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Artificial intelligence

Al wants to build powerful machines
than can think / act intelligently

What is the most intelligent machine ? &




Powerful
Portable
Low cost In energy
Adaptative
Can learn
Small
Self-repair
etc



Artificial intelligence may take your job,
so political leaders need to start

doing th

doing theirs IR 1 Musk WARNING: Artificial
Intelligence could be an
‘TMMORTAL DICTATOR’

Hinton, LeCun, Bengio : la 1 1t hey da ot ‘ave to be vl desiry
« conspiration » du deep learning

LES REBELLES DE LA SCIENCE 9/10. Au début des années 2000, contre 1'opinion de leurs pairs,
trois chercheurs en intelligence artificielle ont remis au goit du jour une voie jugée sans avenir :
les réseaux de neurones.



Artificial Intelligence

o i Nathaniel Rochester Marvin L. Minsky John McCarthy

o, T — | Oliver G. Selfridge Ray Solomonoff Trenchard More Claude E. Shannon

PSVCHOLOGY AND PHILOSOPHY

"Every aspect of learning or any other feature of intelligence

can be so precisely described that a machine can be made to simulate it. » (Dartmouth Proposal,
1956)




Artificial Neural Networks aka
ANN

« McCulloch & Pitts, 1943 : MCP neuron model

Input signals Bias

X1 wk1

Activation

Function
— W Output
Input — xz A ‘p(' ) —’Yk
Signals —» be X3 Wk3
— Summing junction
—_— X Wk4
Synaptic Weights
Dendrites Soma Axon

MCP neuron K :
Activation A = X1 o WK1+ Xo. Wio + X3 . Wiz + Xz . Wk4— bk

Output Y = @ (A) S N

1lifx>0
Oifx<0

Transfer function : @(x) = {




Artificial Neural Networks aka
ANN

For neuron k with n pre-synaptic inputs :
Yk = @ Qiz1Xiwk — 6y)

In code :
for i =1 ton :
sum = sum + X; * Wy
sum = sum - ©

out = activation_function(sum)



Activation function

Equation

Identity

f(z) ==

Binary step

_JO forz<0
f(w)_{l forz >0

Logistic (a.k.a.
Sigmoid or Soft
step)

1

f(e) = o(e) = 77—

TanH

e’ —e™ ")

f(z) = tanh(z) = m

ArcTan

f(z) = tan™" (x)

Rectified linear
unit (ReLU)!15]

)0 forz<O
f(w)_{w forz >0




Artificial Neural Networks aka
ANN
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Artificial Neural Networks aka
ANN

e Simple units

 Parallel Distributed Processing

* Units in a network : « knowledge » can emerge
* « Knowledge » lies in the synaptic weights

* ANN need to be trained in most cases : supervised learning
 Training = weights adjustments

» Error = difference between the network outputs and the desired
outputs for a set of stimuli



lhe father of all ANN : The Perceptron

,.//"1 1957, Rosenblatt Function to

et learn :
z —1
— 1% = Lette
Ms e——"1 ,
% &_/%1 \/7\' X 1
; m ' T o0
7 " :

r

v

Learning rule :

wi(t+1) = wi(t) +n (d - y) X
with :
d : desired output
* y:network output
n : learning rate




X1=[101010101];
X2=[1110100101;

W=[0 0 000000 0];
%W = randn(9,1) ;
disp(W);

eta

= 0.5;

dl = 1;
d2 = 0;

i=1;
Hwhile i < 10

- end

iter = sprintf('EPOQUE n. %d',i);
disp("
disp(iter)

- 1
A=sum(X1.xW); - O
if AS=0 y = 1 ;
else y = 0; )( 1
end
fprintf('Presentation X1 lettre X., T O
W=W + (eta * (dl-y))*X1;
1

disp((W'));

A=sum(X2.%W) ;

if AS=0 y =1 ;

else y = 0;

end

fprintf('Presnetation X2 lettre T.,
W=W + (eta *x (d2-y))*X2;

disp(W');

i=i+1;

0

-1

0.5

output reseau: %d\n',y);

H X1 =[101010101]
Wi,=[000000000]

m X2 =[111010010]

B Y N

[000000000]
[-0.5-0.5-0.50-0.500-0.50]
[0-0.500000.5-0.50.5]
[0-0.500000.5-0.50.5]
[0-0.500000.5-0.50.5]



The Perceptron complexified : MLPs

MLP = perceptron

+ hidden layers to complexify decision regions
+ activation function : sigmoid / tanh
+ backpropagation ©



Backpropagation simplified

1 — From Layer 1 to Output layer : input is propagated

2 — Network output is computed

3 — Error is computed (from desired -output)

4 — Weights are updated from Output Layer to previous layers,

Error is distributed backwards according to which weights contributed the
most to this error, then to the error in the next layers etc until Layer 1

Backpropagation Learning

Haden layer(s) —1
: Forword Propagation
Ing
—
Error Estimation
m—
— —p
Backpropagation Learning g 1. Diff. to desired values 2 & 3
. A 2. Backprop output layer —
- P |
f Yo / ' :
P Backward Propagation
I ¥, ik e ———
| | (RTERT 4




Yann LeCun est avec Yoshua Bengio.
27 mars, 12:27 -

Official citation from the Association for Computing Machinery for the

Deep Learning

« Brain » / « Gognition » inspired

Yoshua Bengio Geoffrey Hinton Yann LeCun

* MI—P Wlth many |ayers + mOdlﬂed arChIteCture :::ﬁzrgr‘t?\ZGDeep Learning Revolution Receive ACM A.M.
Turing Award
OO0 27K 132 commentaires 468 partages
» Hierarchical representation of information through the layers
(see visual cortex for example)
« Modified neurons (eg. : RelLU units)
« Less weights, more learning !

