
Graphical Models 66 (2004) 226–244

www.elsevier.com/locate/gmod
Digital Intersections: minimal
carrier, connectivity, and periodicity properties

Isabelle Sivignon,a,* Florent Dupont,b and Jean-Marc Chasserya

a Laboratoire LIS—Grenoble, UMR 5083 CNRS, 961, rue de la Houille Blanche,38402

St. Martin D�H�eres, France
b Laboratoire LIRIS—Universit�e Claude Bernard Lyon 1, FRE 2672 CNRS,

Bâtiment Nautibus—8 boulevard Niels Bohr, 69622 Villeurbanne Cedex, France

Received 11 September 2003; received in revised form 5 April 2004; accepted 6 May 2004

Available online 17 June 2004
Abstract

Digital geometry is very different from Euclidean geometry in many ways and the inter-

section of two digital lines or planes is often used to illustrate those differences. Neverthe-

less, while digital lines and planes are widely studied in many areas, very few works deal

with the intersection of such objects. In this paper, we investigate the geometrical and ar-

ithmetical properties of those objects. More precisely, we give some new results about the

connectivity, periodicity, and minimal parameters of the intersection of two digital lines or

planes.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Digital straight lines and digital planes properties have been widely studied in

many fields like topology, geometry, and arithmetics. Topologically, those objects

are well-defined according to the digitization scheme used. On the geometrical
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ground, connectivity features are known and a characterization using convex hull

properties [1] has been proposed. Finally, an arithmetical definition [2,3] provides

a general model to handle all the definitions proposed so far.

Those properties led to many recognition algorithms. Geometric algorithms

[4] decide whether a set of pixels/voxels is a digital line/plane or not, and arith-
metical algorithms [5] also return, for a given digitization scheme, the parame-

ters of the Euclidean lines/planes containing the set of pixels/voxels in their

digitization.

Discrete geometry is different from Euclidean geometry in many ways, and the

differences between the intersection of two Euclidean lines and two digital lines is of-

ten used to illustrate this difference. Indeed, while the intersection of two Euclidean

lines is a Euclidean point, the intersection of two digital lines can be a discrete point,

a set of discrete points or even empty on rectangular grids. Examples of digital lines
intersection are depicted in Fig. 1.

In [6], an enumeration algorithm of the intersection pixels is proposed using quasi-

affine applications. In [7], using the arithmetical definition of a discrete line/plane,

Debled et al. present a definition of the set of intersection pixels/voxels of two digital

lines/planes using an unimodular matrix. This definition enables the design of an ef-

ficient algorithm to determine all the pixels/voxels of an intersection given the pa-

rameters of the two lines/planes. However, no results are given about the topology

and arithmetics of this intersection.
Fig. 1. (A) The digital naive line of parameters ða; b; lÞ ¼ ð2;�3; 0Þ; (B) Chain codes; (C) two naive lines

with no common direction; (D) two naive lines with one common direction; (E) two naive lines in the same

octant; and (C–E) the Chain codes of those digital lines are also depicted.
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Our main contribution is summarized in two points:

• Analysis of the connectivity of two digital lines intersection;

• Characterization and algorithmic identification of the minimal digital line/plane

containing the set of pixels/voxels belonging to two digital lines/planes.

The paper is organized as follows: in Section 2, we recall some definitions and
properties about the rational fractions which are the mathematical framework used

in this paper. Section 3 deals with the intersection of two digital lines. We present a

criterion to analyze the connectivity of the intersection of any two digital lines,

thus completing the results presented in [2] for lines with slopes between 0 and

1. Then, we propose a study about the minimal arithmetic parameters of digital

lines intersection and we design an efficient algorithm to find those parameters.

To conclude this part on digital lines intersection, a discussion about the extent

of the intersection is proposed. In Section 4 we present some results on digital
planes intersection: we prove that the intersection is periodic and give the minimal

period. Finally, we define and determine the minimal parameters of the intersection

of two digital planes.
2. Rational fractions

We recall in this part some mathematical definitions and properties about rational

fractions needed for this work. The link between those arithmetical structures and

digital lines will be exposed further in the paper.

2.1. Decomposition into continued fractions

The decomposition of a rational fraction into continued fractions is a mean to de-

scribe a floating number using integers. Let us consider a rational fraction a
b, where a

and b are two relatively prime integers. Then we call decomposition into continued

fractions of a
b and denote ½q0; q1; q2; . . . ; qn� the integers such that
a
b
¼ q0 þ

1

q1 þ 1
q2þ���þ 1

qn�1þ
1
qn

:

The quotients qi are the integers given by Euclid�s algorithm applied with a and b.
For instance, the decomposition into continued fractions of 3

5
is ½0; 1; 1; 2�. Similarly,

we have 5
3
¼ ½1; 1; 2�.

The decomposition into continued fractions can also be computed for an irrational

number, and in this case, the sequence of integers is infinite. In this paper, we are only in-
terested in rational fractions since real numbers are strangers to finite discrete geometry.

2.2. Farey series and Stern-Brocot tree

The Farey series and the Stern-Brocot tree are two different methods to enumerate

and represent all the positive rational fractions a
b, where a and b are relatively prime.

The definitions proposed in this section can be found for instance in [8] or [9].
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The Farey series of order N , denoted FN , is the series of ordered irreducible

rational fractions between 0 and 1 the with a denominator lower or equal to N .

