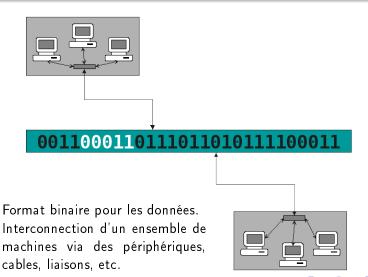
RB14 - Notions de base en informatique Les réseaux

Florence Zara

LIRIS - Université Lyon 1


http://liris.cnrs.fr/florence.zara E-mail: florence.zara@liris.cnrs.fr

Les réseaux

Objectifs

- Qu'est ce qu'un réseau, quand est-on en réseau ?
- Anatomie et composants d'un réseau
- Transmission de l'information à travers un réseau (communication entre machines, protocole)
- Les différents types de réseaux

A partir de quand est-on en réseau ?

Partager / transmettre des données

- Permet de partager des données
- Pour travailler en groupes
- Mise en commun de fichiers
 - copie
 - exécution
 - modification

Le partage nécessite la gestion des accès concurrents

Partager des ressources matérielles

- Autres machines
 - la machine d'à côté (réseau local)
 - machine lointaine (réseau « externe »)
- Périphériques
 - imprimantes (1 imprimante pour plusieurs postes de travail)
 - scanners, photocopieuses
- Unités de stockage
 - sauvegardes, récupérations
 - serveurs distants de stockage
- Puissance de traitement (calcul)
 - processeurs (regroupement de plusieurs machines pour avoir une grande puissance de calculs)
 - mémoire

Partager des ressources logicielles

- Utiliser des « services »
 - serveurs de fichiers (compte à l'université)
 - serveurs de bases de données (entreprise : clients, produits stockés à 1 endroit, toutes les agences peuvent y accéder)
 - serveurs d'applications (1 machine qui sert à installer les logiciels)
 - serveurs de calculs (permet de lancer des gros calculs)

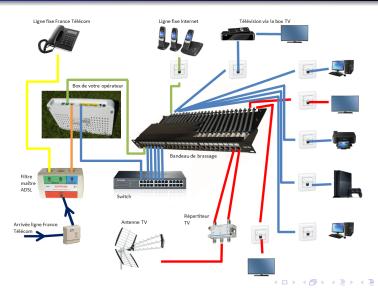
Rationaliser les coûts

- Logiciels / progiciels
 - 1 pour n machines
 - licences site
 - jetons (m licences)
- Périphériques
 - 1 pour n utilisateurs
- Services
 - abonnements ou forfaits
- Maintenance logicielle
 - plusieurs installations identiques

Gérer un parc de machines

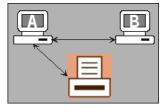
- Connexion de plate-formes multiples
 - Mac, PC, stations de travail
- Avec des systèmes d'exploitation multiples
 - Unix, Linux, Windows, MacOS...
- Services
 - sauvegardes automatisées
 - sécurisation centralisée
 - lutte contre intrusion, piratage, malveillance, destruction, virus...

Communiquer


- Courrier électronique
- World Wide Web
- Téléphone
- Vidéo, visio-conférence
- Chat

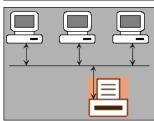
Composants matériels (1/4)

On a besoin de quoi pour créer un réseau ?

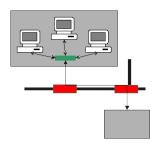

- Une machine « de base »
 - unité centrale, écran, clavier, souris, disque dur interne...
 - ports (pour souris, clavier...)
- Connexion réseau
 - carte Ethernet (câble) 100 Mb/s
 - fibre optique 1 Gb/s
 - Wifi (Wireless Fidelity, ondes radioélectriques) 54 Mb/s

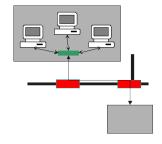
Composants matériels (2/4)


Composants matériels (3/4)