Krizhevsky et al. (2012): won the ImageNet challenge with AlexNet, similar to
LeNet (LeCun 1998)




Computer and images

ariables - red @)
4[ picture j red i green ‘Lblue 1
[ 227x227 uint8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
1 125 127 126 125 122 123 122 120 119 120 118 118 119 120 122 128 152 164 163 163 163 162
2 125 125 124 124 122 122 122 119 116 116 117 118 118 118 119 130 158 164 165 165 162 162
3 128 123 122 121 121 123 122 118 113 114 115 116 117 117 118 129 159 165 167 165 162 163
4 128 122 120 120 119 120 120 118 115 116 115 114 116 117 116 137 164 170 168 167 162 164
5 129 124 122 121 119 121 120 119 117 118 117 114 113 114 116 142 168 171 170 168 166 167
6 128 125 123 122 119 118 118 118 116 118 117 120 116 115 115 146 172 172 170 171 171 170
7 125 125 123 122 121 118 118 116 114 116 114 115 113 113 119 153 168 175 174 173 173 173
8 125 124 125 122 118 118 116 114 112 113 114 113 111 112 128 157 167 170 173 177 175 177
9 126 122 122 119 117 119 114 114 115 112 115 113 110 111 130 157 165 166 169 176 181 183
10 128 125 122 121 119 118 114 114 115 114 113 111 111 111 134 157 163 166 168 170 176 182
11 129 127 125 121 119 118 117 115 111 112 111 110 112 110 138 155 160 163 165 167 172 176
12 128 123 124 122 120 118 117 116 110 110 110 111 111 113 139 155 158 162 164 165 167 171
13 133 125 126 123 119 118 115 111 107 109 110 110 110 113 139 154 156 160 164 165 168 168
14 134 128 125 121 118 119 114 110 109 107 108 110 109 109 135 152 154 158 162 164 164 167
15 131 127 126 122 118 117 116 113 112 109 106 108 108 107 133 150 152 158 159 162 163 166
16 131 127 127 122 121 119 117 112 112 110 109 108 107 105 127 149 150 155 156 161 163 163
17 134 129 127 123 121 118 115 112 110 110 110 107 108 105 121 144 148 152 155 159 161 163
18 134 130 127 124 121 116 113 111 109 108 106 105 109 108 115 138 146 148 150 149 147 151
19 133 131 128 127 121 114 113 112 107 107 106 107 106 105 111 134 142 144 143 143 145 145
20 134 132 127 126 121 115 110 110 108 108 106 107 105 105 107 128 141 140 139 147 150 151
21 135 133 127 124 118 115 111 109 109 107 105 105 104 105 105 112 135 138 141 147 150 150
22 137 132 126 123 117 115 111 111 109 107 105 103 104 104 105 105 118 133 141 147 146 149
23 135 129 127 124 120 115 108 109 109 107 105 102 104 104 103 106 111 116 133/ 143 140 141
24 136 132 130 127 119 115 110 107 107 107 105 102 102 104 102 105 111 113 115 132 140 135
25 137 133 129 124 118 116 112 108 106 106 104 102 101 101 102 104 111 112 111 116 136 141

What we see What computers see

Image of dimension N*M tensor of N * M * 3 integers between O and 255
(for 8-bits RGB images)



-olutional Neural Networks aka CNN

C3: f. maps 16@10x10

INPUT C1: feature maps S4: f. maps 16@5x5
6@28x28
S2: f. maps

32x32
6@14x14

LeNet-5

|
‘ Full conAection ’ Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection
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Convolution Layer

Input Feature Map Output Feature Map

EE—

« receptive field »

Input Feature Map

3|5 (2 |8 |1 | convolutional Filter
97154 |3
2106 (1|6
6 (3719 |2
Input Feature Map
1149 |5 |1 axt |50 |20 | 8 | 1 Output Feature Map
\ ’ oxt | 7x115x0 | 4 | 3 3+0+0+9+7+0+0+0+6 = W]y
2x0 [ox0 [6x1 | 1 | 6 > 18 22|14
N 613|719 |2 20 (15|23
11495 |1
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Input image
10x10
Feature map
Kernel " Hidden neuron



1x1

1x0

1x1

0x0

1x1

1x0

Ox1

0x0

1x1




Convolution Layer : the feature detector

0|1 |0 3 o |lo
*10 (1 (0| 3 o |lo
0|1 |0 3 o |lo
0 |0 |O 1 (1 |0
* 1101 |1 1 (1 |0
0 |0 |O 1 (1 |0

Input filter (weights) feature map



Pooling Layer

* Downsampling the feature maps by associating with a
smaller filter a single value

(eg : max-pooling with 2*2 filter)

e Saves computation time, reduces dimensions, but preserves
critical features

Input
/11352 Output
8|7(1|6 maxpool 8|6
>»
419|319 919
0({8(4 |5




Convolution Layer + Maxpool layer

ol1 |o T To To T
S 12 R E T T T R e
o1 |o

O (0 (O 1 |1 (0
1 |1
* 1 1 1 —> 1 1 0 —>
1 |1
O (0 (O 1 |1 (0

Input filter (weights) feature map maxpool



Fully connected layers

* End of CNN : one or more fully connected layers

» Performs classification based on the features extracted by the
convolutions.

« Qutputs a probability value from O to 1 for each of the
classification labels the CNN is trying to predict

« One output neuron / category to include

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5
INPUT 6@28x28
32x32 S2: f. maps
6@14x14

— |
‘ Full mnAection ‘ Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection



ConvNets for image recognition

CNN builds up more and more abstract Output : probability of
representations of the image each category
o>
Conv. Module #1 Conv. Module #2 Classification

output: cat? (y/n)

conv2d maxpool conv2d maxpool fully fully
Input + RelLU + RelLU connected  connected



Figure 5.2. The visual world forms a spatial hierarchy of visual modules: hyperlocal edges combine into local objects
such as eyes or ears, which combine into high-level concepts such as “cat.”

“Cat ”

]
0] v {))

O



Démo : détection d'objets, YOLOv4
g

Source : https://www.youtube.com/watch?v=h08NOHX16I8 , GrahamML



https://www.youtube.com/watch?v=h08N0HX16l8

Démo : Quickdraw (Al Experiments,
Google)
https://quickdraw.withgoogle.com/

QU\CK: DR4y
Sy
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Demo : ChatGPT

compatibility and timing. Ho!

chanc ir crush developi

Please write a dog food advertisement in a magazine read by dogs

confident: Confidence is attractive, s > fortable in your xin and
iny elf
your crush know that you are interested in them by flirting, making eye
ct, and showing genuine interest in their life and interests.
istener: Show y crush that you value what they have to

" y listening to them and
"Woof! Are you tired of the same old kibble day after day? Switch things up with our S e
delicious and nutritious dog food! Made with high-quality ingredients, our food will keeg
your tail wagging and your taste buds satisfied. Plus, our specially-formulated recipes W appcs it e el o0

cater to dogs of all sizes and breeds, so every pup can enjoy a hearty meal. Try it today . . ) )
my creativity and ability to come up with new ideas?"

and see the difference it makes in your dog's health and happiness. Order now and

receive a free bag of treats with your purchase' Woof woof!" Sure! Here are some sample behavioral interview questions about your ability to create
’ ’ and execute successful marketing campaigns:

What is the diameter of an apple divided by the thickness of an apple peel? N . . .
1. Can you describe a time when you had to develop and implement a marketing

campaign from start to finish? What was the campaign for, and what were the results?

research when planning a marketing

The diameter of an apple can vary depending on the variety, but on average it's about .

