#### Interactive Voxel based Cutting of Deformable Models at Arbitrary Resolution

#### Lenka JEŘÁBKOVÁ, Francois FAURE INRIA Rhône-Alpes, Grenoble EVASION Group





## Motivation: Virtual Surgery

#### Requirements:

- patient specific data
  - mechanical properties
  - -visualization
- interactive soft tissue deformation
- stable interactive cutting of soft tissue
- force feedback



INSTITUT NATIONAL DE RECHERCH EN INFORMATIQUE ET EN AUTOMATIQUE



#### State of the Art - Deformation

 The Finite Elements Method (FEM) approximates the object using a volumetric mesh of simple elements (e.g., tetrahedra) connected at nodes







### State of the Art - Cutting

- A cut is modeled by subdividing the elements (local remeshing)
- Problems
  - Increasing number of elements
  - Simulation instability due to small and ill shaped elements





INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE



#### Voxel based Approach

# Interactive liver surgery using hexahedral finite elements





INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

R

INRIA

#### Why voxels?

#### Medical data are voxels

 no loss of information due to conversions

#### Regular grid

- straight forward hierarchies (octree)
- 3D texture (convenient for GPU implementations)









#### Voxel based Approach - Deformation

#### Nonuniform stiffness

 M. Nesme et al. (2006), Animating Shapes at Arbitrary Resolution with Non-Uniform Stiffness. In: Eurographics Workshop in Virtual Reality Interaction and Physical Simulation (VRIPHYS'06)





INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE



#### **Nonuniform Stiffness**

Simulation at arbitrary resolution

- a small number of coarse finite -> efficient simulation
- preservation of fine details for visualization
- BUT: problems with branched objects





centre de recherche GRENOBLE - RHÔNE-ALPES

NSTITUT NATION DE RECHERC EN INFORMATIO

#### **Objects with Branches - Problem**



RINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

#### **Objects with Branches - Solution**



RINRIA

centre de recherche GRENOBLE - RHÔNE-ALPES

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

### Cutting

Cutting = creation of branches during the simulation by removing fine voxels

Topological changes must be propagated to all components



INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE



#### **Different Models for Different Tasks**

coarse level

fine level



INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE



#### Visual Model

#### Billboarding

- efficient visualization of many particles
- each "sphere" consists of 1 textured quad oriented towards the camera





#### Visual Model - cont.

#### For medical data

- use segmentation as a mask in the nonsegmented dataset
- modulate color by the data



INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE



#### **Collision Model**

# A sphere in the center of each voxel



INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

R

INRIA



#### www.sofa-framework.org



INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE AUTOMATIQUE



# Propagation of Topological Changes (I)



# Propagation of Topological Changes (II)



# Propagation of Topological Changes (III)



# Propagation of Topological Changes (IV)

21



# Propagation of Topological Changes (V)



#### Video



INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE



#### Conclusion

#### First prototype is working

- two level simulation
  - coarse level for physics
  - fine level for visualization and collision detection
- meshless visual and collision models
  - no connectivity problems
- efficient propagation of topological changes during the simulation
- direct use of medical data
  - patient specific simulation
- bi-manual interaction using Phantom devices