For instance, we have:
F 5 ¼
0

1
;
1

5
;
1

4
;
1

3
;
2

5
;
1

2
;
3

5
;
2

3
;
3

4
;
4

5
;
1

1
:

This series is computed from F 1 ¼ 0
1
; 1
1
as follows: the median of two rational

fractions u
v and

u0

v0 is defined as the rational fraction uþu0

vþv0 ; the Farey series of order q
is computed iteratively from the Farey series of order q� 1 adding all the medians

with a denominator lower or equal to q of consecutive fractions of F q�1. Remark

that if u
v and

u0

v0 are two consecutive fractions of FN then we have u0v� uv0 ¼ 1 (This

property will be useful in Section 3.2.2).

The Stern-Brocot tree is another way to represent all the irreducible rational frac-

tions (see [9] for a complete definition or [10] for a more informal approach). An il-

lustration of this tree is proposed in Fig. 6A. The idea behind its construction is to

begin with the two fractions 0
1
and 1

0
and to repeat the insertion of the median of these

two fractions. We call mothers of a fraction u
v 2 F q the two fractions u1

v1
and u2

v2
of F q�1

such that u1þu2
v1þv2

¼ u
v.

Any positive irreducible rational fraction appears exactly one time in the Stern-

Brocot tree. This enables to map a binary code to any irreducible rational fraction

which corresponds to the path from the fraction 1
1
to the rational fraction. Indeed,

the unique path leading to a rational fraction a
b can be defined with a sequence of left

(code 0) and right (code 1) directions in the tree. This encoding is a one-to-one and

onto transformation from a rational fraction to a binary word. For instance, the
code 0011 means that we choose two times the left son and then two times the right

son in the tree, which leads the the fraction 3
7
. This representation raises two prob-

lems:

• how to compute the fraction corresponding to a given code?

• how to compute the code corresponding to a given fraction?

Graham et al. [8] propose the two algorithms detailed in Algorithms 1 and 2

to solve those two problems. Algorithm 1 uses the fact that the Stern-Brocot tree

is a binary search tree (BST for short). Indeed, the algorithm is very similar to
the classical BST Search algorithm [11]. Algorithm 2 computes recursively the

two mothers of the rational fraction associated to a given code. Those two frac-

tions are represented with a 2� 2 matrix which is initialized to the identity matrix

(representation of the two fractions 0
1
and 1

0
) when the function is called. Never-

theless, those algorithms use arithmetical properties of the construction of the tree

that we will not detail here. The interested reader may read [8] for further expla-

nations.

Finally, let us point out the link between the Stern-Brocot tree, the binary encod-
ing of rational fractions and the decomposition into continued fractions defined in

the previous section. Indeed, if we denote f the function which maps a binary word

to a rational fraction, we have:
f ð1q00q11q2 . . . 1qn�1Þ ¼ q0 þ
1

q1 þ 1
q2þ���þ 1

qn�1þ1

ð1Þ



Algorithm 2. Compute the rational fraction associated to a binary code C

COMPUTECOMPUTE_FRACTIONFRACTION(C, k, i, res)

1: L ¼ 1 1

0 1

� �
; R ¼ 1 0

1 1

� �
;

2: if (i¼ k) then

3: return res; {res is initially set to the identity 2� 2 matrix}

4: else if (C[i] ¼ 0) then

5: Compute_Fraction(C,k,i+1,res*L);
6: else

7: Compute_Fraction(C,k,i+1,res*R);

8: end if

Algorithm 1. Compute the binary code associated to a rational fraction a
b

COMPUTECOMPUTE_CODECODE(a,b)

1: C ¼ ;;
2: while (a 6¼ b) do
3: if (a < b) then
4: append(C,0); b ¼ b� a;
5: else

6: append(C,1); a ¼ a� b;
7: end if

8: end while

9: return C;
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In this equation, the notation aq denotes q successive repetitions of the letter a in

the binary word. For instance,
f ð0011Þ ¼ f ð100212Þ ¼ 0þ 1

2þ 1
2þ1

¼ 3

7
:

Another algorithm to compute the fraction associated to a binary code may be

derived from this remark.
3. Digital lines intersection

In this section, we focus on the properties of digital lines intersections. A digital

naive line of parameters ða; b; lÞ is the set of integer points fðx; yÞg fulfilling the con-

ditions 06 ax� by þ l < x. x is called the thickness of the digital line. In this work,

we focus on the thinnest 8-connected lines, called naive lines, with x ¼ maxðjaj; jbjÞ.
An illustration is proposed in Fig. 1A. Such lines can be also defined using the Chain

code depicted on Fig. 1B. This encoding defines a set of eight directions that are used

to describe the movements between successive pixels of the digital line. A classical

result is that the Chain code of any digital naive line is composed of at most two con-
secutive different directions. Thus, one can define 8 octants from those eight direc-

tions, one digital line belonging to one octant. Nevertheless, only 4 octants remain
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if we consider symmetries around the central point. For instance, the octant f4; 5g is

equivalent to the octant f0; 1g.

3.1. Connectivity

Let us consider two digital naive lines denoted L1 and L2. L1 \ L2 is a set of pixels

whose connectivity depends on the parameters of the two digital lines.

Reveill�es [2] proposed a criterion to determine whether the intersection of two dig-

ital naive lines with slopes between 0 and 1 is connected or not. However, he did not

give any information about the intersection of any two digital naive lines. First of all,

let us recall the result of Reveill�es in the following theorem.