7-10 cm. The thickness of an apple peel is around 1-2 mm. continue thIS g"“tar pattem

you use to gather information?
Dividing the diameter of an apple by the thickness of the peel, we get: hannels will be most effective for a

7cm /0.1 cm =70 campaign where you had to make this

So, the diameter of an apple divided by the thickness of an apple peel is approximately R R R
- hrketing campaign? What metrics do you use,

future campaigns?
Note: The above numbers are estimates and the exact numbers may vary depending on be creative in order to solve a problem or
the apple being considered.

ow did your solution impact the campaign's

HO Out of these four shoes, which would you say works best with outfit #3: light brown A

So, if Earth was the size of an apple, the oceans would be thinner than the apples peal? @ e||--1-----==mmm e Timberlands, white Air Force Ones, black Air Max, dark red Converse

BJJ-- 1o e

@ No, if the Earth was the size of an apple, the ocean depths would be much thicker than G”,,ah,,g ,,,,,,,,,, Qs
the apple peel.
: . . . . . (

Dij-3—— Fr d—-B @ Of the four shoe options you mentioned, the white Air Force Ones would work best with O @
To provide some perspective, the diameter of an apple divided by the thickness of the A 1--1 1-0 1 1 . . . . . . .
R R A e (e e TG T T ettt e et b Outfit #3 (white T-shirt, black leather jacket, and dark blue jeans). The white Air Force Ones
by the deepest ocean depth is approximately 1162.8. This indicates that the ocean S | 3--3--3--—- 3-0-1 are a classic and versatile sneaker that can add a clean and casual look to the outfit.

depths would be much thicker than the apple peel, if the Earth was scaled down to the

o1 4641464} 4
B||--1--4--6--4--1--4--6--4--1--4 The black Air Max may be a bit too sporty for the outfit, as the black leather jacket and dark

size of an apple.

G||--3--5--7--5--3--5~7--5--3--§ blue jeans have a more edgy and casual vibe. The dark red Converse may clash with the

You are actually wrong, it is the other way around. We are talking about fractions, and . ) . )

1/1162 is actually smaller than 1/70. But you made good improvement with the latest Dj|--3--5--7--5--3--5--7--5..3. ¢ black leather jacket and look out of place with the rest of the outfit. The light brown
pdate, good job! - % -

. ' AfJ--1-3-5--3-1--3--5-3--1--3 Timberlands may work, but they could be a bit too bulky and heavy for the outfit, as the

e I VY 3-0-1 outfit already has a lot of texture and weight with the leather jacket and jeans.
@ Thank you for your feedback. | apologize for the mistake in my previous answer. Yes, you (o
are correct, if the Earth was the size of an apple, the ocean depths would be much s . 5
thinner than the apple peel. The fraction 1/1162 is indeed smaller than 1/70. | appreciate This is an example of how the pa Remember, your personal style and preference should ultimately guide your choice of shoes,

the opportunity to correct my mistake. Thank you for your understanding. the desired style or genre of mus so if you feel that one of the other options complements your outfit better, then go for it!



|dentifier son interlocuteur

Visage
\'7 Technologies

https://www.visagetechnologies.com/HTML5/latest/Samples/ShowcaseDemo/ShowcaseDemo.html



Deep Learning for Al

 GAFAM :
DeepMind, AlphaGo, Google Car, Cortana, Siri, Watson etc

* Image recognition, automatic labelling, voice recognition, buying
recommandations, automatic translation, art creation, fraud
detection, spam filtering, customer profiling, personalization of
contents, facial identification, emotion recognition, video creation,

chatbots, game playing, natural language processing, etc ...

Microsoft
Cognitive
Toolkit

aki

/CognitiveToolkit

=m Microsoft




Deep Learning for ... medical applications?

DL is a great tool for image recognition and classification

All medical diagnostics that are based on medical images and that
require image cClassification / object detection can benéfit from DL :

« Dermatology
» Radiology

» Ophtalmology
« Pathology...

DL can help physicians to detect relevant areas in images
DL can help to predict the outcomes

DL can offer a second opinion

DL can be « the physician’s third eye » (a well-trained eye)



Fig.1
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m2012 w2013 w2014 2015 m2016 w2017 ®m2018 ®m2019 ®m2020 w2021 w2022

The yearly distribution of DL techniques in HCS in the PubMed database for the last decade



AlintHealth : long story, many
guestions

 Old story, beginning with Expert Systems - GOFAI

* Problem : can we make « experience » explicit 7

« Can we replace humans with machines in the medical domain?
« Can we make patients accept a machine’s opinion ?

