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1 Introduction

Triangulation, quadrangulation problems and more generally 3D objects poly-
hedrization are an important subject of research. In digital geometry, a 3D
object is seen as a set of voxels placed in a representation space only con-
stituted of integers. The objective of the polyhedrization is to obtain a com-
plete description of the object with faces, edges and vertices. The recogni-
tion of digital planes is a first step which is very important. We will focus
on digital naive planes that have been studied through their configurations of
tricubes [Sch97, VCIT], of (n,m)-cubes [VCI9b] and connected or not connected
voxels set [VC99a, Gér99]. The link between the normal equation of a plane and
configuration of voxels set has been studied by the construction of the corre-
sponding Farey net [VC99a]. We can find many references about the recognition
of digital planes. Some algorithms were related to the construction of the con-
vex hull of the studied voxels set [KS91, KR82]. Other approaches use linear
programming [ST91], mean square approximation [BF94] or Fourier-Motzkin
transform [FP99, FST96, Vee94]. The first algorithms entirely discrete were to
recognize rectangular pieces of naive planes [Deb95, DRR94, VC99b]. In this pa-
per, we describe an incremental algorithm to recognize any coplanar voxels set
as a digital naive plane by using Farey nets. Then we propose a polyhedrization
method able to give all the digital naive planes of the surface of the 3D object.

2 Definitions

Let a, b, ¢, r be four integers such as a, b, ¢ are not null all together and verify
ged(a, b,c) = 1.

The digital naive plane P(a,b,c,r), where (a, b, ¢) is its normal vector and r its
translation parameter, is the set of points (z,y,2) in Z? verifying:

0 < az + by + cz + r < max(|al, b, |¢|)

We will limit our study to naive planes P(a, b, ¢, r) in the 48th part of space such
as 0 < a < b< cand c # 0. These planes are functional in Ozy. For each point
(z,y) in Z*, we have only one point (z,y, z) in Z> belonging to the naive plane.



Let us notice f(a,b,c,r) the function from Z? to Z defined by:

f(a.bye,m)(u,0) = = [M]

c

where [w] denotes the integer part of the real number w, then z = f(a, b, ¢, r)(z, y).

The points (z,y, z) of the naive plane P(a, b, ¢, ) which verify ax+by+cz+r =0
(resp. ax + by + cz +r = ¢ — 1) are the lower (resp. upper) leaning points of
the naive plane.

(a) (b)

Fig. 1. (a) A naive plane represented as a set of voxels : a voxel (black) surrounded
by its eight neighbors (white) (b) A naive plane with the lower leaning points (white
voxels) and upper leaning points (black voxels).

3 Equivalence class of a voxels set

Let nin IN* and V = {(i1,41), -, (in,Jn)} a set of n points of Z?. The cluster
of voxels S(a,b,c,r)(x,y) of the naive plane P(a,b,c,r) indexed by V' and with
origin (z,y) is defined by:

S(a,b,c,r)(z,y)

n

U{(m'l'iq:y +Jgs 2+ kg) | (ig,Jq) €V, kg = fla,b,¢,7)(z + g,y + Jg) — 2}

g=1



where z = f(a,b,¢,r)(z,y)-

S(a,b,c,r)(x,y) is the part of the naive plane going through the n voxels (z +
iq7y+jq7z+kq)7 q= 17"'7”'

Let a point (x,y, z) of the naive plane P(a,b, ¢,r). It verifies :
0<ar+by+cz+r<c

Let (x1,y1,21) be a lower leaning point from P(a, b, ¢, r). It belongs to the naive
plane, so :
ax;+ by +cz+r=0

The point (z,y, z) can be written as (z; +u,y; +v, 2 + w) with (u,v,w) in ZZ>.
The double inequality becomes :

O0<a(z+u)+blyr+v)+clzr+w)+r<c

So, we obtain :
0<au+bv+cw<c

Let us notice r' equal to au + bv + cw. For ¢ = 1,---,n, the point (z + i,y +
Jg, % + kq) verifies :

