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Abstract. An invertible Euclidean reconstruction method for a 2D curve
is proposed. Hints on an extension to 3D are provided. The framework of
this method is the discrete analytical geometry. The reconstruction re-
sult is more compact than classical methods such as the Marching Cubes.
The notions of discrete cups and patches are introduced.

1 Introduction

The reconstruction of discrete objects is mainly performed in practice with the
�marching cubes� method [1] (and all its follow ups). For a couple of years another
approach, based on discrete analytical geometry, is investigated in the discrete
geometry community. The aim is to decompose the boundary of a discrete object
into discrete analytical polygons and then these polygons into Euclidean poly-
gons. The method has to be invertible, i.e. the discretization of the reconstructed
boundary has to be equal to the original discrete object. We don't want any in-
formation to be added or lost. The aim of this new approach is to provide a more
compact reconstruction. Several other attempts have already been made in this
direction that are not satisfying and usually not invertible (see [2] for details).
Our method is based on Vittone's recognition algorithm for the decomposition
of the discrete boundary into discrete line pieces in 2D and discrete plane pieces
in 3D. The analytical framework is provided by the standard discrete analytical
model that de�nes 2D and 3D discrete polygons. A working solution in 2D and
indications on how to tackle the 3D case are proposed. The method works ba-
sically as follows: a discrete boundary is decomposed with Vittone's algorithm
[3] into discrete line pieces in 2D (resp. discrete plane pieces in 3D). The result
of Vittone's algorithm is adapted to the standard analytical model as it is, for



the moment, the only suitable discrete analytical model [4]. The reconstruction
process is guided by so called discrete cusps in order to propose a reconstruc-
tion that �ts better a �common sense� recontruction. A Euclidean line (resp. 3D
plane) candidate is chosen among all the possible solutions. This is done for each
discrete line piece (resp. 3D plane piece). All these 2D lines (resp. 3D planes)
form a Euclidean 2D polygon (resp. 3D polyhedron).

The discretization of this Euclidean object (2D polygon or 3D polyhedron) is
not necessarily equal to the boundary of the discrete object. It is usually larger.
In 2D, in order to avoid this problem, and provide the revertibility property,
patches are introduced. In 3D, the problem is more di�cult and not completely
solved so far. Not only the vertices but also the 3D edges of the polyhedron can
be located outside the discrete object. Several hints are given on how to solve
these problems especially with convex and non-convex discrete objects.

In section 2, a new discrete curve reconstruction method is provided. Notions
such as discrete cups and patches are introduced. In section 3, the 3D case is
examined. The convex and non-convex case are studied and hints on solutions
are given. We conclude in section 4 with some perspectives.

Brief recall on the standard model. The standard digitization of a Eu-
clidean object consists in all the pixels (resp. voxels) that are cut by the object.
The standard lines (resp. planes) can be de�ned arithmetically: a discrete stan-
dard line (resp. plane) of parameters (a, b, µ) (resp. (a, b, c, µ)) is the set of integer
points (x, y) (resp. (x, y, z)) verifying −ω ≤ ax+ by(resp.+ cy) + µ < ω where

ω = |a|+|b| (resp.+|c| )
2 . A standard line (resp. plane) is a 4-connected line (resp.

6-connected plane). If we denote St(O) the standard digitization of the object O,
the following useful properties can be derived from the geometrical de�nition of
this model: St(O1 ∩O2) ⊆ St(O1)∩St(O2) and St(O1 ∪O2) = St(O1)∪St(O2)

2 Reconstruction of a 2D discrete curve

2.1 Principle

We consider here 4-connected curves. To reconstruct a discrete curve, we �rst
choose a point on that curve, recognize a discrete straight-line segment and then,
repeat this process along the curve.

The recognition algorithm used was developed by Vittone [5]. For a given
discrete edge, it provides the set of all corresponding Euclidean straight lines as
a polygon in a parameter space (well studied by Veelaert in [6]). The standard
discretization [7] [4] of any of these Euclidean lines contains the original discrete
edge. It has been proven that the set of solutions is a (3 or 4)-vertex convex
polygon (see [8]) in the (α, β) parameter space P, and can only have one of the
�ve shapes illustrated in �g. 1.

A Euclidean straight line y = αx + β, in the cartesian space C, corresponds
to a point (α, β) in P. Thus, the three (resp. four) vertices of the solution set
correspond to three (resp. four) Euclidean straight lines in C. We chose one
particular line as a solution and called it the median solution . This seems to



be a reasonable choice, as illustrated on �g. 1. This �gure shows the median
solution in P and C for each possible shape of the set.
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Fig. 1. The �ve possible shapes of the solution set and in each case, the solution we
chose.