« What if there is no agreement 7



Champs d’application du DL en médecine

“
--
-- Disease analisis




1 — DL and clinical images

Adult Echo TIS1.2 MI1.3

M3 M4
+61.6}
5y

-0
** bpm

Adult Echo TiIS1.3 MI1.3

- 0 M3 M
+61.6}

+ Dist 0.390 cm
| 1

Bone X-ray Liver CT Brain MRI Cardiac ultrasound




Area Task Contribution Model
Oncology Classification Benefit from unlabelled data for lung tumour stratification DBN [115]
Introduction of a transfer learning approach in rectal cancer prediction CNN [118]
Identification of bladder tumour sub-types from histopathological images ResNet [114]
Improvement in breast tumour estimation by considering a large set of risk factors CNN [187]
Estimation of the cancer grade CNN [116]
Estimation of the cancer type CNN [111,112], ResNet [119]
Detection Optimal localization of lung cancer sub-types CNN [113]
Segmentation Analysis of colour contrast and parameter variability issues in pancreatic tumour U-Net [127]
Impact of dimension variations on DL model performance in thyroid melanomas U-Net [128]
Limitation of the overfitting problem in bone cancer CNN [188], GAN+U-Net [91]
Improvement in image accuracy in lung and prostate cancer U-Net [124,125], GAN [92]
Registration Optimized DL model in terms of time complexity and accuracy in lung melanoma estimation CNN [129,130]
Dose estimation Estimation of the right substance doses GAN [131,132]
Cardiovascular Classification Limitation of overfitting GAN [142], ResNet [140]
Analysis of the particular characteristics of the heart by using echocardiograms ResNet [141]
Detection Low-cost object detection for malaria YOLO [143]
Segmentation DL model for multi-step integration and registration error reduction in atrial fibrillation analysis CNN+LSTM [189]
Accuracy in the analysis of irregular pelvic hematoma images U-Net [190]
Improvement in aortic disease analysis with the introduction of new accuracy measures U-Net [144]
Introduction of the transfer learning approach in atrium study U-Net [140]
Reconstruction Improvement in the Signal-to-Noise Ratio Multi-data integration CNN [145]
Improvement in image quality at high levels in the study of coronary diseases CNN [146]
Orthopaedics Classification Improvement in bone image quality U-Net [153]
Analysis of the impact of gender on skeletal muscles CNN [154]
Segmentation Analysis of the impact of the image quality in osteoarthritis U-Net [149], RCNN [152]
Introduction of transfer learning and attention mechanism in the study of the knees VGGNet+U-Net [150]
Improvement in image accuracy of the cartilage U-Net [148], HNN [42],
U-Net+GAN [151], RCNN
Combination of the region-based approach with U-Net for bone diseases RCC+U-Net [191]
Reconstruction Application of CNNs to computed tomography for chest digital images CNN [192]
Neurology Classification Automatic estimation of brain diseases risk AlexNet [158], CNN [193]
Segmentation Limitation of overfitting in White Matter analysis GAN [160]
Colour quality improvement in orbital analysis U-Net [159]
Reconstruction Introduction of a DAE as a priori model for noise density in magnetic resonance DAE [162]
Analysis of perturbation effects CNN [157]
Introduction of transfer learning into magnetic resonance CNN [163]
Pulmonology Classification Improvement of accuracy and efficiency in COP diseases ResNet [167], VGGNet+CNN
[168], DBN [169]
Analysis of interstitial lung diseases CNN [165]
Segmentation Segmentation of lung lob using different types of datasets U-Net [170]
Gastroenterology Classification Estimation of the normal levels of the pancreas CNN [172,174]
Detection Improvement in image accuracy in neoplasia analysis ResNet [175]
Segmentation Analysis of image effects in neoplasia and catheter detection U-Net [175], RNN [176]
Ophthalmology Classification Improvement in image quality CNN [179], CNN+LSTM [181]
Abdominal Classification Improvement in accuracy in abdominal ultrasounds CNN [185]



edecine : artificial eye

250
. Segmentation (Organ, substructure) I
" 200 H Detection (Object) I
g Classification (Exam) ——
8 150 H P .
- Classification (Object) IEEEEE—————
g 100 || Other IEEE————
§ Detection (Organ, region, landmark) IEE——
50 [ Segmentation (Object) I—
0o - I T II - [ mm Registration
2012 2013 2014 2015 2016 2017 0 20 a0 60 80 100
HAIl ECNN RBM ®RNN EAE mOther W Multiple
TVIR | 1 Pathol o)y 1
Microscow N B
CT Other I
|
Ultrasound — Lung
Abdomen I
X-ray I .
Cardiac T
Mammography I Breast E——
Other ~E— Bone EEE—
Multiple  — Retina —
Color fundus photos  —m Multiple —————
0 20 40 60 80 100 0 10 20 30 40 50 60 70
Number of papers Numberof papers

Figure 1: Breakdown of the papers included in this survey in year of publication, task addressed (Section 3), imaging modality, and application
area (Section 4). The number of papers for 2017 has been extrapolated from the papers published in January.



With MRI images, a CNN network
can do these things :

* Tissue/anatomy/lesion/tumor segmentation 2 1

* Image (re)construction/enhancement = 2

 Disorder classification (eg. AD, MCl, Schizophrenia) = 3
e Lesion/tumor detection and classification

e Survival/disease activity/development prediction

e Other



All'image-based tasks can benefit from DL

From images, DL can help to :

* |dentifying moles vs melanomas

* Diabetic retinopathy

e Cardiovascular risks

* Breast lesion detection in mammograms
* Flagging large artery occlusions

* Predicting survival probabilities

* Combining imaging modalities



What DL can do :

Mammographic mass classification,
Segmenting brain lesions

Detecting leaks in airway tree,
Classifying diabetic retinopathy
Segmenting prostate,

Classifying nodules

Detecting breast cancer metastases
in lymph nodes

Classifying skin lesions,

. Suppressing bones in chest X-Rays




oes it works ?

L] L]

L] [ ]

L] L]
Input | Convolution Pooling Convolution Pooling : | Fully connected SoftmaxI

I |
Feature learning Classification



1.1- DL for segmenting medical images

* Segmenting from patches of images + context
e Segmenting = classifying « in » vs « out »

* Class balance is skewed severely towards « out »
class in a training setting.

e Usually : « out » samples are easy to discriminate,
preventing the deep learning method to focus on
the challenging samples

* Segmenting organs, lesions, surgical objects (stents)



Segmenting the pancreas

* Ex. : pancreas segmentation with CNN from CT scans

* Pancreas has a very high anatomical variability : challenging

Figure 6: Example of pancreas segmentation using the proposed R;—ConvNet ap-
proach in testing. a) The manual ground truth annotation (in red outline); b) the
G(P,(z)) probability map; c¢) the final segmentation (in green outline) at ps = 0.6
(DSC=82.7%).



10

51
25 9
e [} 7
M , 5
25 5 | 51 n 75 n
Convolution
and ¢
max pooling 34
23 24
* |
- - Z
my|3 23 34
Convolution
and ¢
max pooling 14

]
w

32
s T
u 32 3 s
3
10 14
3

Convolution
and *

max pooling 5

4 48
A\ 48
—l 48
s[7]] . 5
Fully connected

) l ¥

1

256

Output \ l /

Fig. 1: Schematic overview of the convolutional neural net-
work. The number of output classes, N, was set to 9 (8 tissue
classes and background) for the neonatal images, to 8 (7 tissue
classes and background) for the ageing adult images, and
to 7 (6 tissue classes and background) for the young adult
images. After the third convolution layer, max-pooling is only




‘ ide the CNNs...