Theorem 1 [2]. Let L1 and L2 be two digital naive lines with rational slopes a
b and

a0

b0,
0 < a0

b0 <
a
b6 1. Suppose that the development into continued fractions of a

b is given by
a
b ¼ ½q0; q1; q2; . . . ; qn�. Then, L1 \ L2 is 8-connected if and only if one of the following
inequalities holds:
a0

b0
<

1
2q1�1

if q1 P 1 and q2 ¼ 0;
1

2q1þ1
if q1 P 1 and q2 ¼ 1;

1
2q1

if q1 P 2 and q2 P 2;
q2

q2þ2
if q1 ¼ 1 and q2 P 2:

8>>><
>>>:
Note that the coefficient q0 is zero since 06 a
b < 1. This condition defines a neighbor-

hoodN of the rational fraction a
b such that the intersection is simply 8-connected if and

only if a0

b0 does not belong to N . Indeed, if the slopes of the two lines are too close, the

intersectionmay be not simply connected.With the following proposition, we describe

the connectivity of the intersection of two digital lines lying in two different octants.
Proposition 2. Let L1 and L2 be two digital naive lines. Then:
• if they belong to the same octant, their intersection may be not connected, and

Theorem 1 [2] gives a criterion to analyze exactly the connectivity;
• if they belong to two neighbor octants, their intersection is either empty or connected;
• otherwise, their intersection is either empty or reduced to a unique pixel.

In the following we denote F1 (resp. F2) the set of directions composing the Chain

code of L1 (resp. L2). An illustration is given Fig. 1.

Proof. Let L1 and L2 be two digital naive lines. If L1 and L2 belong to the same octant,

jF1 \ F2j ¼ 2. If they belong to neighbor octants, jF1 \ F2j ¼ 1. Otherwise

jF1 \ F2j ¼ 0. Without loss of generality, we suppose that L1 belongs to the octant
f0; 1g. Let us give a classification of the pixels of L1 and L2. We denote

p1;k ¼ p2;k ¼ pk the pixel of L1 \ L2 with minimal x-coordinate if there exist one (there
is at most one pixel verifying the property since a digital line of the octant f0; 1g does
not contain two pixels with the same x-coordinate). Then, pl;kþ1 is the successor of pk
along Ll according to the Chain code Fl.



Fig. 2. Summary scheme: connectivity of the intersection of the bold line and lines with different slopes.
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• if jF1 \ F2j ¼ 0 (Fig. 1C), then p1;kþ1 6¼ p2;kþ1 as they are the successors of the same

point using two different directions. Suppose that L2 is composed of 2 and 3. The

other cases are symmetrical. Then, let us consider a pixel p1ðxp; yp1Þ 2 L1 with xp
greater that the x-coordinate xk of pk, and p2ðxp; yp2Þ 2 L2. Then, yp1 P yk and

yp2 6 yk � ðxp � xkÞ6 yk, since xp P xk. Hence, the two lines do not have any common
point after pk.

• if jF1 \ F2j ¼ 1 (Fig. 1D) then let us denote a1i (resp. a2i) the direction used from p1;i
to p1;iþ1 (resp. p2;i to p2;iþ1). Hence, while a1i ¼ a2i, iP k, p1;iþ1 ¼ p2;iþ1. Both pixels

p1;i and p1;iþ1 belong to the intersection and are 8-connected. Unless the two lines

are confounded, there exist j such that a1j 6¼ a2j. Hence, p1;jþ1 6¼ p2;jþ1. Suppose

that L2 is composed of 1 and 2. The other cases are symmetrical. Then, let us con-

sider a pixel p1ðxp; yp1Þ 2 L1 with xp greater that the x-coordinate xj of p1;j ¼ p2;j,
and p2ðxp; yp2Þ 2 L2. Then, yp1 6 yj þ ðxp � xj � 1Þ and yp2 P yj þ ðxp � xjÞ. Hence,
the two lines do not have any common point after p1;j.

• if jF1 \ F2j ¼ 2 (Fig. 1E), we refer to [2] to analyze the connectivity. h

Fig. 2 summarizes the connectivity of the intersection between a given digital line

with slope 06 a
b6 1 and any other digital line with a rational slope.

3.2. Minimal parameters

The intersection of two digital lines is a set of collinear discrete points. To char-

acterize this set of points, it is interesting to know the straight lines containing all the

intersection pixels in their digitization. Obviously, the two lines we are studying are

solutions.

Definition 3 (minimal parameters). Let P be a given set of discrete points and let S be

the set of parameters of naive straight lines containing P. We have S ¼ fða; b; lÞ j
P � fðx; yÞ j 06 ax� by þ l < maxðjaj; jbjÞgg. Then the minimal parameters ofP are
the values ða; b; lÞ of S with minimal maxðjaj; jbjÞ and minimum l.

In other words, the minimal parameters are chosen among the parameters of the

digital lines which contain the intersection pixels. An illustration of this definition is



Fig. 3. Two digital lines L1 and L2, and the digital line which parameters are the minimal parameters of

L1 \ L2.
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given in Fig. 3: the digital line represented with black squares contains all the pixels

(double squared) of the two other lines intersection.

In the following, we propose a characterization and an algorithm to find the min-

imal parameters of the intersection of any two digital naive lines using two different

methods and emphasizing the links between them.

3.2.1. Preimage study

This first method shows how to find the directional vector of the minimal param-

eters studying the structure of the intersection preimage.

Consider a straight line y ¼ a0xþ b0, 06 a0; b0 6 1. Its digitization according to

the object boundary quantization (OBQ for short, see [12] for instance) is the set

of discrete points lying on or just under the line: fðx; yÞ 2 Z2 j y ¼ ba0xþ b0cg ¼
fðx; yÞ 2 Z2 j 06 a0xþ b0 � y < 1g.