Prior to the recognition process, we look for remarkable points on the discrete
curve. We call those points discrete cusps and de�ne them as follows : a point of
a discrete curve is a discrete cusp i� the segment composed of this point, the next
two points and the previous two points, is not a discrete segment. We use the
Freeman code to determine whether or not such a 5-pixel set is a discret segment.
Fig. 2 shows an example of discrete cusps. These cusps act like �anchors� and
help us to adjust segments' extremities : during the recognition of a discrete
segment, we preferably begin (and end) a segment on a discrete cusp.
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Fig. 2. Example of discrete cusps and Euclidean solutions. In (a), a regular case. In
(b), addition of a patch.



Starting point. If there are cusps we choose as a starting point of the algorithm,
the cusp with the smallest x-coordinate and then with the smallest y-coordinate.
If there no cusps on the curve, we choose a regular point that �ts the same
conditions. This choice ensures the unicity of the process. We proceed then with
the recognition of the curve counter clockwise.

2.2 Details on the reconstruction

Before going on, we have to introduce some useful notations: pi denotes the i-th
pixel of a curve and sk is the k-th segment of the polygonalized curve.

After the Vittone's algorithm, for each discrete segment we found, we obtain
a coset of all the lines that match this discrete segment and we choose the median
line as a solution (see �g. 2). Then, we have to handle the intersections between
those Euclidean lines. The most simple case occurs when two lines intersect
in a pixel which belongs to the two corresponding discrete segments sk and
sk+1 (see �g. 2 (a)).

In this section, we explain the di�erent cases we face during the reconstruc-
tion.

unsmooth patch smooth patch sk+1

sk(a) (b)

Fig. 3. (a) addition of a patch. (b) smoothing of this patch.

Patch. Our �rst problem is the intersection of two lines outside a pixel of the
curve, or even, the non-intersection of two lines. As we must �constrain� the
Euclidean curve inside the discrete curve, we decide to add a little patch to join
the lines together (see �g. 2 (b)).

But for some cases, adding a patch causes undesired visual results as shown
on �g. 3 (a). We soften this patch by extending it to the neighboring pixels, as
illustrated on �g. 3 (b).

In order to reduce the number of patches, we allow two solution lines to
intersect in a 3-pixel long area, that is, the pixel common to the two discrete
segments and its two neighbours. This little trick still allows reversibility.

Post-process patch removal. Sometimes, we can get rid of a patch thanks to a
second pass of the recognition algorithm in the opposite direction. In �g. 4 (a), we
see the result of a �rst reconstruction. As the two solution lines do not intersect
in the permitted intersection area, we normaly should add a patch. But a second
recognition, in the opposite direction leads to (b) and a valid intersection. So,
we eventually end up with the result (c).
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Fig. 4. Patch removal thanks to a reverse recognition.

2.3 The algorithm

Initialization :

- we consider a discrete curve, i.e. a sorted sequence of n pixels : p1 . . . pn
- the cusps of the curve are determined

Step 1 : Recognition

- sk denotes the current segment (at �rst k = 1)
- pi denotes the current pixel (at �rst i = 2)
- we use Vittone's algorithm to recognize a discrete segment :
• we insert pixel pi in sk
• if this extended sk is still a discrete segment, we go on : i = i+ 1
• else sk ends up on pi−1 and either pi−1 or pi−2 becomes the starting point
of the new segment : i = i− 1 (or i = i− 2) and k = k + 1

- until we reach the last pixel (i = n)
- in the case of a closed curve we carry on the recognition until we meet a cusp,
and then we possibly merge the last and the �rst segment
- at this point, the curve is entirely recognized and splitted into k discrete seg-
ments and each one is linked to a coset of Euclidean solutions in the parameter
space

Step 2 : Reconstruction

- for each coset of solutions, we choose the median line dk
- we must now create the Euclidean segments that are contained in dk
- so, we set the �rst extremity of the �rst Euclidean segment r1 (a point on d1

that belongs to p1, the �rst pixel of the curve)
- then, we enter a loop through the lines dk :
• if dk (segment sk = [pa, pb]) and dk+1 (segment sk+1 = [pb, pc]) inter-
sect in pb, pb−1 or pb+1

• then∗, this intersection point becomes the second extremity of rk and
the �rst one of rk+1

• else (intersection outside or no intersection), we launch another reco-
gnition between pc and pa, which can lead to two cases :
. we still have the same two segments sk and sk+1, therefore, the
patch is unavoidable, and then, the second extremity of rk is the
�rst vertex of the patch, and the �rst extremity of rk+1 is the se-
cond vertex of the patch



. sk+1 has been extended and the intersection between dk and
the new solution line allows us to avoid the patch ; thus we go
back to the regular case (see ∗)

- we eventually have a sequence of Euclidean segments rk (each one de�ned by
two Euclidean points) and this sequence forms a polygonal line of which dis-
cretization perfectly matches the starting discrete curve

3 Discrete object surface polygonalization

In this section, we present the problem for 3D discrete volumes. We point out
the type of di�culties we encounter and give some indications on the possible
solutions to solve them.

