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a b s t r a c t

Minkowski sum is an important operation. It is used in many domains such as: computer-aided
design, robotics, spatial planning, mathematical morphology, and image processing. We propose a novel
algorithm, named theContributingVertices-basedMinkowski Sum (CVMS) algorithm for the computation
of theMinkowski sumof convex polyhedra. The CVMSalgorithmallows to easily obtain all the facets of the
Minkowski sum polyhedron only by examining the contributing vertices—a concept we introduce in this
work, for each input facet. We exploit the concept of contributing vertices to propose the Enhanced and
Simplified Slope Diagram-basedMinkowski Sum (ESSDMS) algorithm, a slope diagram-basedMinkowski
sum algorithm sharing some common points with the approach proposed by Wu et al. [Wu Y, Shah J,
Davidson J. Improvements to algorithms for computing theMinkowski sumof 3-polytopes. Comput Aided
Des. 2003; 35(13): 1181–92]. The ESSDMS algorithm does not embed input polyhedra on the unit sphere
and does not need to perform stereographic projections. Moreover, the use of contributing vertices brings
up more simplifications and improves the overall performance. The implementations for the mentioned
algorithms are straightforward, use exact number types, produce exact results, and are based on CGAL,
the Computational Geometry Algorithms Library. More examples and results of the CVMS algorithm for
several convex polyhedra can be found at http://liris.cnrs.fr/hichem.barki/mksum/CVMS-convex.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Minkowski sum implementation is of particular interest and
used in a variety of domains such as computer-aided design
and manufacturing [2], computer animation and morphing [3],
morphological image analysis [4,5], similaritymeasures for convex
polyhedra [6], penetration depth computation and dynamic
simulation [7], robot motion planning [8], and solid modeling.
The Minkowski sum or addition of two sets A and B in a

vector space was defined by the German mathematician Herman
Minkowski (1864–1909) as a position vector addition of elements
ofA and elements ofB:

A⊕B = {a+ b|a ∈ A, b ∈ B} (1)

where+ denotes the vector addition of two position vectors a and
b coming from the two setsA andB. The Minkowski sum can also
be obtained by the following definition:

A⊕B =
⋃
a∈A

Ba (2)

where ∪ denotes the set union operation and Ba denotes the set
B translated by a vector a. The second definition states that the
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Minkowski sum of two sets A and B is obtained by sweeping all
points of A by B and taking the union of all resulting points. The
sweep aims at positioning or translatingB such that its origin (the
common initial point of all its position vectors) coincideswith each
point of A and to take the union of the resulting sets, as depicted
in Fig. 1.
Our goal is to compute the Minkowski sum polyhedron S =

A ⊕ B where A and B are two convex polyhedra in R3. The
polyhedra A and B are the respective boundary representations
of the sets A and B in R3 (A = ∂A and B = ∂B). It is
clear that A and B are completely defined by their boundaries A
and B. Moreover, the Minkowski sum A ⊕ B is also completely
defined by the polyhedron S = A⊕ B (its corresponding boundary
representation).
A convex polyhedron P in R3 can be seen as the intersection

of a finite number of closed half-spaces P =
⋂
i=1,...,n H

−

i . Where
H−i is a closed half-space bounded by the plane Hi having a normal
vector ui, the half-space H−i is called the negative side of the plane
Hi (see Fig. 2 for an example in 2D). The boundary of a polyhedron
can be partitioned into 2D faces (facets), 1D faces (edges), and 0D
facets (vertices). The supporting plane of a particular facet of a
polyhedron A is the plane where the facet lies. As an example, for
the convex polygon P depicted in Fig. 2(b), the supporting line (the
supporting plane becomes a supporting line in 2D) of the 1D face
(edge) e3 is H3. Further details on support function representation
of convex polyhedra and supporting planes can be found in [9].

http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
http://liris.cnrs.fr/hichem.barki/mksum/CVMS-convex
mailto:hichem.barki@liris.cnrs.fr
mailto:florence.denis@liris.cnrs.fr
mailto:florent.dupont@liris.cnrs.fr
http://dx.doi.org/10.1016/j.cad.2009.03.008


526 H. Barki et al. / Computer-Aided Design 41 (2009) 525–538
Fig. 1. Minkowski sum as a sweep of two sets. (a) Two polygonsA andB. (b)B is positioned on each point ofA. (c) The Minkowski sumA⊕B is the union of the resulting
translations ofB on all points ofA.
Fig. 2. The intersection of closed half-planes. (a) A finite number of closed half-
planesH−1 , . . . ,H

−

5 defined byH1, . . . ,H5 . (b) The boundary of P is partitioned into
1D faces (edges) e1, . . . , e5 and 0D faces (vertices) v1, . . . , v5 .

The rest of this paper is based on the definitions we gave above
and is organized as follows:

• In Section 2, we review existent techniques for the computation
of Minkowski sum of polyhedra.
• In Section 3, we give an overview of our work and introduce
key concepts we use throughout the paper, such as the concept
of contributing vertices, the relation between contributing
vertices and the sweep process, the translated facets, the corner
facets, and the edge facets.
• In Section 4, we present in detail our new algorithm, based on
the concept of contributing vertices, for the computation of the
Minkowski sum of convex polyhedra. We call it Contributing
Vertices-based Minkowski Sum (CVMS) algorithm.
• In Section 5 we explain how the contributing vertices concept
can help improve slope diagram-based methods and present
our Enhanced and Simplified Slope Diagram-based Minkowski
Sum (ESSDMS) algorithm.
• Finally, we present results, performance study, and compar-
isons between our two algorithms and other approaches found
in the literature.

2. Previous work

The large number of applications needing Minkowski sum has
inspired researchers to propose and develop various algorithms.
Themost common approach used for polyhedra is based on convex
hulls. For two convex polyhedra A and B, it performs vector
addition of all points of A and B and computes the convex hull of
the resulting point set giving us the Minkowski sum polyhedron
A ⊕ B. Convex hulls are computed by several algorithms such
as: the Quickhull algorithm [10], the incremental algorithm [11,
12], the gift-wrapping algorithm [13], the divide and conquer
algorithm [14], and Graham’s algorithm [15]. A summary of these
algorithms can be found in [16].
For two non-convex polyhedra A and B, the computation of

the Minkowski sum polyhedron A ⊕ B is done by decomposing
each non-convex polyhedron into convex pieces, computing the
the pairwise Minkowski sums of all possible pairs of convex pieces
from A and B, and performing the union of the pairwiseMinkowski
sums. The computation of the Minkowski sum of a pair of convex
pieces (or polyhedra) is an important step in this approach.
For readers interested in the Minkowski sum of non-convex
polyhedra, we give some references about convex decomposition
and union steps. Convex decomposition aims at decomposing
a non-convex polyhedron into convex pieces. The smaller the
number of pieces, the better the decomposition. The optimal
decomposition of a non-convex polyhedron into convex pieces is
known to be NP-hard. More than twenty years ago, Chazelle [17]
proposed an optimal decomposition algorithm which generates
O(r2) convex pieces in O(nr3) time, where r denotes the number
of reflex edges and n denotes the number of polyhedron facets.
Nevertheless, no practical or robust implementation has been
found in the literature for Chazelle’s optimal algorithm. An
experimental study of convex decomposition strategies can be
found in [18].
The union step is the most time consuming step when

computing the Minkowski sum of non-convex polyhedra. It can
have O(n6) time complexity for non-convex polyhedra, where n is
the number of polyhedra facets [19]. Moreover, there is no robust
implementation for the union computation of convex polyhedra
that handles all degeneracies [20].
While the combinatorial complexity of the convex hull

approach is O(mn) for convex polyhedra with m and n features,
it can have O(m3n3)worst-case combinatorial complexity for non-
convex polyhedra [20,21].
Recently, Hachenberger implemented a data structure in