Now consider a set of pixels P of a digital line ða; b; lÞ such that 06 a6 b. The
preimage of P represents all the Euclidean lines y ¼ axþ b, 06 a;b < 1 containing
P in their OBQ digitization. This set, denoted DðPÞ, is defined as:

DðPÞ ¼ fða; bÞ 2 ½0; 1� � ½0; 1½ j 8ðx; yÞ 2 P; 06 axþ b� y < 1g. This preimage lies

in a parameter (dual) space ða;bÞ, where a point ða0;b0Þ maps the line

y ¼ a0xþ b0 in the Euclidean space and conversely a line b ¼ xaþ y in the parameter

space maps the point ðx; yÞ in the Euclidean one.

For instance, in this parameter space, the preimage of a infinite digital line of pa-

rameters ða; b; 0Þ, with 06 a < b is the vertical segment ½ðab; 0Þ; ðab; 1bÞ�: indeed, the set of
straight lines containing the digital line in their OBQ digitization is a set of parallel
lines of slope a

b.

The parameter space and preimage definitions that have been defined for lines

with slopes between 0 and 1 can be directly used for lines with slopes between

)1 and 0. Conversely, a direct transcription of those definitions for lines

with slopes greater than 1 or lower than )1 leads to the definition of another



Fig. 4. On the left (resp. right), a digital straight line L1 (resp. L2) with parameters ð2;�5; 0Þ (resp.

ð�3; 2; 0Þ) and the Euclidean lines defining the set of lines whose OBQ digitization is L1 (resp. L2). In

the middle, the preimages of L1 and L2 are vertical segments whose extremities are related to the lines

D and D0 on the left and on the right.
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parameter space where a point ða0; b0Þ maps to the line x ¼ a0y þ b0 in the Eu-

clidean space.

However, to study the intersection of any two digital lines, we need to work in the

same straight line parameter space for any slope. Veelaert [13] shows that the trans-
formation between those two spaces can be done with a central symmetry in a 3D

space. Thus, if the two lines we study have slopes between )1 and 1, we work in

the straight line parameter space P1, where a point ða0; b0Þ represents the line

y ¼ a0xþ b0. If they have slopes greater than 1 or lower than )1, we work in the

straight line parameter space P2 where a point ða0; b0Þ represents the line

x ¼ a0y þ b0. In mixed cases, we use the parameter space P1. In the following the

parameter space considered is P1.
In this parameter space, the preimage of a digital straight line of slope a

b with
06 b < a and no remainder is the segment ½ðab; 0Þ; ðab;�1

bÞ�. In particular, the preimage

of the line of parameters ð1; 1; 0Þ is the vertical segment ½ð1;�1Þ; ð1; 1Þ� in the param-

eter space. Some examples are depicted in Fig. 4.

Definition 3 can be rewritten using the preimage structure:

Definition 4. Let P be a set of discrete points and DðPÞ its preimage. The minimal
parameters of P are the values ðab;

l
bÞ 2 DðPÞ such that b and l are minimal.

We consider two digital naive lines L1 and L2 with slopes a
b and

c
d and no remainder,

and their intersection I ¼ L1 \ L2. Without loss of generality, we assume that a
b <

c
d.

We denote DðL1Þ (resp. DðL2Þ) the preimage of L1 (resp. L2). The preimage of any

set of discrete points is a convex polygon since it is defined by the intersection of

half-spaces. Moreover, the set of pixels I is included in L1 and in L2 which implies

that the preimage of I contains L1 and L2 preimages. Those properties imply that

DðIÞ includes the segment ½ðab; 0Þ; ðcd; 0Þ� (see Fig. 5 for illustrations). Furthermore,

as I contains all the discrete points belonging simultaneously to L1 and L2, adding
one more pixel of L1 or L2 to I cuts DðIÞ into two parts, one including DðL1Þ and

the other including DðL2Þ.



Fig. 5. Illustration of the three cases of Theorem 5.
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Theorem 5. The minimal parameters slope of the intersection of two lines of slopes a
b

and c
d (ab <

c
d) is given by the rational fraction u

v lying between a
b and c

d with minimal
denominator v.

Proof. Consider the set of discrete points belonging to L1 and L2, I ¼ L1 \ L2 and call

DðIÞ its preimage. We divide the proof of the theorem into 3 cases that are depicted

in Fig. 5.

• Assume that a
b6 0 and c

d P 0. Then, the fraction 0
1
lies between a

b and c
d. Conse-

quently, the line with slope 0
1
is a solution, and obviously the solution with minimal

denominator (cf. Fig. 5A).

• Assume that a
b6 1 and c

d P 1. Then, the fraction 1
1
lies between a

b and
c
d, and from

what we said before, we deduce that the line with slope 1
1
is a solution, and by

the way the one with minimal denominator (cf. Fig. 5B).

• Assume that 06 a
b <

c
d 6 1. We know that any fraction between a

b and
c
d is a solution.

By the way, the fraction with minimal denominator lying between a
b and

c
d is a so-

lution. We show that there does not exist a solution fraction with a smaller denom-

inator outside the segment defined by a
b and c

d. Suppose that there exist such a
fraction denoted u

v. Then, v < b and v < d. Suppose that u
v <

a
b and that jab � u

vj is
minimal for the set of irreducible fractions smaller than a

b with denominator v.
The case u

v >
c
d is symmetrical.

Consider the discrete point pð�v;�u� 1Þ. Adding this point to L1 \ L2 implies

two new half-spaces constraints given by 06 � avþ uþ 1þ b < 1 in the parameter

space. This strip is delimited by two lines l1 : �avþ uþ 1þ b ¼ 0 and

l2 : �avþ uþ 1þ b ¼ 1. l1 cuts the x-coordinate axis for x ¼ uþ1
v and l2 for x ¼ u

v
(see Fig. 5C).Thus, since v is smaller than any denominators of the fractions lying
between a

b and
c
d,

uþ1
v is either greater than c

d or smaller than a
b. But since we assume

that u
v was the closest fraction with denominator v smaller than a

b, we get that
u
v <

a
b <

c
d <

uþ1
v . Finally, DðI [ pÞ includes at the same time DðL1Þ and DðL2Þ, which

leads to the contradiction.