TABLE I: Acquisition parameters for the images used in this paper.

Cor. 30 wks Cor. 40 wks Ax. 40 wks Ageing adults Young adults
Age 30 weeks PMA 40 weeks PMA 40 weeks PMA 70 years 23 years
Acquisition protocol Coronal T,-weighted  Coronal T,-weighted  Axial T,-weighted Axial T)-weighted Sagittal T,-weighted
Number of images 10 5 7 20 15
Reconstruction matrix 384 x 384 x 50 512 x 512 x 110 512 x 512 x 50 240 x 240 x 48 256 x 256 x (261-334)
Reconstructed voxel sizes [mm®] | 0.34 x 0.34 x 2.0 0.35 x 0.35 x 1.2 035 x 035 x 20 096 x 096 x 3.0 1.0 x 1.0 x 1.0
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Fig. 2: Trained convolution kernels in the first layer after 10 epochs using the 5 training images acquired at 30 weeks PMA,
and the kernels indicated in red applied to a test image. From left to right: the T,-weighted test image, the kernels of 5 X

5 voxels, the image convolved with the indicated 5 x 5 kernel, the kernels of 7 x 7 voxels, the image convolved with the
indicated 7 x 7 kernel, the kernels of 9 x 9 voxels, and the image convolved with the indicated 9 x 9 kernel.




30 - 40 weeks PMA aging young

Fig. 4: Segmentation results for CB (brown), mWM (pink), BGT (green), vCSF (orange), (u)WM (blue), BS (purple), cGM
(yellow), eCSF (red) in coronal images acquired at 30 weeks PMA (first column), coronal images acquired at 40 weeks PMA
(second column), axial images acquired at 40 weeks PMA (third colum), axial images of ageing adults (fourth colum), and




.de a sulcus of a 30 weeks PMA brain

-

(a) Image (b) Reference (c) 25 x 25 (d) 51 x 51 (e) 75 x 75 (f) 3 patch sizes

Fig. 5: Segmentation results in a T,-weighted image (left) acquired at 30 weeks PMA for the lateral sulcus (top) and the
hippocampus (bottom) using (from left to right), manual segmentation, only a patch of 25 x 25 voxels, only a patch of 51
x 51 voxels, only a patch of 75 x 75 voxels, and these 3 patch sizes combined. The tissues are labelled as follows: CB in
brown, mWM in pink, BGT in green, vCSF in orange, uWM in blue, BS in purple, cGM in yellow, and eCSF in red.



Left ventricle (heart) segmentation
for cardiovascular diseases

Fig. 3. Example of segmented left ventricle using RFCN and FCN architectures from
MICCAI dataset (top two rows) [21] and PRETERM dataset (bottom two rows). Green
contours represent the ground truth and red contours are the predicted contours. RFCN
is often able to better delineate the left-ventricle contours with weaker boundaries
compared to FCN.



1.2- Image registration : example of TMRI




1.3 - DL for classitying medical images

* Predict the category of an image
* Classify images (group similar images)
* Ex. : cancer, melanoma, AD, depression, schizophrenia etc

* From images (anat and functional) + other data
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(Dermoscopy)
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Skin Lesion Image Deep Convolutional Neural Training Classes Inference Classes
Network (Inception-v3) (757) (varies by task)
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ransfer learning

* Application of a process suited for one specific task to a different problem
* DL model trained to recognize every day color images, such as animals
e Same model used to classify radiographs.

)

* All images share similar features such as edges and blob:

SOURCE TASK ‘
TRAINING SOURCE

IMAGES TASK LABELS

* The model has learnt to « see »
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* Better than random initialization
* Re-learning on small medical databases S
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Figure 3. Schematic representation of convolutional neural network (CNN) architecture and the concept of “transfer learning.”
Because images from multiple sources have common salient features (borders, shapes, etc), the core of a CNN trained for 1 task
(Top row: eg, cat from pot-au-feu from camping tent) can be “transferred” (ie, used without modification) for a second task
(Bottom row: benign from malignant tumors in computed tomography images). Because only the distal layers (fully connected
[FC] 1 and FCIl) remain to be trained, much less training data are required for the second task. Max indicates maximum.



Skin Cancer Classification
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Dermatologist-level Classification
of Skin Cancer with Deep Neural
Networks

rtifi
of

Andre Esteva*, Brett Kuprel*, Rob Novoa, Justin Ko, Susan Swetter,
Helen Blau, Sebastian Thrun

Nature, 2017

(Equal contribution authors*)

Classifier Three-way accuracy
Dermatologist 1 65.6%
Dermatologist 2 66.0%
CNN 69.5%
CNN - PA 72.0%

Disease classes:
three-way classification

LESIONS LEARNT

0. Benign single lesions
1. Malignant single lesions
2. Non-neoplastic lesions

Classifier Nine-way accuracy
Dermatologist 1 53.3%
Dermatologist 2 55.0%
CNN 48.9%
CNN - PA 55.3%

Disease classes:
nine-way classification

WN O

©ONO O

Cutaneous lymphoma and lymphoid infiltrates
Benign dermal tumors, cysts, sinuses

Malignant dermal tumor

Benign epidermal tumors, hamartomas, milia, and
growths

Malignant and premalignant epidermal tumors
Genodermatoses and supernumerary growths
Inflammatory conditions

Benign melanocytic lesions

Malignant Melanoma



Signhal Detection Theory

* Accuracy (ACC) = (TP + TN)/(TP + TN + FP + FN)
* Sensitivity (SEN) = TP/(TP + FN)

* Specificity (SPEC) = TN/(TN + FP)

H4: signal Hy: signal
present absent

Detection




ROC Curves : sensitivity / specificity
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Classitying laserendomicroscopy
Images of the oral cavity for cancer
(Oral Squamous Cell Carcinoma (OSCC)
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e Patches images

* N = normal, C = cancer



Classitying Mammogram Exams Containing
Unregistered Multi-view Images and
Segmentation Maps of Lesions

Convolutional
Neural Network
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Fig.4: a) Non-carcinoma vs. carcinoma classification, ROC. High sensitivity set-
point=0.33 (green): 96.5% sensitivity and 88.0% specificity to detect carcinomas.
Setpoint=0.50 (blue): 93.0% sensitivity and 94.5% specificity b) Confusion ma-
trix, without normalization. Vertical axis - ground truth, horizontal - predictions.