0<alx+ig) +bly+jg) +c(z+ky) +r<c
O0<a(mi+u+ig) +by+v+j)+e(nn+w+ky) +r<c

0<a(u+iqg) +b(v+jq) +c(w+ky)+r<c
0<aig+bj,+ckg+r' <c

Consequently, S(a,b,¢,r)(z,y) can be written as:
S(a,b,c,r)(z,y) = {(z,y,2)} ® S(a,b,¢,7')(0,0)
where A @ B is the Minkowski sum between the sets A and B.

All real planes for which the discretization by the object boundary quantization
method on the set {(z,y)} ® V is the set S(a,b,c,r)(x,y), have to go through
the point (7, yi, 2;). Moreover on the point (z,y) the discretization must be the
voxel (z,y, z). A first equivalence class of S(a,b,c,r)(z,y) is the set of parame-
ters (a, ) with 0 < a < 8 <1 of the real plane a(z —z;)+ By —yi)+2z—21 =0
verifying 0 < au + fv + w < 1. We notice this equivalence class by the set:

S(r)(z,y) = ({(@.B) | 0<a<p<T,

(T +iq,y+Jjg, 2+ kq) € S(a,b,c,r)(z,y), -1 <igo+jo 8+ kg < 1}



For each integer point (4, 7), we have f(a, b, ¢, r){(z;+i,y1+7) = f(a,b,¢,r)(z,y1)+
f(a,b,¢,0)(i, ). For ¢ = 1,---,n, the integer k, satisfies k, = f(a,b,c,0)(u +
ig,v + Jq) — f(a,b,c,0)(u,v). So S(r)(z,y) is equal to S(0)(u,v).

Let D(i, j, k) be the line in the parametric space W = {(a,3), 0 < a < g < 1}
with equation i + jB8 + k = 0. Let B(4,J, k) be the open-band of this space
limited by the two parallel lines D(4, 5,k + 1) and D(i, 5,k — 1).

The equivalence class becomes:

S(r)(z,y) = Wﬂ (m B(iq:jqakq)>

In a previous work [VC99a], we proved that the voxels set £ centered on the
lower leaning point (z;,;, 2;) and defined by :

n

&= U S(a,b,c,r)(ml - iqayl _jq)

q=1

is a complete system. It is representative of the different configurations of voxels
sets defined on V' which generate the naive planes with normal (a,b,c). The
equivalence class £ of that set is the intersection of the open bands B(i, j, k) for
(i,7) belonging to VeV (© designs the Minkowski difference between two sets)
and k verifying k = f(a,b,c,r)(x;+i,y1+j) — f(a,b,¢c,7)(x1,y1)- The equivalence
classes of the different configurations appearing around leaning points split the
space W in polygonal areas called Farey net associated to voxels sets defined on
V.

FEzample 1. Let A be the voxels set of a naive plane defined on V = {(0,0),
(1,-1), (2,0), (2,1), (4,—2)} and illustrated in figure 2(a). The equivalence
class A of that set is the intersection of the five bands B(0,0,0), B(1,—1,0),
B(2,0,-1), B(2,1,-2) and B(4,—2,-1) (cf. Fig. 2(b)). Each rational point
in that area corresponds to the parameters of a naive plane containing that
configuration of voxels set.

Now if we look for real planes az + By + 2+ v =0with 0 < a < g <1
for which the discretization by the object boundary quantization method on
the point (z,y) is the voxel (z,y,2) then the parameter v has to verify v =
' — (az+ By + 2z) with 0 < 4" < 1. Moreover if the discretization on {(z,y)}®V
is the set S(a,b,c,r)(z,y), the parameters of that planes belong to the set:

S'(z,y) = (@, 8,7 —(az+ By +2)) | 0<a<B<L0<Y <1,

g=1
(@ +iq,y+ g, 2+ kq) € S(a,b,c,r)(z,y), 0 <iga+ B+ + kg <1}

This second equivalence class will be used in the recognition algorithm.