CGAL [22] based on Nef polyhedra theory [23]. He used this
Nef polyhedra implementation [24,25] for the decomposition
of polyhedra into convex parts and the union computation of
pairwise Minkowski sums [26]. Unfortunately, this approach is
time consuming because it is based on the decomposition of
polyhedra into convex pieces.
Due to non-robustness and expense of the union operation,

researchers tried to bypass it by using other representations or
computing only approximations. Varadhan and Manocha [27] de-
composed the polyhedra into convex pieces, computed the pair-
wise Minkowski sums of convex pieces (by means of convex hull
algorithms), approximated the union of the pairwise Minkowski
sums using an adaptively subdivided voxel grid, computed signed
distance on the grid points and used isosurface extraction from
the distance field [28]. They guarantee that their approximation
has the same topology as the exact Minkowski sum and pro-
vide a two-sided Hausdorff distance bound on the approxima-
tion. Recently, Lien [29] used a point-based representation instead
of the widely used mesh-based representation to compute the
Minkowski sumof polyhedra. He uniformly sampled twopoint sets
from the boundaries of two polyhedra, constructed a point set by
adding all points from the two point sets already generated, and
used three filters (a collision detection, normal, and octree filter)
to discard interior points that are not on the boundary of the sum
polyhedron. He demonstrated that the point-based representation
provides the same functionality as the mesh-based representation
by using it in several applications such as motion planing.
Guibas et al. [30,31] presented a kinetic framework in two

dimensions. An accomplishment of this framework was to define
the operation of convolution on planar tracings in 2D. Basch
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Fig. 3. (a) Two convex polygons A and B. (b) The Minkowski sum A⊕ B depicted as a sweep. (c) The contributing vertex v2,B associated to the face f1,A . The dotted line is the
face that lies on the boundary of A⊕ B. The two other faces (dashed lines) are discarded.
et al. [32] extended the convolution operation to polyhedral
tracings in 3D and used it to generate a superset of the Minkowski
sum. They extracted the exact boundary of the Minkowski sum by
using arrangement computations.
Ghosh [1] proposed a unified computational framework to

compute the Minkowski sum of polygons and polyhedra (in 2D
and 3D domains). The polyhedra are represented in a dual space
called the slope diagram. Computing the intersections between the
two merged or overlaid slope diagrams gives the sum polyhedron.
Although Ghosh stated that slope diagrams can be used for both
convex and non-convex polyhedra, the existent implementations
of slope diagram-based Minkowski sum computation are only
devoted to convex polyhedra.
Some researchers proposed other variants of slope diagram

representation. Bekker and Roerdink [33] used a slightly different
slope diagram representation that works with edges instead
of facets, so their 2D representation of the slope diagram
reduces the problem’s dimension. Wu et al. [34] presented some
improvements to the slope diagram by merging the two diagrams
without an explicit embedding on the unit sphere. They also
avoided the use of stereographic projections (needed in the
original slope diagram algorithm proposed by Ghosh).
An interesting algorithm is that proposed and implemented

by Fogel and Halperin [35]. The authors represented the convex
polyhedra in a dual space they called the Cubical Gaussian Map
(CGM) and implemented their algorithm on the base of the
arrangement package of CGAL. The cubical Gaussian map is a
Gaussian map embedded on a unit cube instead of a unit sphere.
TheMinkowski sumof two convexpolyhedraA andB is obtainedby
computing CGM(A) and CGM(B), the respective cubical Gaussian
maps of A and B, overlaying or merging CGM(A) and CGM(B), and
building the Minkowski sum polyhedron S = A ⊕ B from the
resulting overlay. The overlay process has a time complexity of
O(fS log(fA+fB)), where fA, fB, and fS are the respective facet number
of the polyhedra A, B, and S.

3. Overview of our work

In this work, we are interested in computing the Minkowski
sum of convex polyhedra. We present a novel algorithm based on
the concept of contributing vertices associated to every facet of the
two polyhedrawe areworkingwith, hence its name: Contributing
Vertices-based Minkowski Sum (CVMS) algorithm.

3.1. Introduction to the CVMS algorithm

The CVMS algorithm is inspired from the definition given in
Eq. (2). This equation states that the Minkowski sum setA⊕B is
obtained by sweeping all points ofA byB and taking the union of
all resulting points. Sincewe areworkingwith polyhedra, it is clear
that it is sufficient to only sweep the boundary of A by B and discard
the interior points of A and B in order to have the Minkowski sum
polyhedron S = A⊕B. Thus,we are only interested in the boundary
of the resulting union.
The boundary of A is composed of facets, vertices, and edges.
So, in order to obtain the Minkowski sum polyhedron S, we must
sweep all facets of A by B, sweep all vertices of A by B (or place
B on all vertices of A), and sweep all edges of A by B. Observe that
because theMinkowski sum is commutative, sweeping the vertices
ofAbyB (or positioningBonvertices ofA) is equivalent to sweeping
the facets of B by A. Therefore, in the CVMS algorithm, we need to
sweep all facets of A by B, sweep all facets of B by A, sweep all edges
ofAbyB, and retain only facets that lie on the boundary of theunion
of these sweeps (facets lying on the boundary of the Minkowski
sum polyhedron S).

3.2. From the sweep to the definition of contributing vertices

To give an idea of what is a contributing vertex and how it
relates to the sweep operation, we consider two convex polygons
A and B depicted in Fig. 3(a), their Minkowski sum A ⊕ B is
also shown in Fig. 3(b). We take a 2D example for simplicity
purposes and without loss of generality. Let us consider the face
(edge) f1,A of A and sweep it by B. Sweeping f1,A by B resumes
to parallel-translating B such that its origin passes through all
points of f1,A. During this sweep, all vertices of B (i.e. v1,B, v2,B,
and v3,B) are also moving in lines parallel to the supporting line
of f1,A. The displacement of these vertices produces faces (edges)
having supporting lines parallel to that of f1,A (faces that are
drawn as dashed and dotted lines in Fig. 3(c)). But only the facet
generated by the vertex v2,B (the dotted line in Fig. 3(c)) which
is at maximal distance away from the supporting line of f1,A is
considered because it lies on the boundary of A ⊕ B. The other
produced faces (drawn as dashed lines in Fig. 3(c)) are simply
discarded because they do not lie on the boundary of A ⊕ B. This
particular vertex v2,B which generated this facet of the Minkowski
sum polygon A⊕ B is called the ‘‘contributing vertex’’ associated
to the face f1,A.
For two convex polyhedra A and B, the same logic applies.

