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Abstract

In digital geometry, digital straightness is an important concept both for practical motivations
and theoretical interests. Concerning the digital straightness in dimension 2, many digital straight
line characterizations exist and the digital straight segment preimage is well known. In this article,
we investigate the preimage associated to digital planes. More precisely, we present first structure
theorems that describe the preimage of a digital plane. Furthermore, we present a bound on the
number of preimage faces under some given hypotheses.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Digital straightness is an important concept in computer vision. In dimension two, for
nearly half a century many digital straight line characterizations have been proposed with
interactionswithmany fields such as arithmetic or theory of words (refer to[14] for a survey
on digital straight line). A classical way to define a digital straight line is to consider the
digitization of an Euclidean straight line on a unit grid. Hence, given a finite subset of a
digital straight line, called digital segment, we can characterize the set of Euclidean straight
lines whose digitization contains the digital straight segment. Many authors have discussed
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about this set of straight lines, also calledpreimage, of a digital segment[4,9,10]. An
important result is that such a preimage is a convex polygon in the parameter space and this
domain has got an important arithmetical structure that limits to four the number of vertices.
This result of interest for two reasons: on the one handwe have a better understanding of this
simple digital object and on the other hand, we can design very efficient digital straight line
recognition algorithms. Concerning digital planes, some algorithms exist in order to decide
if a set of grid points in dimension three is a part of a digital plane[5,7,8,15,16]. However,
no result has been proposed concerning the structure of the digital plane preimage. In this
article, we present several results that describe the faces and the vertices of the preimage
polyhedron in the parameter space.
In Section 2, we present major results on the digital straight line preimages. The structure

theorems for straight lines are then used to characterize digital plane preimage in Section
3. Finally, we present in Section 4 a bound on the number of faces of the digital plane
preimage under some given hypotheses.

2. Digital straight line preimage

In the following, we use the notations proposed by Lindenbaum and Bruckstein[9].
Consider a straight liney =�0x +�0 (without loss of generality,(�0, �0) ∈ [0,1]× [0,1[).
The digitization of this line using the Object Boundary Quantization (see[6] for a survey
on digitization schemes) on an unit grid is the set of discrete points such thatL0={(x, y) ∈
Z2 | 	�0x + �0 − y� = 0}.
The preimage of a set of pixelsSis defined by the set of straight lines whose digitization

containsS. The preimageofS, denotedD(S), is the set of(�, �) in the straight line parameter
space satisfying:

D(S) = {(�, �) ∈ [0,1] × [0,1[ | ∀(x, y) ∈ S, y ��x + � < y + 1}. (1)

If wedecompose theprevious equation, eachpixel introduces two linear inequalities.Hence,
the preimage of a set of pixels is given by intersection of the linear inequalities associated to
each pixel in the parameter space. If such an intersection is non-empty,Sis a digital straight
segment. Indeed, in that case there exist(�0, �0) such thatS ⊂ L0.
Many works have been done concerning the preimage analysis. In the following, we

recall properties presented by Dorst and Smeulders[4], McIlroy [10] and Lindenbaum and
Bruckstein[9].

Proposition 1. Let S be a8-connected set of pixels, the domainD(S) is either empty or a
convex polygon in the parameter space with at most four vertices. If D(S) has four vertices,
two of them have the same� coordinate which is between the� coordinates of the other two
vertices.

Fig. 1illustrates all the possible shapes ofD(S) (see[9] and a simple proof can be found
in [10]).
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Fig. 1. Five possible shapes of the preimageD(S) of a digital straight segment.

Among all the various definitions of DSS, we retain the one proposed by Reveillès[12]
and based on the following definition:

Definition 2. An arithmetical naive straight line, denotedN(a, b, �), with a, b, � ∈ Z and
gcd(a, b) = 1 is defined by the set of pixels satisfying:

N(a, b, �) = {(x, y) ∈ Z2 |��ax − by < � +max(|a|, |b|)}. (2)

a/b is the slope of the digital line and� is the lower bound.