(a) (b)

Fig. 2. (a) Set A = {(0,0,0),(1,—-1,0),(2,0,-1),(2,1,—-2) (4,—2, —1); (b) Equivalence
class of A.

4 Recognition algorithm

Let S = {(z4,Yq,24), ¢ = 1,---,n} be a set of n voxels.
We are going to establish an incremental algorithm to identify the parameters
of the naive planes going through the n points of S.

The naive planes solutions are the planes P(a,b,c,r — (ax1 + by1 + cz1)) for

abr
which the parameters (—, -, —) belong to the set:
c’'c’c

gz{(‘%ﬂa’)’) € [051]2X [051“ vqe {].,"',TL} Ogiqa+jqﬂ+’y+kq <1}

where (iq,jq,kq) is defined as to be the integer points (zq — 21,yq — y1,2¢ — #1)
forg=1,---,n.

Let B, in IN* be the set of vectors (a,b,c,r) such that the projection in the
plane (¢ = 1) are the vertices of the convex hull of the space containing the pa-
rameters (a, 3,7) of real planes for which the discretization on the point (i, jp,)
is the point (ip, jp, kp) for p varying from 1 to g.

We are going to construct the sets B, for ¢ = 1,---,n. The following algo-
rithm gives at step ¢ the set B, or the empty set if there is no solution. In the
first case, the solution with the minimal periodicity can correspond to a vertex
of the convex-hull, the median point between the projection of two vertices of
B, or the median point of the area limited by the projection of the vectors of
B,.

As the discretization of all real planes of the working space goes through the



origin (here the origin is taken at point (x1,y1,21)), the algorithm starts with
B; = {(0,0,1,0),(0,1,1,0),(1,1,1,0),(0,0,1,1),(0,1,1,1),(1,1,1,1)}

composed by the six vectors (a,b,c,r) such that the projection in the plane
(¢ = 1) are the vertices of the convex-hull limiting the solution space of (a, 3,7).

Algorithm at step ¢, ¢ > 2:
We introduce the point (iq, jq, kq)-
Let L, and L} the functions from IN* to Z defined by:

The naive plane of parameters (a, b, ¢, ) goes through the voxel (iq, jq, kq) if and
only if 0 < Ly(a,b,r,¢) < c. Consequently the vectors (a,b,c,r) of B, verify
Ly(a,b,c,r) > 0 and L} (a,b,c,r) <Oforp=1,---,q.

Initialization: B, = 0.
For all the vectors V; in By_1,i=1,---,#(Bg—1) do:
1. Process

Step 1 : If Ly(V;) > 0 and LS (V;) < 0 then the projection of V; is still
on the convex hull of the domain solution. We insert V; in B,. More partic-
ularly, if Ly(V;) = 0 (resp. L} (V;) = 0) we can say that the voxel (ig, j4, kq)
(resp. (iq, jq, kg —1)) is a lower leaning point of the naive plane of parameters

Step 2 : If L,(V;) < 0 (resp. Lf(V;) > 0), we are going to search the point
P such as Ly(P) = 0 (resp. Ly (P) = 0). To do that, we use an algorithm
based on the notion of median point [Farl6, Gra92].

For each vector Vj, j >4, belonging to B,_; and verifying
Ly(V;) >0 (resp. LF(V;) <0) do
P1 = ‘/z and P2 = ‘/J
While L,(P1) + Ly(P2) #0 (resp. L (P1)+ LS (P:) #0) do
if Ly(Py) + Ly(P2) and Ly(Vi) (resp. L} (P1)+ L} (P:) and
L¥(Vi)) have the same sign then
P1 :Pl +P2 and P2 :VJ
else
P=V,and =P+ P
End While
End For
The solution is given by P=P + Ps.



The point (iq,jq, kq) (resp. (iq,Jq,kq — 1)) is a lower leaning point of the
naive plane of parameters P.
We insert the point P in B,.