So, sweeping a particular facet fi,A of A by B is done by parallel-
translating B such that its origin (the common initial point of all
its position vectors) passes through all points of fi,A. This sweep
implies that all vertices of B are also parallel-translated in the same
manner, they aremoving in planes parallel to the supporting plane
of fi,A and generating facets within supporting planes parallel to
that of fi,A. But only the facet generated by the vertex vk,B of B
which is at maximal distance away from the supporting plane of
fi,A is taken into account because it lies on the boundary of the sum
polyhedron. The other facets generated by the displacement of all
other vertices of B are discarded since they lie in the interior of
the sum polyhedron. This particular vertex vk,B which generated
this facet of the sum polyhedron A⊕ B is called the ‘‘contributing
vertex’’ associated to the facet fi,A.

3.3. Computation of the Minkowski sum polyhedron from contribut-
ing vertices

To construct theMinkowski sum polyhedron, wemust perform
three sweep steps mentioned above. The first step is to sweep
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all facets of A by B. From what precedes, it is clear that the
computation of the contributing vertices associated to the facets
of A is a mean to obtain the facets of S = A ⊕ B that result
from sweeping the facets of A by B, these facets of S are called
‘‘translated facets’’.
The second step is to sweep all the facets of B by A. Therefore,

computing the contributing vertices associated to the facets of B is
a mean to obtain the facets of S = A⊕ B that result from sweeping
the facets of B by A. These facets are denoted ‘‘corner facets’’ of S.
The last step is to sweep the edges of A by B. For a particular

edge ej,A of A, this operation implies the construction of several
facets that are the Minkowski sum of the edge ej,A and all the
edges of B. But not all these facets will lie necessarily on the
boundary of S. Therefore, some of these facets are discarded. To
determine which of these facets are retained, we use two criteria:
a visibility criterion and normal orientation criterion as explained
in Section 4.3. The retained facets are denoted ‘‘edge facets’’.
Note that only edges of A or B incident to facets having distinct
contributing vertices will be considered in this step. A proof of this
property is given in Section 4.
These three steps of sweep enable us to construct the

Minkowski sum polyhedron S. We show in Section 4 how to
compute the contributing vertices associated to the facets of A and
B. This resumes to the computation of distances from vertices to
supporting planes. We also show that the sum polyhedron S is
composed of three (alreadymentioned) types of facets: ‘‘translated
facets’’ obtained from the facets of A and their associated
contributing vertices, ‘‘corner facets’’ obtained from the facets
of B and their associated contributing vertices (commutativity
property), and ‘‘edge facets’’ obtained from the Minkowski sum of
two non-parallel edges one from A and the other from B, having
incident facets with no common contributing vertices. An outline
of the CVMS algorithm is presented in algorithm 1. Further details
can be found in Section 4.

Algorithm 1 An outline of the CVMS algorithm for convex
polyhedra
Require: two convex polyhedra A and B
Ensure: the Minkowski sum polyhedron S = A⊕ B
1: for each facet fi,A of A do
2: compute its associated contributing vertices (w.r.t. B)
3: deduce the translated facet corresponding to it
4: end for
5: for each facet fi,B of B do
6: compute its associated contributing vertices (w.r.t. A)
7: deduce the corner facet corresponding to it
8: end for
9: for each edge ej,A of A incident to facets having distinct
contributing vertices do

10: for each edge ek,B of B incident to facets having distinct
contributing vertices do

11: if ej,A and ek,B satisfy both visibility and normal orientation
criteria then

12: construct the edge facet ej,A ⊕ ek,B
13: end if
14: end for
15: end for

3.4. Contributing vertices applied to slope diagram-based algorithms

We also show how the contributing vertices concept benefits
slope diagram algorithms. So, we present the Enhanced and
Simplified Slope Diagram-based Minkowski sum (ESSDMS)
algorithm, which is somewhat similar to the improved slope
diagram algorithm (improved 3D-MSSD algorithm) presented in
the work of Wu et al. [34]. This similarity is due to the fact that
we do not embed input polyhedra on the unit sphere and do not
use stereographic projections. The merging of slope diagrams and
the handling of the intersections are made possible by simple
geometric operations on the outer normal orientation information
extracted from the polyhedra. The contributing vertices concept
allows to further simplify the algorithm and to gain considerable
performance by eliminating point in polygon queries and reducing
edge arcs intersection queries. The computation of the contributing
vertices does not introduce additional performance overhead since
they are deduced directly from the intersection configuration.
Details on our ESSDMS algorithm can be found in Section 5.

4. The CVMS algorithm for convex polyhedra

In the rest of this paper, we will not distinguish between a
vector v and a point v. We will talk about a vertex v and simply
refer, in the equations, to the vector pointing from the coordinate
origin o to the point v as v. The distinction between a point and the
corresponding vector is clear from the context.
First, let us give some notation and definitions required for the

understanding of the following notions.

4.1. Notation

We consider two convex, closed and two-manifold polyhedra A
and B.A is composed of fA facets, eA edges, and vA vertices. Similarly,
B is composed of fB facets, eB edges, and vB vertices. TheMinkowski
sum of A and B is denoted S.

4.2. Prerequisites and definitions

First, let us define the concept of contributing vertices since it
is needed in the rest of definitions.

Definition 1. The contributing vertex vk,B of a particular facet fi,A
with an outer normal ni,A is the vertex of B which is at maximal
distance away from the supporting plane of fi,A. Formally, the
contributing vertex vk,B of a particular facet fi,A satisfies:〈
vk,B, ni,A

〉
= max

R

〈
vl,B, ni,A

〉
∀l = 1, 2, . . . , vB (3)

where 〈., .〉 denotes the scalar product. An illustration of the
contributing vertex concept in 2D is presented in Fig. 4.
The contributing vertex vk,A of a particular facet fi,B with an

outer normal ni,B is defined in the same manner by putting A in
place of B and B in place of A in Eq. (3).
For some facets of A and B, we can find many contributing

vertices due to the fact that these contributing vertices are at the
same (maximal) distance away from the supporting planes of the
considered facets. This case is treated normally and does not cause
any degenerate behavior.
Since the boundary of polyhedra is composed of facets, edges,

and vertices, sweeping the boundary of A by B is equivalent to
sweeping the facets of A by B, sweeping the edges of A by B, and
sweeping the vertices of A by B (or positioning B on vertices of A).
Remember that it is sufficient to only sweep the boundary of A by
B and discard the interior points of A and B.

(1) Sweeping all the facets of A by B: when a particular facet fi,A is
swept by B (see Fig. 5(a)), this results in the facet of the sum
polyhedron S having a supporting plane parallel to that of fi,A
since it is generated by the contributing vertex associated to
fi,A (i.e. the vertex vk,B which is at maximal distance away from
the supporting plane of fi,A). So, the sweeping of all fA facets
of A results in the fA translated facets with supporting planes
parallel to those of the facets of A (see Fig. 6(d)).
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Fig. 4. Illustration of the contributing vertices concept for the facets of a convex polygon A to be added to the convex polygon B.
(2) Positioning B on all vertices of A: this means positioning B so
that its origin coincides with each vertex vk,A. It is clear that
only some facets of B will lie on the boundary of the sum
polyhedron S when B is positioned on a particular vertex of
A. The remaining facets of B are discarded because they lie
inside S. To find the facets of B that are part of S, we exploit
the commutativity property of the Minkowski sum operation,
i.e. A⊕ B = B⊕ A. If we sweep all facets of B by A, we observe
that the generated facets are the same as the facets we want
to find by positioning B on each vertex vk,A. So, positioning B
on all vA vertices results in the fB corner facets with supporting
planes parallel to those of the facets of B (see Fig. 6(e)).

