

Towards the design of simulators of medico-surgical gestures

An instrumental childbirth delivery simulator

Cologne Gerr

Paris

Andorra

Frankfurt

Milan

Monaco

Florence Zara

Associate Professor Université Lyon 1, LIRIS Villeurbanne, France.

French American Innovation Day - FAID 2019 - March 7th 2019

Context of medical training

Learning from the patient poses ethical problems due to risks linking to the training

- So currently, the medical training is based on the observation rather than practice
- But the dexterity of surgical instruments requires practice!

<u>Question:</u> How learning medical gestures efficiencly without any risk for the patient?

Contribution of new technologies

One solution is to propose new learning simulators based on Virtual Reality, combining:

- A numerical simulation reproducing the behavior of organs during their interactions with each other and with medical instruments
- A haptic device reproducing the sensations perceived during the gesture
- A didactic software offering adapted scenarios for learning (notion of scores, progression, evaluation)

HelpMeSee - cataract

HRV - dental

Lap Mentor - laparoscopy

Comparable approach to simulators for airplane pilots

Interests of medical learning simulators based on Virtual Reality

4

• Learning without risk for the patient:

- "Never the first time on the patient" French High Authority of Health (HAS) - 2012 report
- Multiplication and targeting of situations encountered
 - Usual situations, rare situations
- Improvement of the knowledge of the gesture to be made
- Improvement of the reasoning to be done during the gesture
 - to better understand / acquire / own it
- Acquiring the necessary dexterity to handle the instruments before the first time on the patient

Context of medical training at gestures of childbirth

Acquire the right gestures for forceps extraction during childbirth

- Understanding of the gesture to be made
- Do not damage the tissues of the parturient and the fetus

Dare to do this to limit caesareans

Delicate context

where the parturient is conscious, where the husband is present

A childbirth simulator based on VR

[SAGA project (ANR-12-MONU-0006)]

All4Tech, HRV, LSE, Lyon Sud maternity, midwifery school of Grenoble (France)

Didactic software

A necessary multidisciplinary approach

7

To develop a numerical simulation 1- To analyze and understand the gesture and its learning reproducing the behavior of the organs to highlight the relevant components of the simulator during the gesture in real time Computer **Didactic Science** Development of 2- To develop relevant and simulators for progressive scenarios for learning medical training 3 -To evaluate the contribution **Robotic** Medical of the simulator for learning To elaborate a haptic device restituting To validate the different the real sensations of the gesture parts of the simulator

Scientific issues

Simulate and visualize behavior of organs in real time

- Simplify the models (geometric / biomechanical) while ensuring an adequate realism for the training
- Evaluate errors related to the approximation of the numerical model (comparison with the real is difficult)
- Propose an adequate haptic device rendering tactile sensations
 - Felt tested by obstetricians
- Ensure the stability of the complete solution
 - Numerical model, haptic interface, interaction between components

Scientific issues

Simulate and visualize behavior of organs in real time

- Simplify the models (geometric / biomechanical) while ensuring an adequate realism for the training
- Evaluate errors related to the approximation of the numerical model (comparison with the real is difficult)
- Propose an adequate haptic device rendering tactile sensations
 - Felt tested by obstetricians
- Ensure the stability of the complete solution
 - Numerical model, haptic interface, interaction between components

Goal of the numerical simulation

To simulate the descent of the fetus during childbirth

To simulate the deformation of the head due to uterine pressions / forceps

The goal is to communicate the forces applied on the head and its position to the haptic device... and reciprocally...

BirthSim, Ampère lab.

Challenges for training simulators

• We have:

- to be fast! (and stable...) for interaction with haptic device
- to be enough accurate to reproduce realist physical behavior

We have to find the adequate compromise between accuracy and execution time

The complete childbirth simulator

[SAGA project (ANR-12-MONU-0006)]

Difficulties and limits

- The difficulty lies in the fact that one should not learn to do the intervention on the simulator / to use the simulator
- But the simulator must allow to learn the "real gesture"
- We must succeed in making sure that the simulator helps
 - to appropriate the gesture
 - to analyze the situations encountered
 - to acquire the dexterity of the gesture

"We have to learn how to operate a real patient and not to operate the simulator."

At shorter terms for medical simulators: "specific patient"

- Training before risky operations
- Pre-operative diagnosis / prediction to assess risks
- Help during the intervention

Case of the childbirth simulator

- Better understanding of the forces involved during childbirth
- Limitation of the number of caesareans by daring to use forceps
- Prediction of risky delivery in terms of damage for the parturient
- Improvement of the medical care of prolapse

Expected interests of such simulators

- Acceleration of the learning process
- Improvement of physiological knowledge
- Implementation of new methods of gesture evaluation
- Setting up new gestures

Our approach to obtain real time

Simulation of fetal descent in real time

The descent of the fetus is involved by forces (abdominal, uterine contractions) applied on the uterus

[[]Buttin 2013]