All the remaining cases can be treated as one of those three. h

3.2.2. Geometrical method

The preimage study characterizes the value of the minimal directional vector of
the intersection of two digital lines. We propose here a geometrical point of view that

leads to an algorithm to find both the minimal directional vector and the correspond-

ing remainder.
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To do so, we use the structure called Stern-Brocot tree that was defined and

studied in Section 2.2. Many works deal with the relations between irreducible ra-

tional fractions and digital lines. In [12,14], a characterization of the preimage with

Farey series is proposed. Indeed, they prove that the preimage of a digital segment

has at most 4 vertices whose x-coordinates are consecutive terms of a Farey series.
In [15], a link between the convex hull of a discrete segment and the decomposition

of a fraction into continued fractions is described. In [5], Debled first introduced

the link between this tree and digital lines. She noticed that recognizing a piece

of digital line is like going down the Stern-Brocot tree until the directional vec-

tor of the line is reached. In the following, we call Stern-Brocot tree root the

two fractions 0
1
and 1

0
.

Theorem 6. Let L be a digital line of slope a
b, and SðabÞ be the path going from the Stern-

Brocot tree root to the fraction a
b.

Then, for each fraction ai
bi
lying on SðabÞ, there exist a subset of bi þ 1 pixels of L hav-

ing a minimal directional vector ai
bi
.

Moreover, for any other fraction, there does not exist such a subset of L.

This theorem means that the path leading to the fraction a
b represents all the pat-

terns of length smaller than b included in L. If b ¼ 0 for a given digital line, then we

consider the fraction b
a and the same results hold.

The proof of this theorem needs a few lemmas. Lemma 7 was proved by Dorst

and Duin [16].

Lemma 7. Let L1 and L2 be two digital naive lines of slope u1
v1

and u2
v2

such that
u2v1 � u1v2 ¼ 1. Let C1 (resp. C2) be the Chain code associated to a period of L1 (resp.
L2) of length v1 þ 1 (resp. v2 þ 1). Then, the Chain code associated to a period of the
digital naive line of slope u1þu2

v1þv2
is C1C2 of length v1 þ v2 þ 1.

An illustration of this lemma is given in Fig. 6B.

We recall that the mothers of a fraction u
v 2 F q are the two fractions u1

v1
and u2

v2
of

F q�1 such that u1þu2
v1þv2

¼ u
v. Hence, we have the following result:

Lemma 8. Let a
b an irreducible rational fraction and SðabÞ its related path. Then, the

mothers of a
b lie on SðabÞ. Moreover, if we denote AðabÞ the set of ancestors of a

b according
to the definition of mothers, we have SðabÞ ¼ AðabÞ.

This lemma is directly derived from the definition and construction of the Stern-

Brocot tree.

Proof (Theorem 6). Let a
b be an irreducible rational fraction and SðabÞ its related path.

Let u
v 2 SðabÞ be another rational fraction. Two possibilities:

• if u
v is one of a

b mothers, then we derive the result from Lemma 7;

• otherwise, according to Lemma 8, uv is one of
a
b ancestors, and the result is obtained

by induction.



Fig. 6. (A) Stern-Brocot tree: positive and negative irreducible rational fractions. (B) Decomposition of

one period of the digital line of slope 5
8
: for each fraction of the path in the Stern-Brocot tree, the corre-

sponding set of pixels (one period) appearing in the period of the 5
8
slope digital line.
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a
b�s ancestors represent all the connected subsets of discrete points that appear in the

digital line of slope a
b. As SðabÞ ¼ AðabÞ, there is no fraction corresponding to a con-

nected pattern of the digital line of slope a
b outside the path SðabÞ. h

Hence, each node of the tree matches with a pattern. Since the intersection of two

digital lines is composed of patterns appearing in the two lines, we just have to look
for the closest common ancestor of the two corresponding fractions to find the min-

imal parameters of the intersection.

Theorem 9. Let L1 and L2 be two digital lines of slopes a1
b1
and a2

b2
. Then, the minimal

parameters of L1 \ L2 are given by a1
b1

and a2
b2

closest common ancestor in the Stern-
Brocot tree.

If the two digital lines studied are such that b1 ¼ 0 and a2 ¼ 0, then the corre-
sponding nodes are the root of the Stern-Brocot tree, and the minimal parameters

are any of the two fractions of the root.

Originally, the Stern-Brocot tree defines only the positive irreducible rational frac-

tions. In order to study the intersection of any two digital lines, we generalize this

tree adding its negative symmetrical as shown on Fig. 6A.

It is easy to see with the preimage study or the geometrical method that the direc-

tional vector found for two digital lines with no remainder is also solution for any

remainder. Nevertheless, if the cardinality of the intersection is smaller than the
length of the common pattern described by the directional vector found, there exist

smaller parameters. In that case, the minimal directional vector can be found among
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the common ancestors of the two fractions in the Stern-Brocot tree, looking for the

one with the smallest denominator greater than or equal to the intersection cardinal-

ity minus 1.

Theorems 5 and 9 are equivalent since looking for the closest common ances-

tor of two fractions is the Stern-Brocot tree is like looking for the fraction with
minimal denominator lying between those two fractions. Nevertheless, this geo-

metrical point of view is useful to design an efficient algorithm to determine

the minimal directional vector (see next section). Moreover, we show that this

method enables to find the minimal remainder associated to this minimal direc-

tional vector.