(3) Sweeping all edges of A by B: when a particular edge ej,A is
swept by B, i.e. the origin of B is translated so that it passes
through all points of ej,A (see Fig. 5(b)). This produces facets
of S that are the result of the Minkowski sum of the edge ej,A
and all edges of B. But not all these generated facets lie on the
boundary of the sumpolyhedron S. So, S is composed of atmost
eAeB edge facets (see Fig. 6(f)). The determination of edge facets
is explained in Section 4.3.

Proposition 1. The Minkowski sum polyhedron S of two convex,
closed, and two-manifold polyhedra A and B is composed exactly of
three types of facets:

(1) fA facets with supporting planes parallel to those of the facets of
A, these facets are named the ‘‘translated facets’’ of S;

(2) fB facets with supporting planes parallel to those of the facets of
B, these facets are named the ‘‘corner facets’’ of S;

(3) At most eAeB facets that result from the Minkowski sum of some
pairs of non-parallel edges of A and B, these facets are named the
‘‘edge facets’’ of S.

Proof. Let us sweep all fA facets of A by B. For a particular facet
fi,A, i = 1, . . . , fA we keep only the facet that is the result of
translating fi,A according to its contributing vertex or vertices. So,
there is a one-to-one mapping between the facets of A and the
facets of Swith supporting planes parallel to those of the facets of A
and thatwe called translated facets. Therefore, the sumpolyhedron
S contains fA translated facets. In a similar manner, if we sweep all
fB facets of B by A, we will obtain exactly fB corner facets, i.e. facets
of S with supporting planes parallel to those of the facets of B.
Finally, it remains to sweep the edges of A by B. The result of this
sweep are facets that are the Minkowski sum of the edges of A and
the edges of B. But sincewe areworkingwith polyhedra (boundary
representation), we will not keep all these eAeB facets, only those
lying on the boundary of the Minkowski sum polyhedron S are
retained. Therefore, the Minkowski sum polyhedron is composed
of at most eAeB edge facets. �
From the definitions of translated and corner facets, it is clear

that the translated facets of A ⊕ B are corner facets of B ⊕ A and
vice versa. Furthermore, since the Minkowski sum of two edges,
one coming from A and the other from B is commutative: eA ⊕
eB = eB ⊕ eA, it follows that the result of the CVMS algorithm is
commutative as well as the Minkowski sum operation.
As said previously, some facets of A and B can be associated to

many contributing vertices due to the fact that these contributing
vertices are at the same (maximal) distance away from the
supporting planes of the considered facets. If a facet of A has two
contributing vertices, the corresponding translated facet is the
result of a planar Minkowski sum of that facet and the edge of B
incident to the two contributing vertices belonging to a supporting
line parallel to the supporting plane of the considered facet of
A. If a facet of A has more than two contributing vertices, the
corresponding translated facet is the result of a planar Minkowski
sum of that facet and the facet of B incident to the contributing
vertices and belonging to a supporting plane parallel to that of the
considered facet of A. The same rules apply to facets of B having
two or more contributing vertices.
Here are two important properties used by the CVMSalgorithm:

Property 1. If two adjacent facets fi,A and fj,A have at least one
common contributing vertex, the edge ek,A shared by these adjacent
facets will never contribute in any edge facets construction and can be
simply ignored. This property is also applicable to any two adjacent
facets fm,B and fn,B having at least a common contributing vertex.

Proof. Let us consider any edge ek,A of A incident to two facets
fi,A and fj,A having at least one common contributing vertex. The
facets fi,A and fj,A share the vertices vm,A and vn,A incident to the
edge ek,A. Since fi,A and fj,A have a common contributing vertex
that we denote vp,B, constructing the translated facets fi,S and fj,S
corresponding to fi,A and fj,A respectively involves the translation of
fi,A and fj,A by a vector starting from coordinate origin o and ending
at vp,B. This translation implies that the two vertices vm,A and vn,A
incident to the edge ek,A and shared by the facets fi,A and fj,A are also
translated to the positions vm,A+vp,B and vn,A+vp,B. Therefore, the
edge ek,A will be incident to fi,S and fj,S and will never contribute in
any edge facet construction.



530 H. Barki et al. / Computer-Aided Design 41 (2009) 525–538
Fig. 5. (a) The creation of a translated facet corresponding to a particular facet fi,A and its associated contributing vertex (the corner facets are determined in the same
manner). (b) Sweeping an edge ej,A by B and creation of an edge facet ej,A ⊕ el,B .
Fig. 6. (a) Polyhedron A. (b) Polyhedron B. (c) Sum polyhedron S. (d) Translated facets. (e) Corner facets. (f) Edge facets.
In contrast, if another edge ek,A is incident to facets fi,A and
fj,A having distinct common contributing vertices vp,B and vq,B
respectively, it is clear that the construction of the translated facets
fi,S and fj,S corresponding to fi,A and fj,A involves vp,B and vq,B
respectively. Therefore, fi,A is translated by a vector starting from
coordinate origin o and ending at vp,B and fj,A is translated by a
vector starting from o and ending at vq,B. Thus, the vertices vm,A and
vn,A incident to the edge ek,A are translated to the positions vm,A +
vp,B and vn,A+vp,B when computing fi,S and to the positions vm,A+
vq,B and vn,A + vq,B when computing fj,S . Therefore, the translated
facets fi,S and fj,S are not incident to the same edge of polyhedron S
(they are disjoint) and the edge ek,A creates one ormore edge facets.
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Fig. 7. (a) Some edges e1,A , e2,A , and e3,A of A. (b) Contributing vertices associated
to f1,A , f2,A , and f3,A . (c) Edge facets created by e2,A , and e3,A . The edge e1,A will not
produce edge facets since incident facets f1,A and f2,A have the same contributing
vertex.

The proof of Property 1 can be done in a similar manner for any
edge ek,B of B. �

In Fig. 7, a simple example illustrates Property 1. The edge e1,A
in Fig. 7(a) is incident to the facets f1,A and f2,A. The vertices v1,A
and v2,A are those vertices incident to e1,A. The facets f1,A and f2,A
have a common contributing vertex v1,B (see Fig. 7(b)). Therefore,
the translated facets f1,S and f2,S corresponding to f1,A and f2,A are
incident to the same edge of S delimited by two vertices with
positions v1,A + v1,B and v2,A + v1,B (see Fig. 7(c)). In contrast, the
edges e2,A and e3,A in Fig. 7(a) are incident to facets having distinct
contributing vertices, so they contribute to the edge facets creation
(Fig. 7(c)).

Property 2. A facet of each polyhedron A or B contributes only once
in the Minkowski sum polyhedron S; this has been proved in earlier
works [3,1,33]. This property allows to reduce progressively the
number of facets considered in the subsequent steps of the algorithm.
For example, if a facet contributed to the creation of a translation facet
of S, it can be omitted from the corner facets determination step.

The two mentioned properties enable a significant gain of
performance by reducing the number of facets and edges to be
considered when computing translated, corner, and edge facets.