2. Validation of B,

(a) For each vector V' = (a,b,c,r) in B, we verify if the projection in the
plane (¢ = 1) is a vertex of the convex hull. If V can be written as a
combination of vectors of B, then the projection of V' is on the convex
hull but it is not a vertex. So we suppress that point from the list.

(b) If #(B,) < 2, there is no solution and we suppress all the vertices from
the list.

(c) If #(B,) = 3, we verify that the points (a/c,b/c) corresponding to the
vectors (a, b, c,r) of B, are not alined otherwise we suppress the vertices
from the list.

Ezxample 2. We are going to illustrate this algorithm on an example. We want
to know if the set of voxels in figure 3 belong to a naive plane of the studied
48th part of space. We start with a first point defined as the origin of the voxels

"

Fig. 3. Set of voxels to recognize.

set (cf. Fig 4(a)). The parameters set of naive planes including the origin are
the rational points (a, 8,7v) contained in the domain limited by the projection
(a/e,b/e,r/c) of the vectors (a, b, c,r) of By. The set By is composed by the six
vectors:

B; = {(0,0,1,0),(0,1,1,0),(1,1,1,0),(0,0,1,1),(0,1,1,1),(1,1,1,1)}

As it was previously mentioned, it is equivalent to say that parameters (a, )
belong to the area limited by the points (a/c,b/c) (cf. Fig 4(b)). We introduce
the second point (1,—1,0) (cf. Fig 5(a)). Let us compute the value Lo (V) and
LF (V) on the different vectors V from B;:
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Fig. 4. (a) Set {(0,0,0)}; (b) Equivalence class.

(a,b,c,r)|La(a,b,¢,7) = a —b+r|Lf(a,b,c,r) =a—b+r—c
(0,0,1,0) 0 -1
(0,1,1,0) -1 —2
(1,1,1,0) 0 -1
(0,0,1,1) 1 0
(0,1,1,1) 0 -1
(1,1,1,1) 1 0

The vectors (0,0,1,0), (1,1,1,0), (0,0,1,1), (0,1,1,1) and (1,1,1,1) verify the
property indiced by step 1 of the algorithm. We insert these vectors in Bs. As
L,(0,1,1,0) < 0, we apply the algorithm presented in step 2. We introduce
the new vectors (0,1,2,1) and (1,2,2,1). But (0,1,2,1) is the sum of vectors
(0,0,1,0) and (0,1,1,1). Similarly, the vector (1,2,2,1) is the sum of vectors
(0,1,1,1) and (1,1,1,0). Consequently, the vectors (0,1,2,1) and (1,2,2,1) are
not present in Bs.

Finally, we have:

B2 ={(0,0,1,0),(1,1,1,0),(0,0,1,1),(0,1,1,1),(1,1,1,1) }

Every naive planes for which the projection (a/c,b/c) of the normal (a,b,c) is
contained in the area limited by the points (a'/c,b'/c') with (a',¥',c',r') be-
longing to By are solutions (cf. Fig 5(b)). We introduce the third point (2,0, —1)
(cf. Fig 6(a)). We compute the value L3(V') and L} (V) on the different vectors
V of B2:
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Fig. 5. (a) Set {(0,0,0),(1,—-1,0)}; (b) Equivalence class.

(a,b,¢,r)|Ls(a,b,c,7) = 2a — c+r|Li(a,b,c,r) = 2a— 2c+r
(0,0,1,0) —1 -2
(1,1,1,0) 1 0
(0707171) 0 -1
(0,1,1,1) 0 -1
(1,1,1,1) 2 1

The vectors (1,1,1,0), (0,0,1,1) and (0,1,1,1) verify the property indiced by
step 1 of the algorithm. We insert these vectors in Bs. As L3(0,0,1,0) < 0 and
L(1,1,1,1) > 0, we apply for these vectors the algorithm presented in step
2. We make appear the new vectors (1,1,2,0), (1,1,3,1), (2,2,3,2), (1,1,2,2)
and (1,2,2,2). But we have: (1,1,3,1) = (1,1,2,2) +(1,1,1,0) and (2,2,3,2) =
(1,1,2,2) + (1,1,1,0). These two vectors are not inserted.