If we consider a naive straight line such that 0�a < b and thus max(|a|, |b|) = b, we
have an equivalence between this characterization and the previous one:

Theorem 3 (Reveillès[12]). For all �0 and�0 in [0,1] × [0,1[, and all finite setS ⊂ L0,
there exista, b, � ∈ Z with 0�a < b such thatS ⊂ N(a, b, �).

In fact, many parameters{(ai, bi, �i )} such thatS ⊂ N(ai, bi, �i ) exist. However, we
can only consider the minimal set of parameters(a, b, �) such thatb =min({bi}). Note that
the output of the arithmetical naive segment recognition algorithm proposed in[3] is the
minimal set of parameters. In the following, when we consider a subsetSof a naive straight
lineN(a, b, �), we suppose that(a, b, �) is the minimal set of parameters forS.
We choose the Reveillès digital straight line representation scheme because it allows

simple illustration of the geometry in the primal space of preimage vertices. More precisely,
we can define some characteristic points, calledleaning points, defined as follows:upper
leaning points(resp.lower leaning points) of a digital straight lineN(a, b, �) are grid points
(x, y) satisfyingax − by = � (resp.ax − by = � +max(|a|, |b|) − 1).
Givenafiniteconnectedarithmetical naivesegmentSwithminimalparametersN(a, b, �),

the segment contains at least three leaning points: one lower leaning point, one upper leaning
point and any third one (see[3]). Let us first suppose thatShas the following leaning points:
U (resp. U′) the upper leaning point ofSwith minimum x coordinate (resp. maximumx
coordinate), andL andL′ that are defined in the same way from lower leaning points.Fig.
2(a) illustrates these definitions. Using these arithmetical digital lines, the preimage vertices
can be expressed usingU , U ′, L, L′ (seeFig. 2):

• the vertexD corresponds to the straight line(UU ′) in the primal space;
• the vertexB corresponds to the straight line(LTL′

T) whereLT (resp.L′
T) is L (resp.L′)

translated by the vector(0,1)T;
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Fig. 2. Illustration in the primal space of the preimage vertices using the arithmetical digital line formalism: (a)
a piece of the arithmetical digital straight lineN(1,3,1) with lower and upper leaning points, (b) its associated
preimage and (c) illustration in the primal space of the preimage vertices.

• the vertexA corresponds to the straight line(LTU ′);
• the vertexC corresponds to the straight line(L′

TU);
• the coordinates ofD andB are, respectively,(a/b, �/b) and(a/b, (� + 1)/b).

If one of the four leaning points ismissing, similar results can be derived and the preimage
D(S) has only three vertices. In a digital line recognition point of view, the following results
can be stated from[12,9]:

Lemma 4. Let S be a connected arithmetical naive segment with a minimal set of param-
eters(a, b, �). Consider a pixel p connected at the left(or right) side of S and such that p
belongs to this straight line. The preimage ofS ∪ {p} grid remains unchanged if and only
if p is not a leaning point ofN(a, b, �).
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Fig. 3. Any cutting line goes through pointB orD [9].

Proof. Let us denoteD(S) the preimage of the digital naive lineS. We refer toFig. 1for the
description ofD(S). In [9], the authors prove that only one of the two constraints associated
to p can modifyD(S). Furthermore, they also prove that if the cutting line crossesD(S),
it goes through the verticesB or D (seeFig. 3). Since the segment contains at least three
leaning points, we haveB = (a/b, �/b) andD = (a/b, (� + 1)/b). According to the links
between digital naive lines and the preimage structure detailed above, only leaning points
of N(a, b, �) can have a constraint that goes throughB orD. �

3. Digital plane preimage

3.1. Notations and definitions

Without loss of generality, we consider the Euclidean plane given by the parameters
(�0, �0, �0) ∈ [0,1]2 × [0,1[. The digitizationP0 of this Euclidean plane is the set of grid
points (calledvoxelsin 3D) satisfying:

P0 = {(x, y, z) ∈ Z3 | 	�0x + �0y + �0 − z� = 0}. (3)

In the same manner as in 2D, letS be a set of voxels. We can define the preimage ofS
considering the set of parameters(�, �, �) such that the digitization of the associated plane
containsS:

D3D(S)={(�, �, �)∈[0,1]2×[0,1[ | ∀(x, y, z)∈S, z��x+�y+� < z+1}. (4)

The preimage, denotedD3D(S), is either empty or a convex polyhedron in the(�, �, �)-
parameter space. Indeed, it is the intersection of linear inequalities. We also consider a
characterization of the digital plane based on thearithmetical naive plane[12]:
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Definition 5. An arithmetical naive plane, denotedP (a, b, c, �), with a, b, c, � ∈ Z and
gcd(a, b, c) = 1 is defined as the set of voxels satisfying

P (a, b, c, �) = {(x, y, z) ∈ Z3 |��ax + by + cz < � +max(|a|, |b|, |c|)}, (5)

where(a, b, c)T is the digital plane normal vector and� is the lower bound.

In the following, we consider a naive plane such that 0�a�b < c and thus max
(|a|, |b|, |c|) = c. As in dimension 2, for each finite subset of digital planeS ⊂ P0 given
by (�0, �0, �0), there exista, b, c, � ∈ Z with 0�a�b < c such thatS ⊂ P (a, b, c, �).
Among all possible naive plane parameterizations such thatS ⊂ P (a, b, c, �), we only
consider the minimal set of parameters such thatc is minimal.
In this arithmetical plane, we can also define special voxels, so-calledupper and lower

leaning points: the upper leaning points are the voxels satisfyingax + by + cz = � and
lower leaning points are the voxels satisfyingax + by + cz = � + max(|a|, |b|, |c|) − 1.
Since these points are coplanar, we also define theupper leaning polygon, denotedLup
(resp.lower leaning polygondenotedLlow) as the 2D convex hull of upper leaning points
(resp. lower leaning points).Fig. 4 illustrates these definitions.
Given a finite set piece of digital planeS, if (a, b, c, �) is the minimal set of parameters

forS, thenScontains, at least, four leaning points ofP (a, b, c, �) (two upper and two lower
points, three upper and one lower points or one upper and three lower points)[2]. In the
following, when a digital naive plane parametrization is considered for a set of voxels, we
always suppose that the parametrization is minimal.
In thenext section,wepresent links betweenpreimage facesand leaningpolygon vertices.

3.2. Digital plane preimage characterization

First of all, we suppose that the finite subset of digital planeS ⊂ P (a, b, c, �) contains at
least three upper leaning points and three lower leaning points (this point will be discussed
below). Thus, we first introduce vertices and faces ofD3D(S) given by leaning polygons:

Proposition 6. Let S ⊂ P (a, b, c, �) be a piece of naive plane. Then, the polyhedron
containing all the Euclidean planesD3D(S) in the parameter space has the following
properties:

• two particular vertices with coordinatesL∗
low(a/c, b/c, �/c) andL∗

up(a/c, b/c, (� +
1)/c) are identified.They correspond to the planes containing the leaning polygonsLup
andLlow in the primal space;

• the polyhedron’s faces adjacent toL∗
low (resp. L∗

up) result from the lower(resp. upper)
leaning polygon’s vertices.

Proof. In the (�, �, �)-parameter space, each pointp(x, y, z) in S introduces two linear
constraintsC1(p) : �x + �y + � − z�0 andC2(p) : �x + �y + � − z − 1<0 with
(�, �, �) ∈ [0,1]2 × [0,1[. Since(�, �, �) are positive and according to Preparata and
Shamos[11], the domainD3D(S) is given by computing the lower envelope of constraints
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Fig. 4. Illustration of an arithmetical digital planeP (7,17,57,0), lower and upper leaning points and lower and
upper leaning polygons withn = 15.