- Périphériques utilisables en réseau
 - imprimante standard
 - unités de stockage
 - ressources partagées

Composants matériels (3/4)


- Périphériques utilisables en réseau
 - imprimante standard
 - unités de stockage
 - ressources partagées
- Périphériques réseau
 - imprimante réseau
 - logiciel réseau
 - interface réseau (connexion)
 - processeur
 - mémoire vive (plus que dans les imprimantes standards)
 - disque réseau


Composants matériels (4/4)

- « Interfaces »
 - entre machines
 - répéteurs
 - concentrateurs (« hubs »)
 - entre (sous-)réseaux
 - routeurs (aiguillage des données)
 - passerelles (réseaux non-homogènes)

Composants matériels (4/4)

- « Interfaces »
 - entre machines
 - répéteurs
 - concentrateurs (« hubs »)
 - entre (sous-)réseaux
 - routeurs (aiguillage des données)
 - passerelles (réseaux non-homogènes)

- Connectique
 - câble réseau (RJ 45)
 - fibre optique
 - ondes radio (hertziennes, satellite, Wifi)
 - infra-rouge...

Composants logiciels

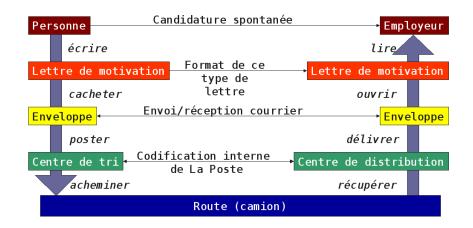
- Le fonctionnement d'un réseau nécessite
 - un système d'exploitation réseau
 - Windows, Linux / Unix, MacOS...
 - des protocoles de communication
 - TCP/IP (Unix, puis Windows et Mac) le plus utilisé
 - AppleTalk (Apple)
 - IPX/SPX (Novell) pour les gros serveurs de calcul
 - un pilote de carte réseau (driver)
 - pour contrôler la carte réseau

Acteurs « administratifs »

- Tâches des administrateurs pour gérer le réseau
 - lancer ou arrêter les serveurs
 - assurer le bon fonctionnement des réseaux et de leurs composants
 - garantir des archivages et des sauvegardes fiables
 - protéger les réseaux des attaques extérieures
 - maintenir les réseaux
 - répercuter les évolutions (nouvelle norme, etc.)
 - matérielles
 - logicielles

Transmission à travers un réseau

- L'information passe d'une machine à une autre, d'un système à un autre, avec des risques
- Il faut assurer le bon fonctionnement de la transmission
- Conséquences
 - perte ou corruption des informations
 - malveillance (espionnage, destruction)
- Quelle règles sous-tendent ces communications ?


Protocole de communication

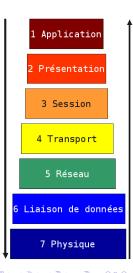
- Un protocole ou communiquer selon une norme
 - est un langage, c'est-à-dire un ensemble de règles que deux systèmes doivent connaître pour communiquer entre eux
 - permet à deux machines ou deux systèmes qui l'utilisent de se « comprendre »
 - assure l'indépendance des communications vis-à-vis du système d'exploitation ou de la plate-forme
 - limite les risques durant la transmission
- Contrainte
 - les fabricants doivent se conformer aux normes ISO (International Standardization Organisation) pour les protocoles utilisés sur leurs machines / système

Modèle en couches (1/2)

- Modèle : ensemble de règles théoriques
 - comment applications, ordinateurs et périphériques doivent procéder pour communiquer entre eux au sein d'un réseau
 - la conformité à un modèle garantit la compatibilité de tous les types de réalisations.
- Modèle en couches
 - le processus de transmission est découpé en étapes (« couches ») successives
 - chaque couche est responsable d'un des aspects de la communication en réseau
- Modèle en couches théorique de référence : OSI (Open System Interconnection).