Let us define the following labelling L of the Stern-Brocot tree nodes:

LðabÞ ¼ blþ al0. This labelling is constructed recursively as follows:

• Lð0
1
Þ ¼ l and Lð1

0
Þ ¼ l0;

• let a
b be a node and u1

v1
and u2

v2
its mothers: then LðabÞ ¼ Lðu1v1Þ þ Lðu2v2Þ.

Each node label thus depends on only two variables. Now let us consider the

intersection of two digital lines L1ða;�b; l1Þ and L2ðc;�d; l2Þ. Mapping the

remainder values with the corresponding nodes labels, we get the following

system:
Fig. 7

lutions

get the
blþ al0 ¼ l1

dlþ cl0 ¼ l2

�

Hence, we can deduce the values of l and l0, and injecting those values in the label

of the node corresponding to the intersection parameters, we get the remainder of the

intersection. If this remainder is not an integer, we take its lower integer part if it is a
positive number, and its upper integer part otherwise. Fig. 7 illustrates this with an

example.
. Remainder calculation for the digital lines ð4;�5;l1Þ et ð5;�8; l2Þ: the two values l and l0 are so-

of the system 8lþ 5l0 ¼ l1, 5lþ 4l0 ¼ l2, and then injected in the equation 3lþ 2l0 in order to

remainder of the intersection.
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3.2.3. Minimal parameters search algorithm

We propose in this section an algorithm to find the minimal parameters of the in-

tersection of any two digital naive lines using the framework presented in the previ-

ous section. Theorem 9 shows that searching the minimal parameters of the

intersection of two digital lines and searching the nearest common ancestor of two
nodes in a binary tree is the same problem.

In the following, we use the binary code defined in Section 2.2 to identify the ra-

tional fraction position in the Stern-Brocot tree.

The proposed algorithm is composed of three parts, related two three different

problems:

(1) from a given rational fraction, find the corresponding binary code in the Stern-

Brocot tree;

(2) from a given binary code, find the corresponding rational fraction;
(3) from two binary codes, find the binary code of the nearest common ancestor.

The two first questions have already been answered in Section 2.2 with Algo-

rithms 1 and 2. The third problem have a simple solution that can be directly derived

from the solution proposed in [17].

Algorithm 3 describes the different steps to compute the nearest common ancestor

(NCA for short) of two rational fractions. After the computation of the two binary

codes usingAlgorithm1,we check if one fraction is anancestor of theother. In this case,

the NCA is the ancestor. Otherwise, we look for the position k of the first difference be-
tween the twocodes (the functionMSBmeansMost SignificantBitwhich is theposition

of the first non-zero bit). Then, we use Algorithm 2 to compute the fraction which has

the same code asC1 (orC2) until position k. Algorithm 2 returns the twomothers of the

fraction we look for, and thus, a simple median calculus leads to the solution.

Algorithm 4 is the general algorithm to compute the minimal parameters of the in-

tersection of two digital lines. If the two fractions a
b and

c
d have different signs, then we

know fromProposition 2 that the intersection of the two lines is one pixel or empty, and

thus, that the minimal slope is 0
1
. Otherwise, if the two fractions are positive (resp. neg-

ative), then the binary codes are computed from the fraction 1
1
(resp. �1

1
).
Algorithm 3. Compute the nearest common ancestor of two rational fractions a
b

and c
d

NCANCA(a; b; c; d)

1: I ¼ 1 0

0 1

� �
;

2: C1 ¼ Compute_Code(a; b);
3: C2 ¼ Compute_Code(c; d);
4: if (C1 ¼ prefix(C2)) then {resp. (C2 ¼ prefix(C1))}

5: return(a; b); {resp. return(c; d)}
6: else

7: k ¼ MSB(C1 XORXOR C2);

8: res ¼ Compute_Fraction(C1,k,0,I); {res is a 2� 2 matrix}

9: return(res[1,0] + res[1,1], res[0,0] + res[0,1]);
10: end if



Algorithm 4. Compute the minimal parameters of two digital lines of parameters

ða; b; lÞ and ðc; d; l0Þ
MINIMALMINIMAL_PARAMETERSPARAMETERS(a; b; l; c; d; l0)
1: if (a ¼ c ANDAND b ¼ d) then
2: return (a; b;minðl; l0Þ);
3: end if

4: if (sgn(ab) 6¼ sgn(cd)) then

5: (u,v) ¼ (0; 1);
6: else

7: (u,v) ¼ NCA(a;�b; c;�d);
8: end if

9:

Find k and k0 such that:
bk þ ak0 ¼ l
dk þ ck0 ¼ l0

�

10: if (vk þ uk0 > 0) then

11: return(u,�v,bvk þ uk0c);
12: else

13: return(u,�v,dvk þ uk0e);
14: end if
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Let us look at a run of Algorithm 4 for the two digital lines illustrated in Fig. 3:

D1ð4;�5; 0Þ and D2ð5;�8; 2Þ. First, the conditions on lines 1 and 4 are not fulfilled,

therefore we have to compute NCAð4; 5; 5; 8Þ using Algorithm 3. We enter the NCA
function, and get C1 ¼ 0111 and C2 ¼ 0101. The first difference between C1 and C2

appears in position 2 (denoted by k in Algorithm 3). Thus, the call (line 8 of Algo-

rithm 3) of the Compute_Fraction function presented in Algorithm 2 returns the ma-

trix
1 1

1 2

� �
. Hence we get ðu; vÞ ¼ NCAð4; 5; 5; 8Þ ¼ ð2; 3Þ: 2

3
is the slope of the

minimal parameters line. The resolution of the system on line 9 returns k ¼ 8
7
and

k0 ¼ �35
28
. Finally, we get that vk þ uk0 ¼ 26

28
and the final result is ð2;�3; 0Þ as depicted

on Fig. 3.