AD / MCI classification

* When and which MCI patients will develop AD ?

* |dentify different progression stages of AD patients
based on MRI and PET scans.

* MRI scans of 2146 subjects (803 for training and 1343
for validation) to predict MCl subjects’ progression to
AD dementia

e Databases :

e ADNI (http://adni.loni.usc.edu) : MRI scans of 1711 subjects
e AIBL (www.aibl.csiro.au) : 435 subjects.



http://adni.loni.usc.edu/
http://www.aibl.csiro.au/

=

Prmctpal component analysis

me - *

ust Deep Model for Improved
ification of AD/MCI Patients

LEARNING :

* ADNI data set:
* 51 AD patients,
* 99 MCI patients

* (43 MCI patients who conve
to AD and 56 MCI patients \
did not progress to AD

52 healthy normal controls

Minimum Mental State
Examination

Multi-task deep leammg with dropout

Alzheimer’s Disease

AD/MCI Diagnoms with SVM

Fig. 1. Diagram of the proposed multi-task deep learning framework.

Assessment Scale-Cognitive
subscale



Results : accuracy of classification

Tasks Proposed

AD vs HC 91.4(1.8)

MCI vs HC 77.4(1.7)

AD vs MCI 70.1(2.3)

MCI.C vs MCI.NC 57.4(3.6)
Average 74.1

AD patients vs Healthy Control subjects (AD vs HC),

MCI patients vs HC (MCI vs HC),

AD patients vs MCI patients (AD vs MCI)

MCl-converted vs MCl-non converted (MCI.C vs MCI.NC).



vs Normal from 3D scans
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Detection of pneumonia from chest x-rays
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* Brain Computer Interface



Decode cognitive
neural signals

Control external
assistive devices
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BrainGate : Kathy Hutchinson




Table 2

For each medical area this table lists the DL tasks, the obtained contributions and the main used DL models.

Area Task Contribution Model
ECG Arrhythmia Classification and detection of arrhythmia levels RNN [198], LSTM [200], CNN [218], CNN+RNN [2]
Glucose Evaluation of low glucose levels CNN [204]
Ventricular Data relative to different races CNN [201]
Atrial Choice of low-dimensional datasets CNN [199]
Use of ECG with different lengths CNN [220]
Foetal Restriction of data only one ECG channel AE [221]
Apnoea Classification of obstructive sleep apnoea and hypopnoea CNN [203]
EEG Epilepsy Multimodal approach CNN+LSTM [222]
Increase in the SNR CNN [223]
Emotions Improvement in performance in heterogeneous samples DL [222].
PCG Heart abnormalities Optimal identification of heart errors CNN [208]
PPG Blood analysis Use of signals correlations LSTM [211], CNN [212,213]
EMG Muscle conditions Improvements in signals accuracy CNN [214], AE [215]
NNS, SS Biosignals analysis Accurate analysis of biosignals CNN [216,217]




3—EHR and DL

* CBR, Content-Based Retrieval : technique for
knowledge discovery in massive databases (« Big
Data »)

* Generating reports from images
* Finding similar cases in previous records

e COVID + connected watches



DL and Electronic health records

* EHR are growing
* 10 million patients over a decade
* A single hospitalisation = 150000 pieces of data

* Then : understand questions in natural language such as :
what is this patient’s problem list ?

* Help to transcript patient visits (automatic speech
recognition)



Table 4

This table lists the medical tasks, the contributions provided and the DL models most frequently used in EHR.

Area Task Contribution Model
EHR Disease prediction Integration of different medical data in cancer analysis CNN [263]
High accuracy in dyslipidemia prediction LSTM [261]
Improvement in the imbalance problem in heart failure CNN [264]
Impact of external databases in sleep staging evaluation CNN [265]
Mortality risk estimation by using patients’ historical information LSTM [262]
Optimal heart failure prediction LSTM [51,259]
Integration of structured and unstructured data for the prediction of acute kidney injury subtypes LSTM [260]
Risk analysis Organization of the data on the basis of semantic spheres GCNN [266]
Feature extraction by reducing the data dimensions AE [268]
Treatment plans Construction of a treatment plans by using small population sets LSTM [267]
Estimation of a treatment plan by exploiting data correlations CNN [6]







Deep learning: new computational
modelling techniques for genomics

* As a data-driven science, genomics can use machine learning
to capture dependencies in data and derive novel hypotheses.

* The ability to extract new insights from the exponentially
growing volume of data requires more expressive machine
learning models.

e DL : used for, for example, predicting the impact of genetic
variation on gene regulatory mechanisms such as DNA
accessibility and splicing.



Table 3

For each medical area this table lists the medical tasks, the contributions obtained and the DL model most frequently used.

Area Task Contribution Model
Genomics DNA structure Prediction of DNA missing values from dependences RNN [230]
Identification of DNA regions by exploiting the spatial configuration GCNN [230]
Simplification of DNA expressions by reducing noisiness AE+RNN [232], AE [231]
Disease prediction High accuracy in the identification of sub-kinds of tumour; Personalized Treatments Deep Triage [44]
Improvement in cancer prediction in very sparse molecules SAE [231]
Parallel extraction of features from pure DNA expressions CNN+RNN [234]
Data integration DAE [233], AE [232]
Transcriptomics RNA structure Reduction of data dimensionality and sparsity AE [235,237]
Exploitation of the spatial configuration of RNA molecules CNN [235]
Accurate classification of the RNA components CNN [249], RNN [236]
Disease prediction Classification of tumour types CNN [238]
RNA variation analysis CNN [239]
Heterogeneous data integration SAE [240]
Drug discovery New drug-target interaction identification DL [250]
Proteomics Protein structure Molecular region identification CNN [251], DeepGSH [252]
Protein identification CNN+LSTM [253], AE [254]
Drug discovery drug-target interactions GAN [242]
Scoring function construction CNN [241]
Metabolomics Diseases prediction Improvement of prediction models CNN [244]
Drug discovery Determination of optimal targets; decrease in drug toxicity AE [246,255]
Optimal molecular interactions CNN [247]
Table 4
This table lists the medical tasks, the contributions provided and the DL models most frequently used in EHR.
Area Task Contribution Model
EHR Disease prediction Integration of different medical data in cancer analysis CNN [263]
High accuracy in dyslipidemia prediction LSTM [261]
Improvement in the imbalance problem in heart failure CNN [264]
Impact of external databases in sleep staging evaluation CNN [265]
Mortality risk estimation by using patients’ historical information LSTM [262]
Optimal heart failure prediction LSTM [51,259]
Integration of structured and unstructured data for the prediction of acute kidney injury subtypes LSTM [260]
Risk analysis Organization of the data on the basis of semantic spheres GCNN [266]
Feature extraction by reducing the data dimensions AE [268]
Treatment plans Construction of a treatment plans by using small population sets LSTM [267]
Estimation of a treatment plan by exploiting data correlations CNN [6]




Some crucial points

quality and size of the dataset :
* unavailability of dataset
* Annotations take time and agreement between experts
* rare diseases are underrepresented in the data sets.