Modèle en couches (2/2)

Le modèle théorique OSI



- Pour être transférées au sein d'un réseau
 - les informations doivent traverser les 7 couches OSI
 - à chaque couche, les données sont encapsulées dans de nouvelles informations
- Lorsqu'elles arrivent à destination
 - les données traversent les mêmes couches, mais en sens inverse
 - les informations qui ont été ajoutées à chaque couche sont supprimées au passage de la couche correspondante

Les 7 couches du modèle OSI

- Application : gestion des échanges de données entre programmes et services du réseau
- **2 Présentation**: mise en forme des informations pour les rendre lisibles par les applications
- Session : détection du mode de communication entre machines et périphériques.
- Transport : correction des erreurs de transmission; vérification de l'acheminement
- Réseau : identification des machines connectées au réseau
- Liaison de données : subdivision des informations en «paquets» pour livraison sur le réseau
- **O Physique** : contrôle du support de transmission; circulation de l'information électrique

La famille de protocoles TCP / IP

- Applique en partie le modèle OSI
- IP (Internet Protocol)
 - adressage (routage) des informations
- TCP (Transmission Control Protocol)
 - transfert d'infos entre machines d'un réseau TCP/IP
 - contrôle des transmissions
- FTP (File Transfer Protocol)
 - transfert de fichiers
- HTTP (HyperText Transfer Protocol)
 - transfert d'informations sur le web
- DNS (Domain Name Server Protocol)
 - conversion du nom des ordinateurs connectés au réseau en adresses IP

. . .

Nom de ressources (1/5)

- Sur Internet, chaque machine doit posséder une adresse IP universelle unique connue de tout le monde
- Au départ: adresse IP (V4)
 - 4 nombres de 8 bits (ou 4 octets, en base 10, de 0 à 255),
 - 256⁴ possibilités de noms de machine
 - séparés par des points
 - ex: 138.96.146.2 (pour la machine www.inria.fr)
- maintenant : IP (v6) sur 16 octets
 - (256⁴)⁴ noms de machines possibles

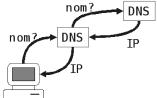
Nom de ressources (2/5

- Il existe 3 classes principales de réseaux
 - Classe A : n . ? . ? . (1er chiffre constant)
 - ex : NASA
 - Classe B: n. n.?.? (2 premiers chiffres constants)
 - ex : France Télécom
 - Classe C: n . n . n .? (3 premiers chiffres constants)
 - permet de mettre en ligne 256 machine
- 0 et 255 : terminaux réservés
 - 0 : nom du réseau
 - 255 : broadcast (diffusion) : toutes les machines reçoivent

Nom de ressources (3/5)

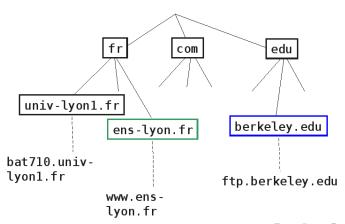
- Exemple : UCBL = une classe B
 - bâtiment 301 (Grignard, Doua) : 134.214.226.?
 - 8 salles
 - 8 sous-réseaux
 - de 134.214.226.1 à 134.214.226.16
 - ...
 - de 134.214.226.249 à 134.214.226.254

Nom de ressources (4/5)

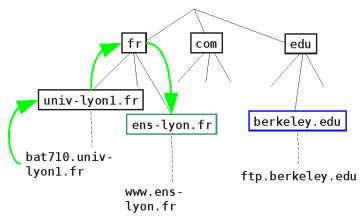

- À ce numéro, on peut faire correspondre un nom plus explicite 134.214.126.72
 ⇔ www.univ-lyon1.fr
- Nom de machine
 - décomposé hiérarchiquement
 - domaine (critère géographique, institutionnel, organisationnel...): fr
 - sous-domaine (éventuellement) : univ-lyon1
 - nom local de la machine : bat710
 - exemples :
 - bat710.univ-lyon1.fr
 - www.berkeley.edu
 - ftp.berkeley.edu
 - www.education.gouv.fr

