39 801 

L2 Error (10-3) QE QE 0.045 0.012 

 

Results are also particularly suited for our visualization task; indeed, resulting surfaces after subdivision are quite 
smooth and visually pleasant, without discontinuities or noise like those produced by lossy compression schemes like 
wavelet based ones for instance. Particularly, our algorithm, thanks to the segmentation step, preserves sharp features.  

 
7. CONCLUSION 

 
We have presented a new framework for compression and coding of 3D models. Our approach is based on subdivision 
surface approximation and is particularly adapted for mechanical or CAD objects. The approximation algorithm aims at 
optimizing the connectivity and the control points number of the generated subdivision surface, while remaining 
independent of the original mesh connectivity. After a segmentation step, the 3D object is decomposed into surface 
patches of which boundaries are approximated with subdivision curves. Then initial local subdivision control 
polyhedrons are created by linking control points of the boundary control polygons. These edges are created with 
respect to the lines of curvature, to preserve the natural parameterization of the target object. Local subdivision surfaces 
are then iteratively enriched and optimized until the approximation errors become correct. The final whole control 
polyhedron containing triangles, quadrangles, higher order polygons and sharp edges is then created by assembling 
local subdivision control polyhedrons, and encoded using an efficient edge based algorithm followed by an entropic 
coding for the connectivity and a 10 bit quantization for the geometry. Results show quite impressive compression rates 
compared with state of the art algorithms. Thanks to subdivision properties, at the decompression step, the object can be 
displayed at any resolution, according to the terminal capacity for example. Moreover limit surfaces are visually 
pleasant (at least C0 and piecewise C1), without artifacts or cracks, like traditional lossy compression schemes, and 
sharp features of the original models are preserved. Our method is effective for mechanical models since they present 
large constant curvature regions which are particularly adapted for subdivision inversion. On the other hand, our method 
is less suited for natural objects. Concerning perspectives, we plan to improve the connectivity optimization during 
mesh enrichments, by conducting a deeper analysis of the error dispersion. Finding a way to treat natural noisy objects 
is also of interest. 
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