3.1 Discrete surface segmentation

We consider an 18-connected discrete volume and its surface de�ned as the set of
voxels sharing one face with the background object. Since discrete naive planes
are the thinnest 18-connected discrete planes without 6-connected holes, they
are well adapted for a segmentation of an object surface. In an arithmetical way,
a discrete naive plane of parameters (a, b, c, µ) is the set of integer points (x, y, z)
ful�lling the conditions 0 ≤ ax+by+cz+µ < max(|a|, |b|, |c|). We use, as in 2D,
a discrete naive plane recognition algorithm proposed by Vittone [9] in 3D. For a
given discrete plane, it provides the set of all corresponding Euclidean planes as
a polyhedron in a parameter space. The standard discretization of any of these
Euclidean planes contains the original discrete plane.

Consider a discrete point (x0, y0, z0) and the parameter space (α, β, γ) where
a point (α0, β0, γ0) stands for the plane α0x + β0y + z + γ0 = 0. The discrete
point corresponds to a double constraint de�ned by the double inequality 0 ≤
αx0 +βy0 + z0 +γ < 1 in the parameter space. Hence, the recognition algorithm
adds the voxels one by one reducing the solution set in the parameter space
according to the corresponding double inequality. Figure 5 gives an illustration
of a piece of plane and the corresponding set of solutions in the parameter space.
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Fig. 5. A piece of the discrete naive plane (1, 3,−5, 0) and the corresponding set of
solutions in the parameter space.



We proposed in [10] a discrete surface segmentation based on this algorithm.
We will not describe precisely this algorithm but just give some hints. The general
idea is to propose a coplanarity test ensuring a �regular shape� for the recognized
plane pieces. To do so, we use a local con�guration of discrete planes called
tricube. Let P be a discrete plane in the �rst quadrant. Then, a tricube is a set
of 9 voxels of P such that the projection fo those voxels onto the plane (x, y)
is a 3 × 3 square: T (i, j) = {(x, y, z) ∈ P | i ≤ x < i + 3, j ≤ y < j + 3}.
There exist 40 di�erent tricubes [11] and it has been shown that any discrete
plane can be built using tricubes. In our algorithm, we impose that any voxel
of a plane piece belongs to a tricube of this plane, which means that at least 3
out of 8 neighbours of any voxel of a plane piece P belong to P . Moreover, we
allow planes overlapping to avoid as much as possible tiny plane pieces. Hence,
the result of the algorithm is a labelling of the voxels faces with discrete plane
pieces numbers.

3.2 Use of the standard model

After the discrete surface segmentation, we need to de�ne discrete polygons onto
this surface in order to get a polygonal reversible surface. This implies the de�ni-
tion of vertices and edges and thus the study of the discrete planes intersections.
Unfortunately, naive planes, that were well adapted for the segmentation step, do
not have the geometrical consistency properties needed to de�ne discrete edges
and vertices.

To solve this problem, we choose to swap to another model, called standard

model that was already presented brie�y for lines in the introduction.
We use the connectivity characteristics of naive and standard planes to add

to the naive plane pieces the voxels needed to get standard planes. As we do
not want to add information to the initial object, we must add those voxels in-
side the object. If we look at the arithmetical de�nition of naive and standard
plane, this means that we only add voxels (x, y, z) whose remainder satis�es
−(|a|+ |b|+ |c| −max(|a|, |b|, |c|)) ≤ ax+ by + cy + µ < 0 and that are �under�
a surface voxel of the considered plane piece. Once we have done this tranfor-
mation, we need to move the set of solutions in the parameter space in order
to �t to the de�nition of standard plane we gave. Consider a point (a, b, c, µ) of
the parameter space, solution for the piece of naive plane P . Then, the point
(a, b, c, µ+ |a|+|b|+|c|−2max(|a|,|b|,|c|)

2 ) is solution for the standard plane de�ned by
the transformation given previously.

3.3 From a discrete surface to a polygonal surface

We have shown how to get a segmentation of a discrete surface into pieces of
standard planes. In the following, we show how to get a polygonal surface for
convex objects, and give some hints on the problems encountered for non convex
objects.



First approach for convex objects. For each piece of discrete plane of the
segmentation, we know the whole set of solutions in the parameter space. Thus,
one can choose a solution for each piece of plane, and the intersection of all those
half-spaces is a polygonal approximation of the object surface. Figure 6(a) gives
the result we get with such a solution for a discrete sphere of radius 20.

Fig. 6. Some examples on convex discrete volumes.