Nom de ressources (5/5)

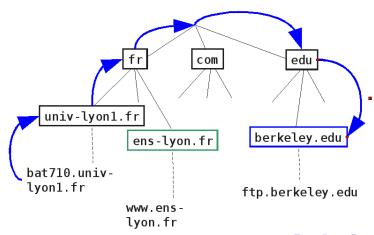
- Gestion des noms de domaine
- Centralisation
 - ICANN: Internet Corporation for Assigned Names and Numbers
 - noms de domaines génériques
 - .com, .gov, .mil, .net, .org, .int, .edu, .fr...
 - AFNIC : Association Française pour le Nommage Internet en Coopération
 - noms de domaines français (.fr)
 - équivalent de gov : gouv.fr


Serveur de noms de domaines (1/2)

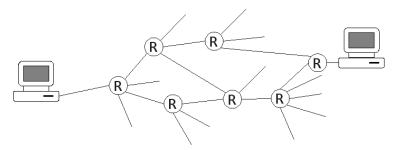
- Serveur DNS
 - serveur de noms de domaines (Domain Name Server)
 - sert à convertir un nom en un numéro IP
 - 134.214.88.10 / bat710.univ-lyon1.fr
 - 138.96.146.2 / www.inria.fr
 - gère un domaine et transmet éventuellement à un autre DNS


Serveur de noms de domaines (2/2)

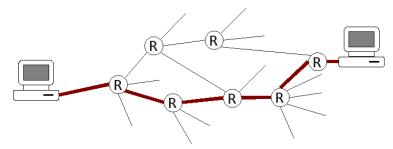
bat710.univ-lyon1.fr cherche www.ens-lyon.fr puis ftp.berkeley.edu


Serveur de noms de domaines (2/2)

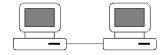
bat710.univ-lyon1.fr cherche www.ens-lyon.fr puis ftp.berkeley.edu


Serveur de noms de domaines (2/2)

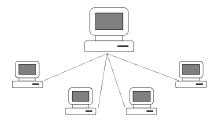
bat710.univ-lyon1.fr cherche www.ens-lyon.fr puis ftp.berkeley.edu


Routage

- Routeur
 - connecteur reliant des réseaux
 - rôle : diriger les informations dans la direction appropriée
 - à partir de l'adresse IP (une fois la résolution faite)

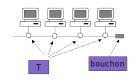

Routage

- Routeur
 - connecteur reliant des réseaux
 - rôle : diriger les informations dans la direction appropriée
 - à partir de l'adresse IP (une fois la résolution faite)

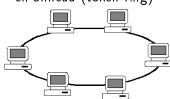


Organisations type

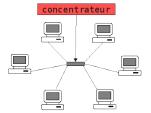
Poste à poste



Client-serveur



Types d'architectures


en bus

en anneau (token-ring)

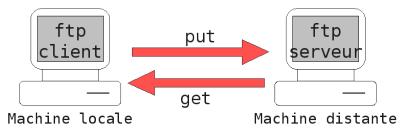
en étoile

Architecture hybride

- Plusieurs architectures élémentaires en même temps
 - A l'Université :
 - configuration en étoile en salle de TPs
 - configuration en bus entre les salles de TPs
- Réseaux de grande échelle
 - les « vrais » réseaux
- Typiquement : Internet
 - des millions de machines en réseaux
 - des dizaines de milliers de réseaux
 - d'architectures différentes
 - d'organisations différentes

Réseaux types

- LAN (Local Area Network)
 - pas un réseau au sens strict (pas de résolution d'adresses hiérarchique)
 - organisation en poste à poste, client-serveur
 - pour relier quelques machines (<100) dans la même salle, voire le même bâtiment
- MAN (Metropolitan Area Network)
 - organisation client-serveur
 - pour relier plusieurs sous-réseaux dans la même ville ou région (ex : ROCAD UCBL)
- WAN (Wide Area Network)
 - relient souvent entre-eux LANs et MANs (RENATER, Internet)
 - organisation client-serveur