4.3. Steps of the CVMS algorithm

The CVMS algorithm begins by determining the translated
and corner facets of S by computing the contributing vertices
associated to all facets of A and B respectively. Then, it determines
edge facets. Property 1 is used in the translated and corner facets
determination steps and Property 2 is used in the edge facet
determination step. Given two convex and closed two-manifold
polyhedra A and B, the CVMS algorithm performs as follows:
(1) Translated facet determination: For each facet fi,A:
• Find its associated contributing vertices vk,B (see Eq. (3)).
• If there are more than two contributing vertices, the facet fj,B
incident to the contributing vertices associated to fi,A lies on
a supporting plane parallel to that of fi,A. The corresponding
translated facet is the result of the planar Minkowski sum of
fi,A and fj,B (fi,A ⊕ fj,B). The translated facet has the same outer
normal orientation as fi,A and fj,B. The facet fj,B will be ignored in
the corner facet determination step since it contributes once.
• If there are exactly two contributing vertices, the edge ej,B
incident to the two contributing vertices associated to fi,A lies
on a supporting line parallel to the supporting plane of fi,A. The
resulting translated facet is computed by a planar Minkowski
sum of fi,A and ej,B (fi,A ⊕ ej,B) and has the same outer normal
orientation as the facet fi,A.
• If there is only one contributing vertex vk,B, the corresponding
translated facet results from translating the facet fi,A by a
position vector pointing from coordinate origin o to vk,B and has
the same outer normal orientation as the facet fi,A.

(2) Corner facet determination: For each facet fi,B that have not
yet contributed in the previous step:

• Find its associated contributing vertices vk,A. Note that there
is no case where a facet fi,B has more than two contributing
vertices since such a facet has contributed once in the translated
facet determination step.
• If there are exactly two contributing vertices, the edge ej,A
incident to the two contributing vertices associated to fi,B lies
on a supporting line parallel to the supporting plane of fi,B.
The resulting corner facet is computed by a planar Minkowski
sum of fi,B and ej,A (fi,B ⊕ ej,A) and has the same outer normal
orientation as the facet fi,B.
• If there is only one contributing vertex vk,A, the corresponding
corner facet results from translating the facet fi,B by a position
vector pointing from coordinate origin o to vk,A and has the
same outer normal orientation as the facet fi,B.

(3) Edge facet determination: We use two criteria for this
purpose: the visibility of facets of B with respect to a visibility
direction (defined by an edge ei,A; see Fig. 8(a)) allows to find
horizon edges of B. Horizon edges are edges that separate invisible
facets from other facets B with respect to the considered visibility
direction. By other facets of B, wemean facets that are either visible
or having supporting planes parallel to the visibility direction ei,A
(see Fig. 8(b)). All these horizon edges are candidates to construct
an edge facet of S, but only those verifying the second criterion of
normal orientation will do (see Fig. 8(c)). Thus, for each edge ei,A
incident to facets having distinct contributing vertices:

• Determine the visibility of all facets ofB. A facet fj,Bwith anouter
normal nj,B is invisiblewith respect to the visibility direction ei,A
if and only if:〈
ei,A, nj,B

〉
> 0. (4)

The facets of B that do not satisfy the above inequality
are either visible or lie on supporting planes parallel to
the visibility direction. The horizon edges are frontier edges
between invisible facets and other facets of B with respect to
the visibility direction ei,A (see Fig. 8(b)).
• For each horizon edge ek,B incident to facets having distinct
contributing vertices:
Add an edge facet ei,A ⊕ ek,B to the sum polyhedron S if its

outer normal orientation ni,k = ei,A × ek,B lies between the two
outer normal orientations n1,A and n2,A of the facets f1,A and f2,A
incident to the edge ei,A (n2,A follows n1,A in a counter-clockwise
order; see Fig. 8(c)). Therefore, an edge facet ei,A⊕ ek,B is added
to the sum polyhedron S if and only if:〈
n1,A × ni,k, ei,A

〉
< 0 and

〈
ni,k × n2,A, ei,A

〉
< 0. (5)



532 H. Barki et al. / Computer-Aided Design 41 (2009) 525–538
Fig. 8. (a) An edge ei,A as a visibility direction. (b) Visibility computation of all facets of B w.r.t. ei,A and horizon edges determination. (c) Only horizon edges e4,B , e5,B , and
e6,B will produce edge facets ei,A ⊕ e4,B , ei,A ⊕ e5,B , and ei,A ⊕ e6,B .
At this point, we have constructed the sum polyhedron S. We
note that we have not talked about the origin of the polyhedron B,
but it is easy to consider an origin point c that is different from the
coordinate origin o by translating the sumpolyhedron S by a vector
beginning from c and ending at o.

5. Slope diagram-based Minkowski sum

In order to show how the concept of contributing vertices is a
benefit to the construction of slope diagrams, we propose a novel
algorithm named the Enhanced and Simplified Slope Diagram-
based Minkowski Sum (ESSDMS) algorithm. We first describe
the principles behind the original slope diagram. After that, we
describe the ESSDMS algorithm and indicate the role played by
contributing vertices in the improvement of performance (by
eliminating unnecessary processing) and the simplification of
some steps.

5.1. Original slope diagram-based Minkowski sum algorithm

Slope diagrams were proposed for the first time by Ghosh [1].
The principle is to represent two convex and closed two-manifold
polyhedra A and B in a dual space such that the orientation of
the normals of the facets, edges, and vertices of the two operands
determine the Minkowski sum polyhedron S. The dual space used
by Ghosh is a unit sphere. For a convex polyhedron A, the slope
diagram representation SD(A) is obtained as follows:
• Each facet fi,A with an outer unit normal ni,A is represented by a
spherical point corresponding to the end point of the outer unit
normal ni,A. This point is referred to as a facet point.
• Each edge ej,A is represented on the unit sphere by the arc
of the great circle joining the two facet points representing
the two facets of A incident to the edge ej,A. The spherical arc
representing the edge ej,A is called an edge arc. By ‘‘the arc
of the great circle’’ we mean the shorter one among the two
arcs joining the two facet points. The reason for choosing the
shorter arc is that for convex polyhedra, the angle between two
neighboring facets is always less than 180◦.
• Each vertex vk,A is represented by a region on the unit sphere (a
spherical polygon) bounded by the facet points corresponding
to the facets of A incident to the vertex vk,A and by the edge arcs
corresponding to the edges of A incident to vk,A. We call this
spherical polygon a vertex polygon or a vertex region.

The slope diagram of polyhedron B is obtained by following the
same steps used for polyhedron A. Fig. 9 shows a slope diagram
representation of a convex and closed polyhedron.
The Minkowski sum polyhedron A ⊕ B is obtained by merging
the two slope diagrams SD(A) and SD(B). The merging process
aims at deducing the sum facets following the intersections or
coincidences of components of the two slope diagrams (facet
points, edge arcs, and vertex regions). Four intersection cases are
detected:

• Intersection of two facet points: This occurs when a facet
point of SD(A) is coincident with a facet point of SD(B). The
corresponding Minkowski sum facet is the result of a planar
Minkowski sum of the two facets of A and B represented by the
two coincident facet points.
• Intersection of a facet point with an edge arc: This occurs
when a facet point of one of the slope diagrams lies on an edge
arc of the other slope diagram. The corresponding Minkowski
sum facet is the result of a planar Minkowski sum of the facet
represented by the facet point and the edge represented by the
edge arc.
• Intersection of two edge arcs: This occurs when two non-
parallel edge arcs one from SD(A) and the other from SD(B)have
a common intersection point. The corresponding Minkowski
sum facet is the result of a planar Minkowski sum of the two
non-parallel edges represented by these two edge arcs. Two
edges arcs are non-parallel if they do not lie on the same great
circle of the unit sphere.
• Intersection of a facet point with a vertex region: This
occurs when a facet point of one of the two slope diagrams
lies inside a vertex region of the second slope diagram. The
corresponding Minkowski sum facet is a translated version of
the facet represented by the facet point (the sum facet has the
same shape as this facet), the translation vector is defined by
the coordinates of the vertex represented by the vertex region.