C2, the upper envelope of constraintsC1, and by merging these two envelopes. In other
words, we can independently analyze constraintsC1 andC2.
Hence, we consider the constraints{C2} of pointspi inSand the leaning plane containing

the upper leaning polygonLup. Since all pointspi are below the leaning plane by definition
of this plane, all half-planes defined by the constraints{C2(pi)} contain the pointL∗

up in
the parameter space. Thus, since all upper leaning points have constraintsC2 going through
L∗
up, L∗

up is necessarily a vertex of the lower envelope of constraints{C2} and so,L∗
up is

necessarily a vertex of the polyhedronD3D(S). Using same arguments, we prove thatL∗
low

is a vertex, in the parameter space, of the upper envelope of constraints{C1(pi)} and thus,
L∗
low is also a vertex ofD3D(S). The coordinates ofL∗

up andL∗
low are given by definition of

leaning points.
If we consider now the adjacent faces to the pointL∗

up of D3D(S), each face with normal

vector(xi, yi, zi)
T is created by the upper leaning point with coordinates(xi, yi, zi). We

denote{ei}1...m the vertices of the leaning polygonLup and byv a coplanar voxel to points
{ei}1...m, inside the polygon. SinceLup is the planar convex hull of upper leaning points,
we havev = ∑m

i=1�ie
i , where{�i}1...m ∈ R are such that�i �0 and

∑m
i=1�i = 1. Then,
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Fig. 5. Illustration of Proposition 6: (Left) vertices{ei }1...m of the upper leaning polygon and the pointv lying
inside this polygon, (Right) the constraint generated byv has a normal vector linearly dependent with positive
weights on normal vectors of faces{ei }1...m in the parameter space.

the constraint generated byv in the dual space containsL∗
up and has a normal vector which

is linearly dependent with positive weights to normal vectors of faces{ei}1...m (seeFig. 5).
Thus,v is not an adjacent face toL∗

up in D3D(S). Finally, all the adjacent faces toL∗
up are

only generated by the upper leaning polygon’s vertices. Similarly, all the adjacent faces to
L∗
low in the parameter space are generated by lower leaning polygon’s vertices.�

At this point, we have proved that the preimageD3D(S) has two characteristic vertices
associated to the leaning planes and particular faces created by the leaning polygon’s ver-
tices. We can now discuss on pathological cases when the number of upper (resp. lower)
leaning points is less than 3. If only two upper (resp. lower) leaning points exist, the two
associated faces belong toD3D(S) and define an edge ofD3D(S) that can be viewed as a
degeneracy ofL∗

up (resp.L
∗
low). If there is only one upper leaning point, only the associated

face belongs toD3D(S). In the following, we prove that, with some hypotheses on the digital
plane, the preimageD3D(S) does not contain other faces.

Definition 7. Let S ⊂ P (a, b, c, �) be a piece of naive plane. We define thedouble cone
in the parameter space associated toSand denote byDcone(S) the domain where faces are
generated by leaning polygons’ vertices.

For the sake of clarity, we suppose in the following that the leaning polygons have at
least three points.
As a corollary of Proposition 6 and whatever the digital plane, we have

D3D(S) ⊆ Dcone(S). (6)

The following theorems show that we have an equality between these two polyhedra if we
add some hypotheses onS.
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Fig. 6. Illustration of Theorem 8 hypotheses: the projection of the voxelv must belong to the projections of the
two leaning polygons.

Fig. 7. Illustration of the proof of Lemma 8 in the 2D case.

Theorem 8. Let S ⊂ P (a, b, c, �) (with 0�a�b < c) be a piece of naive plane where
each point(xi, yi, zi) is such that(xi, yi) lies inside the projections onto the planez = 0 of
the two leaning polygons. Then we haveD3D(S) = Dcone(S).