It is quite easy to see that all the operations of those four algorithms can either be

executed in constant time or in linear time in the length of the binary codes. Let us

consider an irreducible rational fraction a
b ¼ ½q0; q1; . . . ; qn�. From the result of Sec-

tion 2.2 Eq. 1, we derive that the length of its binary code is LðabÞ ¼
P

06 i6 n qi. So
considering two rational fractions a

b and
c
d, if we denote M ¼ maxðLðabÞ; LðcdÞÞ, Algo-

rithm 4 has a time complexity in OðMÞ.

3.3. Extent of the intersection

In order to have a complete description of the intersection of two digital lines, a

knowledge of the number of intersection points, some bounds on their coordinates

and an enumeration algorithm are required.
As said in the introduction, an enumeration algorithm have been proposed in [6].

This algorithm uses the fact that the intersection of two digital lines is equivalent to a

quasi-affine application.
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From this algorithm, it is obviously possible to derive the number of intersection

pixels. Nevertheless, a straightforward counting of the intersection pixels is possible

using a geometrical approach. Indeed, from the definition of naive line, we derive that

the intersection of two digital lines can be represented as a parallelogramwith rational

vertices (intersection of two strips). Counting the intersection pixels is then equivalent
to counting the number of integral points in a polygon with rational vertices. A meth-

od using Ehrhart polynomials and the related program are proposed in [18].

Finally, it may be also interesting to have bounds on the coordinates of the inter-

section pixels. Using the same polygonal representation of the intersection as before,

finding a bound on a coordinate is equivalent to solving an integer linear program

which is generally a NP-hard problem. But since our problem lies in dimension 2,

an heuristical algorithm may be designed for this particular optimization problem.

Nevertheless the enumeration algorithm proposed in [6] enables to get such an
information.
4. Digital planes intersection

In this part, we extend the properties found on digital lines intersection for digital
planes intersection and present some properties peculiar to planes. A digital naive

plane of parameters ða; b; c; lÞ is the set of integer points fðx; y; zÞg fulfilling the con-

dition 06 axþ by þ czþ l < maxðjaj; jbj; jcjÞ. As for naive lines, digital naive planes

are the thinnest 18-connected digital planes without 6-connected holes. See Fig. 8A

for an illustration of the intersection of two naive planes.
4.1. Periodicity

Proposition 10. Let P1ða; b; c; lÞ and P2ðd; e; f ; mÞ be two digital planes. Let
v ¼ ðv1; v2; v3ÞT be the cross product of ða; b; cÞT and ðd; e; f ÞT . Let g ¼ gcdðv1; v2; v3Þ
and v0 ¼ 1

gv. Then P1 \ P2 is periodic of period v0.

Proof. Let r1ðx; y; zÞ ¼ axþ by þ czþ l and r2ðx; y; zÞ ¼ dxþ ey þ fzþ m be the re-

mainder functions of the two planes. Let ðxM ; yM ; zMÞ be the coordinates of a voxel

M 2 P1 \ P2. It is straightforward to prove that M þ tv0 is not an integer point if t is
not integer. First, let us prove that r1ðM þ v0Þ ¼ r1ðMÞ:
r1ðM þ v0Þ ¼ axM þ byM þ czM þ lþ 1

g
ðabf � aceþ bdc� abf þ ace� bcdÞ

¼ r1ðMÞ
Similarly, r2ðM þ v0Þ ¼ r2ðMÞ. This proves that M þ v0 2 P1 \ P2 which means that

P1 \ P2 is periodic of period v0. h

Since the proof of this proposition does not depend on the thickness of the planes,

this result holds for the intersection of any digital planes with any thickness.
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4.2. Minimal parameters

In this part, we focus on the minimal parameters of the intersection of two digital

planes. To work in the same parameter space for any parameters, we use the same

trick as the one proposed by Veelaert [13] for lines, presented in Section 3.2.1. Hence,
we work in the parameter space ða; b; cÞ where a point ða0; b0; c0Þ stands for the plane
a0xþ b0y þ zþ c0 ¼ 0 in the Cartesian space for any value of a0, b0 and c0.

Given two digital planes P1 and P2, we look for the plane parameters ðu; v;w; lÞ
with minimal w and l containing all the voxels of P1 \ P2 in their OBQ digitization.

In the following, we consider digital naive planes with no remainder. First of all,

Proposition 11 gives a description of the intersection preimage.

Proposition 11. Let P1ða; b; c; 0Þ and P2ðd; e; f ; 0Þ be two digital naive planes. We
denote I ¼ P1 \ P2. Then the preimage of I , denoted DðIÞ, is a polygon included in the
plane perpendicular to c ¼ 0 and containing the points ðac; bc; 0Þ and ðdf ; ef ; 0Þ.