In order to merge the two slope diagrams embedded on the
unit sphere, Ghosh transformed them into a 2D planar form by
means of stereographic projection. The stereographic projection is
a projection of a sphere from one of the points N or N ′ onto the
plane σ tangent to the sphere in the diametrically opposite point
N ′ or N (see Fig. 10).
Although Ghosh formulated slope diagram for the computation

of the Minkowski sum of convex and non-convex polyhedra, the
existing implementations are only restricted to convex polyhedra.
Furthermore, theweakness of the slope diagram-basedMinkowski
sum algorithms comes from the embedding on the unit sphere
and from the stereographic projection used to merge two slope
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Fig. 9. A convex polyhedron and its slope diagram representation (revised from [1]).
diagrams. These two steps are relatively complex, require a non-
negligible computation time, and lead to precision problems when
working with built-in number types such as float or double.
To overcome these two problems, we propose the ESSDMS

algorithm which is somewhat similar to the improved slope
diagram algorithm presented by Wu et al. [34] and detailed in
Section 5.2.

5.2. The ESSDMS algorithm

The ESSDMS algorithm we propose here comes with simplifi-
cations and enhancements to the algorithm of Wu et al. It uses
the concept of contributing vertices to gain additional performance
and simplify some steps of the algorithm. Its implementation is
based on exact number types instead of built-in number types to
avoid using position thresholds. So the ESSDMS algorithm is simi-
lar to that of Wu et al. in the following points:
• No embedding of the slope diagram representation: The
slope diagram principle is exploited without explicitly embed-
ding objects in the unit sphere. When information about facet
points, edge arcs, or vertex regions is needed, it is directly ex-
tracted from the polyhedra we are working with.
• No stereographic projection: As there is no explicit embedding
or representation of slope diagrams, there is nothing to project.
The intersections between slope diagram components are
detected by the use of geometric operations obtained directly
from polyhedra.

In contrast, the ESSDMS algorithm differs from that of Wu et al.
in the following points:
• Use of the contributing vertices concept: This enhancement
reduces the number of edges used in the determination of
the intersections between edge arcs by considering only those
having incident facets associated to common contributing
vertices. Moreover, it allows to avoid the point-in-polygon
queries needed when testing if a facet point lies inside a vertex
region (intersection of a facet point and a vertex region). If we
perform all other intersection queries (intersection of two facet
points, intersection of a facet point and an edge arc, and the
intersection of two edge arcs), it is clear that the remaining
facets correspond to facet points lying necessarily inside vertex
regions. So the corresponding facets in the Minkowski sum
polyhedron are translated copies of these facets. By analogy
with the CVMS algorithm, we can conclude that each of these
facets has only one contributing vertex. The creation of the sum
facets corresponding to the remaining facets is done by using
their contributing vertices. The computation of the contributing
vertices does not introduce additional performance overhead
(compared to the cost of detecting intersections) since they are
deduced directly from the intersection configuration.
Fig. 10. Stereographic projection used to merge two slope diagrams (revised
from [1]).

• No round-off errors: This is an implementation issue, by using
exact number types (such as those provided byGMP (GNUMulti
Precision) library [36]), we ensure that computations are done
exactly and intersections are computed correctly. This avoids
the use of position tolerance values or thresholds when testing
coincidences of geometric features.

Given two convex, closed and two-manifold polyhedra A and B,
the four intersection cases are handled as in the following:

• Intersection of two facet points: Two facet points are
coincident if the two outer normals a and b of the corresponding
facets fi,A and fj,B of A and B respectively have the same
orientation (see Fig. 11(a)); this is the case when a and b satisfy:

a× b = 0 and 〈a, b〉 > 0. (6)

The first part of Eq. (6) (the cross product) checks if a and b are
on the same supporting line (since they have the same origin
point, they have the same supporting line if they are parallel).
The second part of Eq. (6) (the dot product) checks if a and
b have the same orientation since they can be on the same
supporting line but with opposite orientations.
The corresponding Minkowski sum facet fS for this case is the
result of a planar Minkowski sum of fi,A and fj,B:

fS = fi,A ⊕ fj,B. (7)

Since the facets fi,A and fj,B have parallel supporting planes, the
contributing vertices associated to the facet fi,A are the vertices
of fj,B and the contributing vertices associated to the facet fj,B
are the vertices of fi,A.
• Intersection of a facet point with an edge arc: A facet point f
corresponding to a facet of one of the two slope diagrams lies on
an edge arc st of the other slope diagram (s and t are facet points
corresponding to the facets incident to the edge represented by
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Fig. 11. Intersections in slope diagrams. (a) Intersection of two facet points. (b) Intersection of a facet point and an edge arc. (c) Intersection of two edge arcs. (d) Intersection
of a facet point and a vertex region.
the edge arc st) if it lies on the great circle passing through facet
points s and t and if f lies on the shorter arc joining s and t (see
Fig. 11(b)). These two conditions are equivalent to:

f × n = 0 where n = s× t (8)
〈s× f , n〉 > 0 and 〈f × t, n〉 > 0. (9)

Eq. (8) checks if the facet point f lies in the great circle passing
through s and t , this is the case when f is perpendicular to the
normal n of the great circle. Eq. (9) checks if the facet point f lies
on the shorter arc of the great circle joining s and t .
The corresponding Minkowski sum facet fS for this configura-
tion is the result of a planar Minkowski sum of the facet repre-
sented by the facet point f and the edge represented by the edge
arc st . For example, if the facet point f corresponds to a facet fi,A
of A and the edge arc on which f lies corresponds to an edge ej,B
of B, the Minkowski sum facet fS of S is given by:

fS = fi,A ⊕ ej,B. (10)

In this case, the contributing vertices associated to the facet
fi,A represented by the spherical point f are the two vertices
incident to the edge ej,B represented by the edge arc st .
By commutativity, if the facet point f corresponds to a facet fi,B
and the edge arc on which f lies corresponds to an edge ej,A, the
Minkowski sum facet fS is given by Eq. (11) and the contributing
vertices associated to the facet fi,B are the two vertices incident
to the edge ej,A.

fS = fi,B ⊕ ej,A. (11)