Proof. Let us consider a voxelv that belongs to the digital planeP (a, b, c, �) and that
satisfies theorem hypothesis. We first consider the constraintC2(v) and show thatC2(v)

does not intersectDcone(S). TheFig. 6 illustrates the hypotheses of the theorem.
Sincev belongs toS,C2(v) necessarily contains the pointL∗

up(a/c, b/c, (�+1)/c) in the
parameter space. In other words, the planeC2(v) crosses the straight lines(L∗

lowL∗
up) at a

pointpwith �-coordinate greater than the�-coordinate ofL∗
up (seeFig. 7). If C2(v) crosses

the domainDcone(S), then the translation ofC2(v) by the vector
−−→
pL∗

up crosses the domain
too. This transformation translates the planeC2(v) into a planeC′ that goes throughL∗

up. In
the primal space, this translation corresponds to a vertical projection of the voxelv onto the
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upper leaning plane. According to the hypothesis on the digital plane voxels, this vertical
projection ofv lies inside the upper leaning polygon. Thus, using the same arguments as
in the proof of Proposition 6, the normal vector ofC′ is linearly dependent with positive
weights of the face normal vectors created by the upper leaning polygon’s vertices. Hence,
C′ does not belong to the lower envelope of constraints{C2} and does not cross the domain
Dcone(S). Then,C2(v) does not cross the domain too.
Considering the constraintC1(v), similar arguments are used with projection onto the

lower leaning plane. Finally, if all voxels ofSare such that the vertical projection of such
points lies inside both leaning polygonprojections, the voxelv doesnot change thepreimage
and thusD3D(S) = Dcone(S). �

In the following we prove that for a digital plane containing at least three leaning points
on each line along they axis or thex axis,D3D(S) does not contain more faces than those
described in Proposition 6. In order to prove this statement, we use the Lemma 4 on digital
line preimage presented in Section 2 and the following decomposition of a digital plane
into digital lines.

Proposition 9. LetS ⊂ P (a, b, c, �) be a naive plane. Let us define the decomposition of
S into3D digital straight lines along the y axis: Sj = {(x, y, z) ∈ S | y = j}. Then we have

S =
⋃

j

Sj and D3D(S) =
⋂

j

D3D(Sj ). (7)

We can map each set of voxelsSj to a digital naive line Proj(Sj ) in the(Oxz) plane. This
mapping is one-to-one and onto, and, if we denote byP (a, b, c, �) the digital naive plane,
the digital line is exactlyN(a, −c, �−bj) (see[2]). In the general case, i.e. on finite subset
Sof P (a, b, c, �), Lemma 10 describes the relation between the parameters ofSand those
of Proj(Sj ). In the parameter space, the preimage ofSj is a prism whose basis (for� = 0
and�=1) is the preimage ofN(a, −c, �−bj) and whose directional vector is(0,1, −j)T.
Fig. 8 shows an example of a 3D lineSj preimage andFig. 9 illustrates the digital plane
preimage computation based on the{Sj } preimage intersections.

Lemma 10. Let S be a piece of digital plane of parameters(a, b, c, �) and Sj a line of
its decomposition. Consider a voxelv of S which belongs toSj , and its projectionProj(v)

onto the(Oxz) plane. Thenv is a leaning point of S if and only ifProj(v) is a leaning point
for the parameters(a, −c, � − bj).Moreover, if Sj contains at least3 leaning points of S,
Proj(Sj ) is the digital lineN(a, −c, � − bj).

