

Introduction

Data collection for tactile-based robotic manipulation plays a crucial role in improving existing models and enabling general models to perform effectively across various scenarios. These tactile sensors have been successfully employed in diverse applications, including: rich-contact tasks, grasping transparent objects, slipping detection or force-controlled grasping for fragile and deformable items. Most of these tasks rely on small datasets from real-world scenarios. Consequently, a significant limitation persists: the scarcity of data.

Background

- Large scale grasping dataset are without tactile [1]
- FEM based tactile sensor have shown good result [2]
- No automatic pipeline for generating tactile data

Contributions

Our contributions can be resumed as :

- a pipeline for automatic tactile data generation
- integrating tactile sensors into DefgraspSim [3]
- the first FEM based simulation of the gelsight mini

Simulation pipeline

The simulation pipeline consist of

- 1) Closing the fingers until contact
- 2) Squeezing the object until force N is reached
- 3) Applying gravity for shear deformation and slipping

a) Initial contact

b) Squeezing with 3N

c) Object slipping

Fig. 1: Example of a simulated rectangle grasped with two Gel-Sight mini sensors and a panda gripper during the simulation into defgraspSim [3].

Toward synthetic data generation for robotic tactile manipulations

Guillaume Duret, Florence Zara, Jan Peters and Liming Chen

Data generated

During the pipeline numerous data is recorded such : • Frame to frame sensor deformation, stress and forces Gravity and non gravity aware grasping success

- Slipping annotation by detecting changes of contact between the object and the sensor

Fig. 2: For the rectangle example: (left) illustration of the recorded deformation and (right) stress applied on the sensor.

Tactile images

Tactile images are computed from the data of the simulation, secondly a texture is applied on the mesh to simulate marker based tactile images.

Fig. 3: Three examples of texture were applied to the tactile sensor: the left one uses a small marker texture; the middle one uses a real size marker texture; and the last one uses a real tactile image as texture. The first row shows the undeformed texture, while the second row shows the deformation induced by grasping the rectangular object

Sim2real example

Fig. 4: Visual comparison between synthetic tactile image(left) and a real tactile image (right) for a rectangle object

Limitation

This work is a preliminary step towards generating comprehensive data for tactile robotic manipulation using Isaac Gym. Despite the high-quality output from the FEM simulation, it is computationally expensive, reducing the effectiveness of parallelization.

Future works

slipping detection or

sensor

Acknowledgements

This work was in part supported by the French Research Agency, l'Agence Nationale de Recherche (ANR), through the projects Learn Real (ANR-18-CHR3-0002-01), Chiron (ANR-20-IADJ-0001-01), Aristotle (ANR-21-FAI1-0009-01). It was granted access to the HPC resources of IDRIS under the allocation 2022-[AD011012172R1] made by GENCI.

References

Transactions on Robotics.

 More sim2real comparison need to be done • Generate synthetic datasets for tactile based grasping succes,

• Show sim2real transfer of trained models to real world tactile

[1] C. Eppner, A. Mousavian and D. Fox, "ACRONYM: A Large-Scale Grasp Dataset Based on Simulation," 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi'an, China, 2021, pp. 6222-6227, doi: 10.1109/ICRA48506.2021.9560844.

[2] Chen, W., Xu, J., Xiang, F., Yuan, X., Su, H. and Chen, R., 2024. General-Purpose Sim2Real Protocol for Learning Contact-Rich Manipulation With Marker-Based Visuotactile Sensors. IEEE

[3] Huang, Isabella et al. "DefGraspSim: Physics-Based Simulation of Grasp Outcomes for 3D Deformable Objects." IEEE Robotics and Automation Letters 7 (2022): 6274-6281.