Finally, we have:

Bs ={(1,1,1,0),(0,0,1,1),(0,1,1,1),(1,1,2,0),(1,1,2,2),(1,2,2,2)}

Every naive planes for which the projection (a/c,b/c) of the normal (a,b,c) is
contained in the area limited by the points (a'/c’,b'/c") with (a',¥',c',r") be-
longing to Bs are solutions (cf. Fig 6(b)). More particularly, the naive planes
with normal (1,1, 2) or (1,2,2) contains the initial configuration of 3 voxels. We
introduce the fourth point (2,1, —2) (cf. Fig 7(a)). We compute the value L4(V)
and L (V) on the different vectors V of Bs:
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Fig. 6. (a) Set {(0,0,0), (1,—1,0),(2,0,—1)}; (b) Equivalence class : the two bold lines
represent the boundary of the band and the dotted line corresponds to the medial line
of the band.

r)|L4(a,b,c,r) = 2a +b— 2c+r|Lf (a,b,c,r) =2a+b—3c+r

(a7 b7 C?

(1,1,1,0) 1 0
(0,0,1,1) ~1 —2
(0,1,1,1) 0 -1
(1,1,2,0) -1 -3
(1,1,2,2) 1 -1
(1,2,2,2) 2 0

The vectors (1,1,1,0), (0,1,1,1), (1,1,2,2) and (1,2,2,2) verify the property
indiced by step 1 of the algorithm. We insert these vectors in B,. As the value L,
is negative for the vectors (0,0,1,1) and (1,1,2,0), we applied for these vectors
the algorithm presented in step 2. We make appear the new vectors (1,1,2,1),
(1,1,3,3),(2,2,3,0), (1,2,4,4) and (3,4, 6, 2). But we have: (1,2,4,4) = (1,1,3,3)
+(0,1,1,1) and (3,4,6,2) = (1,1,2,1)+(0,1,1,1)+(2, 2, 3,0).These two vectors
are not inserted.

Finally, we have:

Bs=1{(1,1,1,0),(0,1,1,1),(1,1,2,2),(1,2,2,2),(1,1,2,1),(1,1,3,3),(2,2,3,0)}

Every naive planes for which the projection (a/c,b/c) of the normal (a,b,c) is
contained in the area limited by the points (a'/c’,b' /') with (a’,b', ', ") belong-
ing to By are solutions (cf. Fig 7(b)). More particularly, the naive planes with
normal (1,1,2) or (1,2,2) or (2,2,3) contains the set of 4 voxels. We can verify
in figure 7(c) that this configuration of voxels set is contained in the naive plane
with normal (1,1, 2). We introduce the fifth point (4, —2,—1) (cf. Fig 8(a)). We
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Fig. 7. (a) Set {(0,0,0), (1,-1,0), (2,0, —1), (2,1, —-2)}; (b) Equivalence class.

compute the value Ls(V') and L (V) on the different vectors V of Bs:

(a,b,c,7)|Ls(a,b,c,r) = da—2b— c+r|L(a,b,c,r) = da—2b—2c+ 7
(1,1,1,0) 1 0
(0,1,1,1) —2 -3
(1,1,2,2) 2 0
(1,2,2,2) 0 —2
(1,1,2,1) 1 1
(1717373) 2 -1
(2,2,3,0) 1 -2