Proof. Consider a pointv(x, y, z) of S. Then we haveax +by +cz=�+ r, with 0�r < c.
If v belongs toSj , then we haveax + cz = � − bj + r. The point Proj(v) = (x, z)is a
leaning point for the parameters(a, −c, � − bj) if and only if ax + cz = � − bj + c − 1
or ax + cz = � − bj , i.e. if and only ifv is a leaning point ofS.
Then, if Sj contains at least three leaning points ofS, Proj(Sj ) contains three leaning

points for the parameters(a, −c, � − bj), and then Proj(Sj ) is the digital lineN(a, −c,

� − bj). �
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Fig. 8. Preimage of the 3D digital straight line defined byy = 1 in the planeP (1,3,4,0).

Fig. 9. Illustration of the proof of Theorem 10.

Theorem 11. Let S ⊂ P (a, b, c, �) a piece of discrete naive plane such thatS = ⋃
j Sj

with Sj = {(x, y, z) ∈ S | y = j}.We assume that for all j, Sj is connected. Then, if each
Sj contains at least three leaning points(one lower leaning point, one upper leaning point
and any third one), we haveD3D(S) = Dcone(S).

Proof. From Proposition 6, the preimage ofS has two particular vertices and the faces
adjacent to those points correspond to the plane leaning points. Let us consider a voxel
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Fig. 10. (a) A piece of planeP (1,3,4,0); (b) preimages of 3D digital straight lines in parameter space(�, �, �);
(c)–(d) the preimage of the piece of plane is the intersection of the digital lines preimages, arrows aim atL∗

up (c)
andL∗

low (d).

v(x, y, z) connected toSwhich is not a leaning point ofS. We show that the preimage of
S ∪ v is equal to the preimage ofS, which proves that any face ofD3D(S) goes through
eitherL∗

up orL∗
low.

Let us consider the decomposition ofS into 3D digital lines{Sj }. Fig. 10 gives an
illustration of the notations used in this proof.v belongs to one and only one line of this
decomposition,Sy . Thus, only the preimage ofSy may be reduced byv. Now we consider
the projection of this line in the 2D space(Oxz), and denote it Proj(Sy). Hence, the preimage
of Sy is a prism whose basis is the preimage of Proj(Sy). The whole prism is modified by
a constraint associated tov if and only if its basis is modified. From Lemma 10 we know
that the leaning points of Proj(Sy) are exactly those ofSy . As a consequence,v is not a
leaning point of Proj(Sy), and according to Lemma 4, the preimage of Proj(Sy) (denoted
D2D(Proj(Sy)) in Fig. 10) does not change after the insertion of the voxelv. Hence, the
preimage ofSy does not change either. This means thatv does not modify the preimageSy .
Finally, sinceD3D(S) is the intersection of all{Sj } preimages and sincev does notmodify

theSy prism,v does not change the domainD3D(S). �
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Fig. 11. (a) Set of points generated by{(i, gi modh)} with g = 5 andh = 17, (b) convex hull computation on a
[1, k.h − 1] × [1, l.h − 1] window, (c) convex hull computation on a general window.

4. Bounds on the number of faces

It has been proved in previous theorems how to construct the preimage of a digital plane.
In this section, we present a bound on the number of faces of this preimage. Let us suppose
a digital planeS ⊂ P (a, b, c, �) satisfying hypothesis of Theorems either 8 or 11 (or both).
Hence, the number of faces ofD3D is exactly the number of both leaning polygons’ vertices.
We also suppose thatS is a rectangular piece of digital plane. More precisely, there is a
one-to-one and onto mapping between the voxels ofSand the points in the(Oxy) plane
contained in a[1, m] × [1, n] window.
As given in Definition 5, an arithmetical planeP (a, b, c, �) is composed of a set of