• Intersection of two edge arcs: Before trying to determine if
two non-parallel edge arcs st and s′t ′ representing two edges
ei,A and ej,B of A and B have a common intersection point, we
must check if the contributing vertices associated to the facets
incident to ei,A have distinct contributing vertices. If this is not
the case, we conclude that the corresponding edge arc st will
not intersect any edge arc s′t ′. Therefore, it will no longer be
considered in the subsequent edge arc intersection queries. In a
similar manner, we must also check the contributing vertices
associated to the facets incident to ej,B. If there is at least
one common contributing vertex, the edge arc s′t ′ will also be
discarded from the rest of the iterations.
If edge arcs st and s′t ′ pass the previous step, we continue by
checking if one of the two spherical points resulting from the
intersection of the two great circles supporting st and s′t ′ lies
on st and s′t ′ at the same time (see Fig. 11(c)). Suppose n is the
normal of the circle containing st , i.e. n = s×t and n′ the normal
vector of the great circle containing s′t ′, i.e. n′ = s′× t ′. The two
spherical points x and x′ resulting from the intersection of the
two great circles are obtained by the cross products x = n× n′
and x′ = n′×n (see Fig. 11(c)). To check that x (or x′) lies on the
edge arcs st and s′t ′, we can consider it as a facet point and use
Eqs. (8) and (9) derived for the intersection of a facet point and
an edge arc.
The corresponding Minkowski sum facet fS for this configura-
tion is the result of a planar Minkowski sum of two edges ei,A
and ej,B represented by the two edge arcs st and s′t ′:

fS = ei,A ⊕ ej,B. (12)

• Intersection of a facet point with a vertex region: From
Fig. 11(d), it seems that checking if a facet point f of one of
the two slope diagrams lies within the interior of a vertex
region (gray-shaded in Fig. 11(d)) of the other slope diagram
can be done by algorithms used to test if a point lies within
a polygon or not (such as ray-crossing for example). In our
algorithm,wewill bypass the point-in-polygonqueries by using
some properties of the CVMS algorithm. The CVMS algorithm
states that for convex polyhedra, a facet contributes only once
in the Minkowski sum polyhedron construction. Thus, after
enumerating the first three kinds of intersections (two facet
points, a facet point and an edge arc, and two edge arcs), it
is clear that the remaining facets of A and B will necessarily
lie within vertex regions (avoiding point in polygon queries).
The vertex v corresponding to the vertex region in which lies a
particular facet point f coincides with the contributing vertex
associated to that facet. So, all we need to do is to find the
contributing vertex corresponding to the facet represented by
the facet point f (see Eq. (3)).
The corresponding Minkowski sum facet fS is obtained by
translating the facet represented by the facet point f by a
position vector pointing from the coordinate origin and ending
at the corresponding contributing vertex.

6. Implementation and performance

In this section, we describe the implementations of the CVMS
algorithm, the ESSDMS algorithm, and the Convex Hull-based
Minkowski Sum (CHMS) algorithm. After that, we compare the
performance of these approaches with other methods found in the
literature and present examples of Minkowski sum polyhedra we
computed.

6.1. Implementation

The CVMS algorithm has been implemented using C++ and
CGAL. We used the same environment for the implementation of
the ESSDMS and the CHMS algorithms. The convex polyhedra are
handled by the CGAL Polyhedron_3 data structure.
The CHMS algorithm is implemented by using the CGAL

function convex_hull_3 for the computation of convex hulls
in 3D. This function is an implementation of the Quickhull
algorithm [10].
For the computation of the planar Minkowski sums involved

in the CVMS and the ESSDMS algorithms, we used the function
minkowski_sum_2 provided in the 2D Minkowski sum package
of CGAL. This function implements the convolution operation [30].
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As stated previously, we guarantee the exactness of the ob-
tained results by using exact number types. For our implementa-
tion, we used the exact number types provided by the GNU Multi
Precision (GMP) library [36] under CGAL. By using exact num-
ber types, we penalize run-time performance. In fact, exact num-
ber types are very slow compared to the built-in floating point
number types. To overcome this problem, we used the lazy kernel
adapter [37] which speeds up exact computations.
We also re-implemented the improved 3D-MSSD algorithm of

Wuet al. using the same components of CGAL. Our implementation
of the improved 3D-MSSD algorithm guarantees exact results
because it uses exact number types, so it does not rely on position
thresholds as done in the work of Wu et al.

6.2. Complexity study

In the case of the CVMS algorithm, finding the contributing
vertices for the fA facets of A takes O(fAvB) time. Similarly, finding
the contributing vertices for the fB facets of B takes at most O(fBvA)
time. The determination of translated facets takes O(fA) time
since it is done directly by examining the number of contributing
vertices associated to each facet. In the samemanner, constructing
corner facets takes at most O(fB) time. For edge facets, it takes
at most f (eAeB) time to find them. By adding times of all steps,
we conclude that the CVMS algorithm has a worst-case time
complexity of O(fAvB + fBvA + fA + fB + eAeB).
For the ESSDMS algorithm, the computation of the intersections

of two facet points requires O(fAfB) time, the computation of
the intersections of facet points and edge arcs requires O(fAeB +
fBeA) time, and the computation of the intersection of two edge
arcs requires at most O(eAeB) time. Since the computation of the
intersection of a facet point and a vertex region reduces to finding
the contributing vertices corresponding to the remaining facet
points (that have not yet contributed into the sum), the complexity
of finding such intersections is at most O(fAvB+ fBvA). By summing
all these times, we conclude that the ESSDMS algorithm has a
worst-case time complexity of O(fAfB+ fAeB+ fBeA+ eAeB+ fAvB+
fBvA).
For the Convex Hull-based Minkowski Sum (CHMS) algorithm

we implemented, we performed vector addition of all points of
A and all points of B in order to build a point cloud C . Then, we
computed the convex hull of the point cloud C using the Quickhull
algorithm. The first step takes O(vAvB) time and the second has
a worst-case complexity of O((fA + fB)2) [10]. Thus, the CHMS
algorithm has aworst-case time complexity ofO((fA+ fB)2+vAvB).

6.3. Performance benchmark

For our benchmark,we computed theMinkowski sumof several
polyhedra using the CVMS algorithm, the ESSDMS algorithm,
the CHMS algorithm, and the improved 3D-MSSD algorithm we
re-implemented.
We also compared the above mentioned algorithms with

three other algorithms. The first one is based on Nef polyhedra
embedded on the sphere and implemented by Hachenberger [24],
the second one is a method based on linear programming
implemented by Weibel [38] (following the work of Fukuda [39]),
and the third one is the Cubical Gaussian Map-based (CGM-based)
algorithm of Fogel and Halperin [35].
We shall note that the method based on Nef polyhedra is more

powerful than necessary for the Minkowski sum computation
since it aims at overlaying two arbitrary Nef polyhedra embedded
on the sphere (with lower-dimensional features, unbounded
or bounded boundaries, etc.). A second remark concerns the
implementation of Weibel which is intended for the computation
of polytopes (convex polyhedra in Rn) in an arbitrary dimension,
so it is not specifically optimized for convex polyhedra in R3.
Fig. 12. Evolution of the running time of the algorithmsmentioned in Table 1 with
respect to the sum of the number of facets of the operands. This figure shows that
when increasing the number of facets, the CVMS and the ESSDMS algorithms are
largely preferred in comparison to other algorithms.