Proof. Since the two planes have no remainder, the point ð0; 0; 0Þ is a lower leaning

point of the two digital planes. As I is periodic of period v (Theorem 10), for every

integer t, the point tv belongs to P1 \ P2 and is a lower leaning point of the two digital

planes. In the dual space, the point tv corresponds to the two constraints

06 atv1 þ btv2 þ tv3 þ c < 1. Since tv is a lower leaning point for the two digital
planes, the constraint atv1 þ btv2 þ tv3 þ c ¼ 0 goes through the two points ðac; bc; 0Þ
and ðdf ; ef ; 0Þ. Hence, for all t, DðIÞ is constrained by the plane

atv1 þ btv2 þ tv3 þ c ¼ 0, equivalent to av1 þ bv2þ v3 þ 1
tc ¼ 0 for t 6¼ 0. When t in-

creases to þ1, the normal vector of this plane tends to the value ðv1; v2; 0Þ with

positive values of t and with negative values of t when t goes to �1. Then, for in-

finite planes, DðIÞ is reduced to a polygon included in the plane with normal vector

ðv1; v2; 0Þ which contains the two points ðac; bc; 0Þ and ðdf ; ef ; 0Þ. h

An example of an intersection preimage is given Fig. 8A.

This description enables to characterize the minimal parameters of I :

Theorem 12. Let P1ða; b; c; 0Þ and P2ðd; e; f ; 0Þ be two digital naive planes. We denote
Aðac; bc; 0Þ and Bðdf ; ef ; 0Þ the corresponding points in the parameter space, and I ¼ P1 \ P2.
Then, the minimal normal vector of I is given by the point ðuw; vw; 0Þ on ½AB�with minimalw.
Fig. 8. (A) Preimage of the intersection of the digital naive planes P1ð1; 3; 5; 0Þ and P2ð2; 3; 4; 0Þ; (B) illus-
tration of the proof of Theorem 12.
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Proof. Without loss of generality, we suppose that a
c6

d
f . To prove this theorem, we

use the results obtained for digital lines using a digital plane decomposition into

digital lines presented in [19]. Indeed, we can decompose any digital plane

P ða; b; c; lÞ into digital 3D lines: for instance, a decomposition along the y-axis gives
the set of lines SyjðP Þ ¼ fðx0; y0; z0Þ 2 P jy0 ¼ jg; 8j 2 Z. For two out of these three
possible decompositions, those lines are naive lines, and for the third one, they are

thicker than naive lines.

Since I is a piece of naive plane, we can use this decomposition. Consider the de-

composition of I along the y-axis. We denote SyjðIÞ the 3D digital lines of this decom-

position. Then we have DðIÞ ¼
T

j DðSyjðIÞÞ. Moreover, SyjðIÞ ¼ SyjðP1 \ P2Þ ¼ SyjðP1Þ
\ SyjðP2Þ as SyjðIÞ is the set of pixels of P1 \ P2 whose the y-coordinate is j.

Let us consider the set Sy0ðIÞ ¼ Sy0ðP1Þ \ Sy0ðP2Þ. Then, we get two cases:

• if Sy0ðP1Þ and Sy0ðP2Þ are naive lines, we denote them N3D;1ða; c; 0Þ and N3D;2ðd; f ; 0Þ.
Then, Sy0ðIÞ ¼ N3D;1 \ N3D;2.

• otherwise, Sy0ðP1Þ or Sy0ðP2Þ is thicker than a naive line but contains the naive line

of the previous case. Thus, we have Sy0ðIÞ � N3D;1 \ N3D;2.

If we consider the preimages of those sets, we then get the following property:

DðSy0ðIÞÞ � DðN3D;1 \ N3D;2Þ.
N3D;1 \ N3D;2 is a piece of 3D naive line and its preimage is a prism such that the

basis in the plane b ¼ 0 is the preimage of the intersection of the two 2D naive lines

N2D;1ða; c; 0Þ and N2D;2ðd; f ; 0Þ and such that the directional vector is ð1; 0; 0ÞT .
Let pðuw; vw; 0Þ be a point of DðIÞ as illustrated on Fig. 8. Then p 2 DðSy0ðIÞÞ and

thus p 2 DðN3D;1 \ N3D;2Þ. The projection of p along the prism previously described

onto the plane b ¼ 0 is the point projðpÞðuw; 0; 0Þ. projðpÞ 2 DðN2D;1 \ N2D;2Þ and ac-

cording to the results about the preimage of the intersection of two digital 2D naive

lines, if w < c and w < f , then a
c6

u
w6

d
f . If

a
c ¼ d

f , then
b
c 6¼ e

f and the same argument

can be applied using a decomposition along the x-axis. Otherwise, finally, we derive

that, if w < c and w < f , thus p belongs to ½AB� from the structure of DðIÞ presented
in Proposition 11. This shows that the minimal parameters are to be found on
½AB�. h
5. Conclusion

In this paper, we present new results about the intersection of two digital lines or

two digital planes. We introduce criteria to analyze its connectivity and we propose a

characterization of the minimal parameters of a given intersection in function of the
parameters of the two lines/planes.

Although the properties are enounced and proved for digital naive lines and

planes, those results are also true or can be easily transcribed for standard lines (thin-

nest 4-connected lines without 8-connected holes) or planes (thinnest 6-connected

planes without 18-connected holes). For instance, the connectivity results for lines

intersections can be adapted transforming any diagonal moving into an horizontal

and a vertical one. Moreover, all the results about minimal parameters are based

on the intersection preimage features, which depend on the lines or planes preimage
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shape. But the preimage of a standard line or plane is a translated copy of the pre-

image of the naive line or plane having the same parameters. So the extension to

standard objects is easy.

The transcription of the minimal parameters search algorithm can be easily done

for more than two lines. Indeed, the same arguments hold to prove that the minimal
slope is the nearest common ancestor of the n rational fractions corresponding to n
digital lines.

Those properties will be used for instance in the polygonalization process for dig-

ital curves and digital surfaces to define edges and vertices. A complementary study

to design an efficient algorithm for the computation of the minimal parameters of

digital planes intersection is an interesting perspective for this application.
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