* Privacy and Legal Issue
* share the medical data ?
* Anonymisation, but stil...

Data Interoperability and Data Standards

* nature of data differ from hardware to hardware

* combine several dif-ferent datasets for better algorithms learning
and accuracy. |

* Health data should be standardized and shared between providers

Black Box and Deep Learning



rocomputing — July 2020

Learning for Medical Image Analysis

Heart sounds classification using a novel 1-D convolutional neural network with extremely low parameter consumption
Lung adenocarcinoma diagnosis in one stage

Robust brain extraction tool for CT head images

Multi-label transfer learning for the early diagnosis of breast cancer

Automated hepatobiliary toxicity prediction after liver stereotactic body radiation therapy with deep learning-based portal
vein segmentation

Analysis of tuberculosis severity levels from CT pulmonary images based on enhanced residual deep learning architecture
A fully convolutional network feature descriptor: Application to left ventricle motion estimation based on graph matching in
short-axis MRI

A framework for hierarchical division of retinal vascular networks

Super-resolution reconstruction of single anisotropic 3D MR images using residual convolutional neural network

CcNet: A cross-connected convolutional network for segmenting retinal vessels using multi-scale features

Deep learning for variational multimodality tumor segmentation in PET/CT

AdaResU-Net: Multiobjective adaptive convolutional neural network for medical image segmentation

Fine-tuning Pre-trained Convolutional Neural Networks for Gastric Precancerous Disease Classification on Magnification
Narrow-band Imaging Images

Brain tumor segmentation with deep convolutional symmetric neural network

Computer aided Alzheimer's disease diagnosis by an unsupervised deep learning technology

Bin loss for hard exudates segmentation in fundus images

Non-contact heart rate detection by combining empirical mode decomposition and permutation entropy under non-
cooperative face shake

Dynamic MRI reconstruction exploiting blind compressed sensing combined transform learning regularization

Deep learning for ultrasound image caption generation based on object detection

Convolutional neural network based diagnosis of bone pathologies of proximal humerus



https://www.sciencedirect.com/journal/neurocomputing
https://www.sciencedirect.com/science/article/pii/S0925231219304801
https://www.sciencedirect.com/science/article/pii/S0925231219304631
https://www.sciencedirect.com/science/article/pii/S0925231219304734
https://www.sciencedirect.com/science/article/pii/S0925231219304710
https://www.sciencedirect.com/science/article/pii/S0925231219304722
https://www.sciencedirect.com/science/article/pii/S0925231219304722
https://www.sciencedirect.com/science/article/pii/S0925231219304746
https://www.sciencedirect.com/science/article/pii/S0925231219304758
https://www.sciencedirect.com/science/article/pii/S0925231219304758
https://www.sciencedirect.com/science/article/pii/S092523121930476X
https://www.sciencedirect.com/science/article/pii/S0925231219304771
https://www.sciencedirect.com/science/article/pii/S0925231219304655
https://www.sciencedirect.com/science/article/pii/S0925231219304667
https://www.sciencedirect.com/science/article/pii/S0925231219304679
https://www.sciencedirect.com/science/article/pii/S0925231219304680
https://www.sciencedirect.com/science/article/pii/S0925231219304680
https://www.sciencedirect.com/science/article/pii/S0925231219304692
https://www.sciencedirect.com/science/article/pii/S0925231219304709
https://www.sciencedirect.com/science/article/pii/S0925231219304783
https://www.sciencedirect.com/science/article/pii/S0925231219304795
https://www.sciencedirect.com/science/article/pii/S0925231219304795
https://www.sciencedirect.com/science/article/pii/S0925231219304813
https://www.sciencedirect.com/science/article/pii/S0925231219304825
https://www.sciencedirect.com/science/article/pii/S0925231219304837

n MRl images

Table 1: Overview of papers using deep learning techniques for brain image analysis. All works use MRI unless otherwise mentioned.

Reference

Mecthod  Application; remarks

Disorder classification (AD, MCI, Schizophrenia)

Brosch and Tam (2013)
Plis ct al. (2014)

Suk and Shen (2013)

Suk et al. (2014)

Payan and Montana (2015)
Suk et al. (2015)
Hosseini-Asl et al. (2016)
Kim et al. (2016b)

Ortiz ct al. (2016)

Pinaya ct al. (2016)
Sarraf and Tofighi (2016)
Suk et al. (2016)

Suk and Shen (2016)

Shi et al. (2017)

DBN
DBN
SAE

RBM
CNN
SAE

CNN
ANN
DBN
DBN
CNN
SAE

CNN
ANN

AD/HC classification; Deep belief networks with convolutional RBMs for manifold learning

Deep belief networks evaluated on brain network estimation, Schizophrenia and Huntington's discase classification

AD/MCI classification; Stacked auto encoders with supervised fine tuning

AD/MCIHC classification; Deep Boltzmann Machines on MRI and PET modalities

ADMCI/HC classification; 3D CNN pre-trained with sparse auto-encoders

AD/MCI/HC classification; SAE for latent feature extraction on a large set of hand-crafted features from MRI and PET
AD/MCI/HC classification; 3D CNN pre-trained with a 3D convolutional auto-encoder on fMRI data

Schizophrenia/NH classification on fMRI; Neural network showing advantage of pre-training with SAEs, and L1 sparsification
AD/MCIHC classification; An ensemble of Deep belief networks, with their votes fused using an SVM classifier
Schizophrenia/NH classification; DBN pre-training followed by supervised fine-tuning

AD/HC classification; Adapted Lenet-5 architecture on fMRI data

MCI/HC classification of fMRI data: Stacked auto-encoders for feature extraction, HMM as a gencerative model on top
ADMCI/HC classification; CNN on sparse representations created by regression models