arithmetical nets given by the solutions of the diophantine equationax + by + cz = r with
r ∈ {�, . . . , � + max(|a|, |b|, |c|) − 1}. Given a piece of digital plane, the problem is to
bound the number of vertices of the upper (resp. lower) leaning point convex hull. First
note that the upper (resp. lower) leaning net can be projected onto the(Oxy) plane without
changing the number of vertices of the convex hull. The problem is to consider the convex
hull size of the bidimensional netax +by =r (modc) in am×nwindow.We first construct
two vectors, denotedU(p, q) andV (s, t), that compose a basis of the net using the classical
Blankinship’s algorithm in number theory[1]. In other words, all upper leaning points are
generated by these two vectors. Using scale changes on the grid axis, we can construct a
net defined by the canonical vectors(0, h) and(1, g). This one-to-one and onto mapping
from the net generated by[U, V ] to the net generated by[(0, h), (1, g)] does not change
the number of convex hull vertices (given two vectors in the plane, the transformation does
not change the sign of the determinant of those vectors).
The net generated by[(0, h), (1, g)] in anh × h window (seeFig. 11(a)), is exactly the

points{(i, gi modh)}with 0< i < h. As proved by Reveillès and Yaacoub[13], the number
of vertices of the convex hull of such points is O(log(g)) (authors illustrate links between
such a net and continued fraction ofg/h). Hence, over a square[1, h − 1] × [1, h − 1], the
complexity is known (seeFig. 11(a)). In the following, the net in[1, h − 1] × [1, h − 1] is
called aperiod.
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The general problem concerns a windowWof general size[1, m] × [1, n]. First of all, if
W is such thatm = k.h − 1 andn = l.h − 1 with k, l in Z, the convex hull of the net can
be decomposed into the following elements: two vertical straight segments defined by the
horizontal extremal points of the net, two horizontal straight segments joining the vertical
extremal points and four parts of the convex hull in one period (seeFig. 11(b)). Hence, the
number of vertices of the convex hull overW is bounded by the number of vertices in one
period, i.e. O(log(g)).
If we consider a general windowW, similar elements are present: we have four straight

segments to connect horizontal and vertical extremal points, and four parts of convex hulls
of net subsets over a period (seeFig. 11(c)). Hence, we have to study the size of the convex
hull on windows[1, �] × [1, �′] with �, �′ in Z and�, �′ < h. In fact, Reveillès and Yaacoub
also proved that the convex hull size of the net{(i, (gi + �modh)} with � in {0, . . . , h},
over a period is also bounded by O(log(g)) [13]. In other words, we can shift the net by
the vector(0, �), we do not change the size of the convex hull. Similarly, we can prove that
the translation by the vector(�′,0) do not change the complexity of the convex hull too.
Hence, the number of vertices of a piece of the convex hull in a window[1, �] × [1, �′] is
always bounded by O(log(g)). Finally, the size of the overall convex hull in the windowW
is bounded by O(log(g)).
Hence, given am × n rectangular digital plane with minimal parameters(a, b, c, �), we

first have 0�a�b < c� max(m, n). Since,g andh are linear combinations ofa, b andc,
the size of both the upper and the lower leaning polygon is bounded by O(log(max(m, n))).

Theorem 12. Let S be a rectangularm × n piece of digital plane satisfying hypothesis of
either Theorem8or 11 (or both).Then the number of faces of the preimage of S is bounded
byO(log(max(m, n))).

5. Conclusion

In this paper we have presented some first results about digital plane preimage. We have
shown that with some hypothesis on the piece of digital plane, the shape of the preimage
is a double cone whose structure is very similar to the one of 2D digital straight segments
preimages.
We have also introduced the decomposition of a digital plane segment into 3D digital

straight segments, which suggests interesting arithmetical properties on the polyhedron’s
faces and vertices. Indeed, each 3D digital line segment preimage face is resulting from a
side of a 2D digital segment preimage which have known arithmetical structure.
Finally, we have shown that under some hypotheses, the number of faces of a rectangular

m × n digital plane segment preimage is bounded by O(log(max(m, n))). As in 2D, such
a result together with the other ones of this paper can lead to the design of a very efficient
digital plane recognition algorithm. In future works, efforts must be made to enlarge the
scope of the theorems whole considering general pieces of plane without constraints.
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