The experiments where done on a 2 GB RAM, 2.2 GHz Intel
Core 2 Duo personal computer. We used a cube and a sphere with
varying facet number as input polyhedra. A comparison between
running times is given in Table 1.
Fig. 12 shows the ratio of the running time for the algorithms

mentioned in Table 1 to the sum of the number of facets of several
polyhedra (the sum of the number of facets of A and B).
The CGM-based algorithm of Fogel and Halperin proceeds in

two steps: first it computes the cubical Gaussian maps of the
polyhedra A and B, then it overlays the computed CGMs in order
to obtain the result. In Table 1, the ninth column reports the
running time of the overlay step and the tenth column reports the
running time of the whole CGM-based algorithm (the construction
of the cubical Gaussian maps plus their overlay). In order to
have a fair comparison of our CVMS algorithm, the CGM-based
algorithm of Fogel and Halperin, and the other algorithms, we
must consider the running times reported in the tenth (the last)
column as the running time of the CGM-based algorithm since the
overlay process alone is not sufficient for the computation of the
Minkowski sum without the construction of the cubical Gaussian
maps.
The running time reported in Table 1 show that our CVMS

algorithm performs better than all other algorithms. Specifically,
the CVMS algorithm is more efficient than the ESSDMS algorithm.
If we eliminate the common terms O(fAvB + fBvA + eAeB) in the
time complexities of the CVMS and the ESSDMS algorithms, it
is clear that O(fA + fB) (the remaining term in the CVMS time
complexity) is significantly inferior to O(fAfB + fAeB + fBeA) (the
remaining term in the ESSDMS time complexity). This proves that
the CVMS algorithm performs better than the ESSDMS algorithm
and consolidates experimental results. Table 1 shows also that our
CVMS and ESSDMS algorithms are much more efficient than the
CGM-based algorithm of Fogel and Halperin; the computation of
the cubical Gaussian maps in their algorithm is the most time
consuming step when compared to the overlay one (especially for
polyhedra with high complexity).
The algorithm implemented by Weibel is the slowest among

all these algorithms since it is not optimized in R3. Another
observation that is verified in Table 1 is that the overlay process
of the Nef polyhedra-based algorithm is not specifically devoted to
the Minkowski sum computation of convex polyhedra.
An interesting fact of Table 1 is that a good convex hull-based

algorithm can perform better than other algorithms. In the present
case, the CHMS algorithm performs better than the improved 3D-
MSSD algorithm of Wu et al.
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Fig. 13. Minkowski sum examples for convex polyhedra generated by the CVMS algorithm.
6.4. Examples

Fig. 13 shows some examples of Minkowski sum polyhedra
computed by the CVMS algorithm. In Fig. 14, we included
more results to show that the CVMS algorithm works with
complex or big size polyhedra (having thousands or tens of
thousands of facets; see Fig. 14(a) and (b)). The CVMS algorithm
handles well degenerate cases that require special treatment
with some other methods. An example of a degenerate case
is that of two facets having parallel supporting planes (having
the same outer unit normal) one from polyhedron A and the
other from polyhedron B. An extreme degenerate case occurs
when A = B (two convex polyhedra with identical sets of
facet outer normals). These degenerate cases do not require any
special handling by the CVMS algorithm. Fig. 14(c) shows the
result of such an extreme case correctly computed by the CVMS
algorithm. More results of the CVMS algorithm can be found at:
http://liris.cnrs.fr/hichem.barki/mksum/CVMS-convex.

7. Conclusion and future work

In this work, we have presented the CVMS algorithm for
the computation of the Minkowski sum of convex polyhedra.
The CVMS algorithm is based on the concept of contributing
vertices. By finding the contributing vertices for polyhedra facets,
it is straightforward to deduce translated and corner facets of
the Minkowski sum polyhedron. Furthermore, the concept of
contributing vertices allows additional gain of performance when
constructing edge facets by examining only relevant edges from
input polyhedra.

http://liris.cnrs.fr/hichem.barki/mksum/CVMS-convex


H. Barki et al. / Computer-Aided Design 41 (2009) 525–538 537
Fig. 14. More results of the CVMS algorithm for: (a) Two spheres having thousands and tens of thousands of facets. (b) An ellipsoid-like polyhedron and a truncated
dodecahedron. (c) For an extreme degenerate case (two identical spheres with thousands of facets).
We also took benefit from the concept of contributing vertices
in the ESSDMS algorithm. This results in more simplicity by
eliminating point in polygon queries and performance gain by
reducing the number of edge arcs intersection requests.
The proposed algorithms are easy to implement and they

guarantee the exactness of the result by using exact number types.
The complexity study and the experimental results show that the
CVMS algorithm is faster than the ESSDMS algorithm and that
the CVMS algorithm is more efficient than the other algorithms
proposed in the literature and cited in this paper. The CVMS
algorithm can be used as an efficient replacement for the convex
hull-based algorithms in order to speed-up the computation of the
pairwise Minkowski sums for non-convex polyhedra (along with
convex-decomposition and union steps).
As a part of our future work, we are generalizing the CVMS

algorithm to non-convex polyhedra. The main idea is that the
boundary of each non-convex polyhedron can be seen as the union
of disjoint convex surface patches (sets of facets containing no
reflex edges). So by treating polyhedra in a local manner (working
on each convex patch) and by correctly handling reflex edges, it
is possible to generate a superset of the Minkowski sum facets.
To extract the boundary of the Minkowski sum, we plan to use
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Table 1
Running times of the Minkowski sum computation of convex polyhedra performed by several algorithms.

Operands (facets number) Running time (s)
A B CHMS ESSDMS CVMS MSSD NGM Fuk. CGMa (overlay) CGMb (whole)

Cube(6) Tetra(4) 0.016 0.015 0.015 0.031 0.093 0.096 0.015 0.030
Cube(6) Hedra(8) 0.015 0.015 0.015 0.078 0.093 0.100 0.015 0.030
Cube(6) Truncated cube(14) 0.046 0.015 0.015 0.110 0.110 0.232 0.015 0.030
Cube(6) Sphere1(20) 0.046 0.046 0.015 0.156 0.203 0.300 0.015 0.046
Cube(6) Sphere2(80) 0.125 0.093 0.031 0.359 0.421 0.786 0.047 0.124
Cube(6) Sphere3(320) 0.546 0.250 0.078 1.156 1.438 3.269 0.078 0.296
Cube(6) Sphere4(1280) 2.438 0.735 0.266 4.344 5.563 15.224 0.203 1.249
Cube(6) Sphere5(5120) 11.407 2.719 1.375 17.938 22.625 69.956 0.562 7.406
Cube(6) Sphere6(20480) 77.422 16.828 12.234 79.750 94.157 146.870 1.921 219.592
CHMS—ConvexHull-basedMinkowski Sum algorithm, ESSDMS—Enhanced and Simplified Slope Diagram-basedMinkowski Sum algorithm, CVMS—Contributing Vertices-
based Minkowski Sum algorithm, MSSD – improved 3D-MSSD algorithm of Wu et al., NGM — Nef polyhedra-based algorithm of Hachenberger et al., Fuk. — Weibel’s
implementation of the algorithm of Fukuda. CGM — Cubical Gaussian Map-based (CGM-based) algorithm of Fogel and Halperin.
a Only the overlay step of the CGM-based algorithm.
b The whole CGM-based algorithm: the construction of the cubical Gaussian maps plus their overlay.
arrangements and surface envelope computations for which CGAL
provides powerful packages.
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