ADMCI/HC classification; Multi-modal stacked deep polynomial networks with an SVM classifier on top using MRI and PET

Tissue/anatomy/lesion/tumor segmentation

Guo et al. (2014) SAE
de Brebisson and Montana (2015) CNN
Choi and Jin (2016) CNN
Stollenga et al. (2015) RNN
Zhang ct al. (2015) CNN
Andermatt et al. (2016) RNN
Bao and Chung (2016) CNN
Birenbaum and Greenspan (2016) CNN
Brosch et al. (2016) CNN
Chen et al. (2016a) CNN
Ghafooran et al. (2016b) CNN
Ghafoorian et al. (2016a) CNN
Havaei et al. (2016b) CNN
Havaei et al. (2016a) CNN
Kamnitsas et al. (2017) CNN
Kleesick et al. (2016) CNN
Mansoor et al. (2016) SAE
Milletari et al. (2016a) CNN
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Hippocampus segmentation; SAE for representation learning used for target/atlas patch similarity measurement

Anatomical segmentation; fusing multi-scale 2D patches with a 3D patch using a CNN

Striatum segmentation; Two-stage (global/local) approximations with 3D CNNs

Tissue segmentation; PyraMiD-LSTM, best brain segmentation results on MRBrainS13 (and competitive results on EM-ISBI12)
Tissue segmentation; multi-modal 2D CNN

Tissue segmentation; two convolutional gated recurrent units in different directions for cach dimension

Anatomical segmentation; Multi-scale late fusion CNN with random walker as a novel label consistency method

Lesion segmentation; Multi-view (2.5D) CNN concatenating features from previous time step for a longitudinal analysis
Lesion segmentation; Convolutional encoder-decoder network with shortcut connections and convolutional RBM pretraining
Tissue segmentation; 3D res-net combining features from different layers

Lesion segmentation; CNN trained on non-uniformly sampled patch to integrate a larger context with a foviation effect
Lesion segmentation; multi-scale CNN with late fusion that integrates anatomical location information into network

Tumor segmentation; CNN handling missing modalitics with abstraction layer that transforms feature maps to their statistics
Tumeor segmentation; two-path way CNN with different receptive ficlds

Tumeor segmentation; 3D multi-scale fully convolutional network with CRF for label consistency

Brain extraction; 3D fully convolutional CNN on multi-modal input

Visual pathway scgmentation: Learning appearance features from SAE for steering the shape model for segmentation
Anatomical segmentation on MRI and US: Hough-voting to acquire mapping from CNN features to full patch segmentations
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DL on brain images

Brain
Brain extraction
Functional connectomes

Structural connectomes

Brain age

Alzheimer’s disease

Vascular lesions
Identification of MRI
contrast

Meningioma

Glioma

Multiple sclerosis

[269]
[270]
[271]

[272]

[273]
[274]

[275]
[276]

[277]
[278]
[279]
[280]
[281]
[282]
[283]

[284]

A 3D CNN for skull stripping

Transfer learning approach to enhance deep neural network classification of brain functional connectomes
Multisite diagnostic classification of schizophrenia using discriminant deep learning with functional connectiv
MRI

A convolutional neural network-based approach (https://github.com/MIC-DKFZ/TractSeg) that directly
segments tracts in the field of fiber orientation distribution function (fODF) peaks without using tractography,
image registration or parcellation. Tested on 105 subjects from the Human Connectome Project
Chronological age prediction from raw brain T1-MRI data, also testing the heritability of brain-predicted age
using a sample of 62 monozygotic and dizygotic twins

Landmark-based deep multi-instance learning evaluated on 1526 subjects from three public datasets (ADNI-1,
ADNI-2, MIRIAD)

Identify different stages of AD

Multimodal and multiscale deep neural networks for the early diagnosis of AD using structural MR and
FDG-PET images

Evaluation of a deep learning approach for the segmentation of brain tissues and white matter hyperintensities
presumed vascular origin in MRI

Using deep learning algorithms to automatically identify the brain MRI contrast, with implications for managi
large databases

Fully automated detection and segmentation of meningiomas using deep learning on routine multiparametric
MRI

Glioblastoma segmentation using heterogeneous MRI data from clinical routine

Deep learning for segmentation of brain tumors and impact of cross-institutional training and testing
Automatic semantic segmentation of brain gliomas from MRI using a deep cascaded neural network
AdaptAhead optimization algorithm for learning deep CNN applied to MRI segmentation of glioblastomas
(BRATS)

Deep learning of joint myelin and T1w MRI features in normal-appearing brain tissue to distinguish between
multiple sclerosis patients and healthy controls



.allenges In the DL-medical domain

Name

Summary

Link

Grand-Challenges

RSNA Pneumonia Detection Challenge

HVSMR 2016

ISLES 2018

BraTS 2018

CAMELYON17

ISIC 2018

Kaggle’s 2018 Data Science Bowl
Kaggle’s 2017 Data Science Bowl

Kaggle’s 2016 Data Science Bowl

MURA

Grand challenges in biomedical image
analysis. Hosts and lists a large number of
competitions

Automatically locate lung opacities on chest
radiographs

Segment the blood pool and myocardium
from a 3D cardio-vascular magnetic
resonance image

Ischemic Stroke Lesion Segmentation 2018.
The goal is to segment stroke lesions based
on acute CT perfusion data.

Multimodal Brain Tumor Segmentation. The
goal is to segment brain tumors in
multimodal MRI scans.

The goal is to develop algorithms for
automated detection and classification of
breast cancer metastases in whole-slide
images of histological lymph node sections.
Skin Lesion Analysis Towards Melanoma
Detection

Spot Nuclei. Speed Cures.

Turning Machine Intelligence Against Lung
Cancer

Transforming How We Diagnose Heart
Disease

Determine whether a bone X-ray is normal
or abnormal

https://grand-challenge.org/

https://www.kaggle.com/c/rsna-pneumonia-detection-challenge

http://segchd.csail.mit.edu/

http://www.isles-challenge.org/

http://www.med.upenn.edu/sbia/brats2018.html

https://camelyon17.grand-challenge.org/Home

https://challenge2018.isic-archive.com/

https://www.kaggle.com/c/data-science-bowl-2018
https://www.kaggle.com/c/data-science-bowl-2017

https://www.kaggle.com/c/second-annual-data-science-bowl

https://stanfordmlgroup.github.io/competitions/mura/