The VeCtorS (17 17 17 0)7 (17 17 27 2)7 (17 27 27 2)7 (17 17 27 1)7 (17 17 37 3)7 and (27 27 37 0)
verify the property indiced by step 1 of the algorithm. We insert these vec-
tors in Bs. As the value Lj is negative for the vector (0,1,1,1), we applied
for this vector the algorithm presented in step 2. We make appear the new
vectors (2,3,3,1), (1,2,3,3), (2,3,5,3), (1,2,4,4) and (4,5,7,1). But we have:
(2,3,3,1)=(1,1,1,0) +(1,1,2,1). This vector is not inserted. Finally, we have:

B; ={(1,1,1,0),(1,1,2,2),(1,2,2,2),(1,1,2,1),(1,1,3,3),

(27 27 37 0)7 (17 27 37 3)7 (27 37 57 3)7 (17 27 47 4)7 (47 57 77 1)}

Every naive planes for which the projection (a/c,b/c) of the normal (a,b,c)
is contained in the area limited by the points (a’'/c,b'/c') with (a',b',c, ')
belonging to Bs are solutions (cf. Fig 8(b)).

More particularly, the naive planes with normal (1,1, 2) or (2,2,3) contains the
set of five voxels. As an example, we can verify that this configuration of voxels
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Fig. 8. (a) Set {(0,0,0),(1,-1,0),(2,0,-1),(2,1,—-2)}; (b) Equivalence class.

set is contained in the naive planes with normal (1,1,2) (in figure 9) or (5,7,9)
(in figure 10).

5 Polyhedrization of a voxels object

The polyhedrization of a voxelized object has been studied using mainly approx-
imation approaches [BF94]. Here we propose an algorithm which fully works on
the discrete representation of digital naive planes. The present algorithm is an it-
erative process based on the recognition algorithm described in the previous part.

The algorithm treats independently each direction of the 3D object. So, for
each direction and as long as surfels are not totally analyzed, a surfel is cho-
sen. Then we verify if the surfel and its eight neighbors are coplanar with the
naive plane recognition algorithm. If the voxels belongs to a same plane, a num-
ber is given to the nine surfels. The eight neighbors are put into a list of faces
waiting to be processed. While this list is not empty, the current naive plane is
extended if it is possible with faces into the list and their eight neighbors. The
neighbors of the new coplanar surfels are added to the list. When no surfel of
the list is coplanar with the voxels of the plane, the list is cleaned and a new
surfel is chosen as the origin of a new naive plane and the number of the current
plane is incremented. As a result, the naive planes are extended to the maximum.

The obtained results are shown on two images (cf. Fig 11), where each num-
ber or grey level corresponds to a different naive plane. The image presented in
(a) is a synthetic image: it is a pyramid with four visible faces and another one
behind (the base). All planes are well recognized and are according to expecta-
tion. The second image presented in (b) as a X-ray scanner image of a hand os
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Fig. 9. (a) Farey net : plane with normal (1,1, 2)(black square); (b) Part of the naive
plane with normal (1,1, 2); in dark grey, we recognize the initial configuration of the
five voxels.

O

(b)

Fig. 10. (a) Farey net : plane with normal (5, 7, 9)(black square); (b) Part of the naive
plane with normal (5,7,9); in dark grey, we recognize the initial configuration of the
five voxels.



size 30x30x30 voxels. The result show that planes are extended to their maxi-
mum even if the image is a difficult one for this algorithm because there is a lot

of small planes.

Fig.11. (a) Result on a pyramid image with four faces (numbered 2,3,4 and 5) (b)
Result on a X-ray scanner image of a hand.

6 Conclusion

A generic algorithm for coplanar voxels recognition has been presented. This
algorithm analyzes any configuration of voxels set either connected or not con-
nected. It is fully discrete working in the dual space issued from Farey net rep-
resentation of the normal equation of a digital naive plane. This algorithm has
been used for polyhedrization of the boundary of voxelized objects. Good results
have been obtained on synthetic and real images.

As perspective, a lot of work has to be achieved to find the position of the in-
tersections of planes in order to obtain edges and vertices. Then we will have
a complete polyhedrization of 3D objects. Many applications in visualization or
compression could be studied when the previous point will be solved.
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