Internet

- Réseau mondial de diffusion de l'information
 - naissance à la sortie de la 2nde guerre mondiale
 - communication possible même en cas de panne de certains noeuds du réseau (en cas de guerre)
 - après les militaires, les universités pour diffuser les publications, puis domaine public depuis 1990, et maintenant très grand public
 - famille de protocoles TCP / IP
 - systèmes d'exploitation
 - au départ, univers Unix
- Premières applications
 - courrier électronique (mail)
 - transfert de fichiers (ftp)
 - forum de discussion (Usenet)

Internet - FTP : principes de base

- FTP : File Transfer Protocol
 - transfert de fichiers
 - bidirectionnel (dans les deux sens)
 - entre une machine client (locale) et une machine serveur (distante)

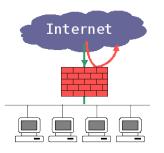
Internet - FTP: types de connexion

- Connexion sur une machine où vous avez un compte
 - ftp nom-machine-distante
 - login : mon-nom-d'utilisateur
 - passwd : mon-mot-de-passe
- Connexion à un serveur ftp « public » (documentation, distribution free/shareware...)
 - ftp nom-machine-distante
 - login: anonymous
 - passwd : « ... @... fr » (ex : toto@titi.fr)
 - sur les serveurs peu sûres, ne pas utiliser son adresse mèl

Internet - FTP : types de données

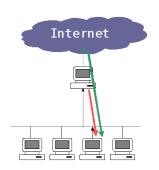
- Deux types de données pour le transfert
 - ASCII
 - texte « pur » (on peut le lire correctement avec le bloc-notes)
 - ex:.txt,.html
 - en FTP : choisir ASCII (cas par défaut en FTP sous DOS)
 - binaire
 - données « plus complexes » (le bloc-notes ne peut pas les lire correctement)
 - ex : doc, images, sons...
 - en FTP : choisir bin(aire)
- Il faut choisir le type de données avant de faire le transfert
 - souvent fait de manière automatique par l'application

Wolrd Wide Web (WWW)

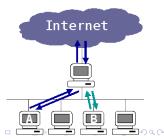

- Internet = réseau mondial
 - interconnexion de tous les sous-réseaux
- Web = données mises à disposition sur Internet
 - accès grand public
- Transmission via le protocole http
 - de données (texte, photo, son, vidéo...)
 - de pages Web (HTML)
 - de petits programmes («applets»)
 - de multimédia
- Outils spécifiques
 - HTML, JavaScript, PHP, Java ...

Intranet

- Réseau comparable à Internet à l'échelle d'une entreprise ou d'un organisme
 - exemples d'utilisations
 - gestion de projets
 - outils de formation à distance
 - messagerie locale
 - pages Web de services, d'employés
- Avantages
 - technologie Internet
 - avec confidentialité
- Inconvénients
 - propagation à l'intérieur...


Sécurité - firewall

- Dispositif « pare-feu », de protection contre l'intrusion
 - permet de protéger un réseau privé du réseau public
 - vérifie et contrôle le flux d'informations
 - source
 - destination
 - protocole
 - (ports logiques de la machine destinataire)
 - bloque les flux non souhaités


Sécurité - filtrage

- Dispositif de filtrage
 - pour empêcher l'accès à certains sites
 - mots-clés
 - destination
 - protocole
 - source

Cache web

- Cache (proxy)
 - serveur qui agit pour plusieurs « clients »
 - le cache reçoit des requêtes de pages Web d'une machine A; il obtient ces pages, les retourne à A et les mémorise
 - si une autre machine B demande ensuite une de ces pages, le cache retourne à B la dernière version qu'il en a en mémoire
- Avantages
 - optimise le temps de réponse
 - limite les contacts directs
 - sécurise les réseaux internes
- Inconvénients
 - requêtes multiples sur cible unique...