This solution is, however, usually not a reversible one. Figure 6(b) shows an
example where some of the reconstructed edges and vertices are outside the dis-
crete volume. Thus, the standard digitization of this polygonal surface contains
more voxels than the original volume. This is exactly the same type of prob-
lems we discussed and solved by adding patches for discrete curves. In 3D, such
patches are more di�cult to de�ne but a solution would be to run the discrete
plane recognition algorithm on the surface places where the polygonal surface
goes through the discrete object. This new plane would give the needed patch
as shown on �gure 6(c).

General case and speci�c problems. However, solving the reversibility prob-
lems is a second step after the construction of a polygonal surface. The half-
spaces intersection method presented above can not work on non convex vol-
umes. In order to reconstruct a polygonal surface from the segmentation for any
object, we propose a contruction face by face. Moreover this allows us to control
the position of edges and vertices as we calculate them one by one. The general
algorithm proposed is the following:

From the face by face construction, we derive that this very simple algorithm
is valid for convex and non convex objects. Nevertheless, the discrete structure
of the volume induces many problems. Let us look at this algorithm step after
step.

The �rst important step is to track the border of each piece of plane in order
to get an order on the plane neighbours. This step highly depends on the seg-
mentation we get. Indeed, the segmentation algorithm we proposed allows planes
overlapping and this leads to many neighbourhood relationships between discrete
planes whatever neighbourhood de�nition we use. It is sometimes impossible to



Algorithm 1 Construction of a polygonal surface
Polygonal_Surface(S)
1: For each piece of discrete plane of S, choose an euclidian solution.
2: Let p be a piece of discrete plane, and E(p) the euclidian solution chosen.

� track the 6-connected border of p, numbering its neighbour planes pi, 0 ≤ i < n,
n ≥ 3;

� for all i, compute Li = E(p) ∩ E(pi); [edges]
� for all i, compute Li ∩ Li+1. [vertices]

3: Repeat for each pi, 0 ≤ i < n until each discrete plane has been treated.

get an order on the neighbours consistent with the contruction of a polygonal
face. We tried others strategies to get rid of this problem, the underlying idea
always being the suppression of useless neighbourhood relationships.

Algorithm 2 Neighbourhood calculation
Neighbours()
1: Apply the segmentation algorithm allowing only one piece of discrete plane for each

voxel: the voxels already labelled by another plane piece are added to the current
plane but not labelled.

2: Compute the 8-connected border B(p) of each piece of plane p;
3: Order the neighbour planes of each p tracking B(p): two planes are neighbours

when there exist v1 ∈ p1 and v2 ∈ p2 such that v1 and v2 are 18-neighbours.
4: For each plane piece, label the voxels that were added but not labelled during step

1.

With this algorithm, we use the minimal plane number to compute the neigh-
bourhood relationships, but �nally get the same pieces of planes as before. This
method gives most of the times good neighbourhood relationships but needs to
be improved because the order in the plane segmentation has a huge in�uence
on the result we get.

The next and last problem of algorithm 1 occurs during the vertices calcula-
tion. Indeed, as illustrated in �gure 7, a vertex that should be the intersection
of three planes p, p0 and p1 is computed in three di�erent ways depending on
which face we are working on, and nothing ensures that those three points α0,
α1 and α2 are confounded. Then, we distinguish two cases:

� if one of the αi is outside the discrete object, then we need to add a patch.
� otherwise,
• if there exists a voxel v such that αi ∈ v, ∀i, then v is a discrete vertex, we
do not need to add a discrete face but we have to add a small polygonal
face containing the three points.

• otherwise, all the αi belong to p ∩ p0 ∩ p1 as we work with the standard
model. Here we get two possibilities: either we just add a small polygonal



face and do not change the discrete segmentation, or we add a new piece
of discrete plane corresponding to the intersection of the three planes p,
p0 and p1, and repeat the polygonal face construction process.
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Fig. 7. The multiple vertices problem.

4 Conclusions and future work

In this paper we described a framework to �nd a polygonal curve (resp. surface
in 3D) from a discrete curve (resp. surface in 3D) with a invertible method. In
2D a new algorithm has been developed to vectorize a discrete curve. We �rst
introduce some remarkable points called discrete cusps and use the Vittone's al-
gorithm for line recognition. The addition of patches allow to keep the Euclidean
curves inside the discrete curve. Then a post-processing stage removes patches
in order to give a visually correct result. In 3D, a solution has been presented for
convex objects which is for the moment not reversible. We have also proposed
a general algorithm to construct a polygonal surface based on the Vittone's al-
gorithm and a face by face neighbourhood calculation. We have pointed out the
main problems encountered to �nd neighboorhood relationships and have pro-
posed some solutions. In a future work improvements have to be done in order to
keep the Euclidean surface inside the object even on identi�ed particular cases.
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