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Abstract

In digital geometry, digital straightness is an important concept both for practical motivations
and theoretical interests. Concerning the digital straightness in dimension 2, many digital straight
line characterizations exist and the digital straight segment preimage is well known. In this article,
we investigate the preimage associated to digital planes. More precisely, we present first structure
theorems that describe the preimage of a digital plane. Furthermore, we present a bound on the
number of preimage faces under some given hypotheses.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Digital straightness is an important concept in computer vision. In dimension two, for
nearly half a century many digital straight line characterizations have been proposed with
interactions with many fields such as arithmetic or theory of words (reféd{dor a survey
on digital straight line). A classical way to define a digital straight line is to consider the
digitization of an Euclidean straight line on a unit grid. Hence, given a finite subset of a
digital straight line, called digital segment, we can characterize the set of Euclidean straight
lines whose digitization contains the digital straight segment. Many authors have discussed
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about this set of straight lines, also callpttimage of a digital segmenf4,9,10] An
important result is that such a preimage is a convex polygon in the parameter space and this
domain has got an important arithmetical structure that limits to four the number of vertices.
This result of interest for two reasons: on the one hand we have a better understanding of this
simple digital object and on the other hand, we can design very efficient digital straight line
recognition algorithms. Concerning digital planes, some algorithms exist in order to decide

if a set of grid points in dimension three is a part of a digital plfmé,8,15,16] However,

no result has been proposed concerning the structure of the digital plane preimage. In this
article, we present several results that describe the faces and the vertices of the preimage
polyhedron in the parameter space.

In Section 2, we present major results on the digital straight line preimages. The structure
theorems for straight lines are then used to characterize digital plane preimage in Section
3. Finally, we present in Section 4 a bound on the number of faces of the digital plane
preimage under some given hypotheses.

2. Digital straight line preimage

In the following, we use the notations proposed by Lindenbaum and BrucKSfein
Consider a straight line = agx + ff5 (without loss of generality(o, fg) € [0, 1] x [0, 1).
The digitization of this line using the Object Boundary Quantization [6k&r a survey
on digitization schemes) on an unit grid is the set of discrete points suchdgkaf(x, y) €
72| lagx + o — y] =0}.

The preimage of a set of pixe&is defined by the set of straight lines whose digitization
containsS The preimage df denotedD(S), is the set ofa, ) inthe straight line parameter
space satisfying:

D(S)={(a, p) €[0,1] x [0, 1[ |V(x,y) € S,y<ox + f<y+1}. (1)

If we decompose the previous equation, each pixel introduces two linear inequalities. Hence,
the preimage of a set of pixels is given by intersection of the linear inequalities associated to
each pixel in the parameter space. If such an intersection is non-ediptydigital straight
segment. Indeed, in that case there effist ) such thatS C Lo.

Many works have been done concerning the preimage analysis. In the following, we
recall properties presented by Dorst and Smeul@@récliroy [10] and Lindenbaum and
Bruckstein[9].

Proposition 1. Let S be &88-connected set of pixelthe domainD(S) is either empty or a
convex polygon in the parameter space with at most four vertic£g S) has four vertices
two of them have the same&oordinate which is between theoordinates of the other two
vertices

Fig. lillustrates all the possible shapesiofS) (se€[9] and a simple proof can be found
in [10]).
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Fig. 1. Five possible shapes of the preimde) of a digital straight segment.

Among all the various definitions of DSS, we retain the one proposed by Re\éllEs
and based on the following definition:

Definition 2. An arithmetical naive straight line, denotata, b, 1), witha, b, u € Z and
gcd(a, b) = 1 is defined by the set of pixels satisfying:

N(a,b, @) = {(x,y) € 7% | u<ax — by < u+max(al, |b])}. )

a/b is the slope of the digital line andis the lower bound.

If we consider a naive straight line such that 8 < b and thus maial|, |b]) = b, we
have an equivalence between this characterization and the previous one:

Theorem 3 (Reveilled12]). Forall «g andfyin [0, 1] x [0, 1[, and all finite setS C Lo,
there existz, b, u € Z with0<a < b such thatS c N(a, b, ).

In fact, many parameteiga;, b;, i;)} such thatS C N(a;, b;, 1;) exist. However, we
can only consider the minimal set of parameters, ) such thab =min({5;}). Note that
the output of the arithmetical naive segment recognition algorithm propod4&dl is the
minimal set of parameters. In the following, when we consider a si$asfet naive straight
line N(a, b, 1), we suppose thdat, b, p) is the minimal set of parameters f8r

We choose the Reveillés digital straight line representation scheme because it allows
simple illustration of the geometry in the primal space of preimage vertices. More precisely,
we can define some characteristic points, caieshing pointsdefined as followsupper
leaning pointgresplower leaning pointsof a digital straight lineV (a, b, ) are grid points
(x, y) satisfyingax — by = pu (resp.ax — by = u + max(|a|, |b]) — 1).

Given afinite connected arithmetical naive segnvith minimal parameterd (a, b, p),
the segment contains at least three leaning points: one lower leaning point, one upper leaning
point and any third one (s¢8]). Let us first suppose th&has the following leaning points:
U (resp. U) the upper leaning point ¢ with minimum x coordinate (resp. maximum
coordinate), andl andL’ that are defined in the same way from lower leaning poffits.
2(a) illustrates these definitions. Using these arithmetical digital lines, the preimage vertices
can be expressed usitg U’, L, L’ (se€eFig. 2):

o the vertexD corresponds to the straight lit& U’) in the primal space;
e the vertexB corresponds to the straight liietL%) whereLt (resp.L7) isL (resp.L’)
translated by the vectad, 1)";
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preimage and (c) illustration in the primal space of the preimage vertices.

Fig. 2. lllustration in the primal space of the preimage vertices using the arithmetical digital line formalism: (a)
a piece of the arithmetical digital straight lid&(1, 3, 1) with lower and upper leaning points, (b) its associated

o the vertexA corresponds to the straight lingtU’);
e the vertexC corresponds to the straight litg;U);

can be stated frorfi2,9]:

e the coordinates dd andB are, respectivelya /b, u/b) and(a/b, (u + 1)/b).
If one of the four leaning points is missing, similar results can be derived and the preimage

D(S) has only three vertices. In a digital line recognition point of view, the following results

Lemma 4. Let S be a connected arithmetical naive segment with a minimal set of param-
eters(a, b, u). Consider a pixel p connected at the Iédt right) side of S and such that p
belongs to this straight linélhe preimage of U {p} grid remains unchanged if and only
if p is not a leaning point ol (a, b, p).

81
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a

Fig. 3. Any cutting line goes through poiBtor D [9].

Proof. Letus denoté)(S) the preimage of the digital naive lirgeWe refer taFig. 1for the
description ofD(S). In [9], the authors prove that only one of the two constraints associated
to p can modify D(S). Furthermore, they also prove that if the cutting line crog3¢s),

it goes through the vertice® or D (seeFig. 3). Since the segment contains at least three
leaning points, we havB = (a/b, u/b) andD = (a/b, (1 + 1)/b). According to the links
between digital naive lines and the preimage structure detailed above, only leaning points
of N(a, b, 1) can have a constraint that goes throlggor D. O

3. Digital plane preimage
3.1. Notations and definitions
Without loss of generality, we consider the Euclidean plane given by the parameters

(20, Po- 7o) € [0, 11% x [0, 1[. The digitizationP, of this Euclidean plane is the set of grid
points (calledvoxelsin 3D) satisfying:

Po={(x,,2) € Z°| laox + foy + 70 — 2] =0} 3
In the same manner as in 2D, [8te a set of voxels. We can define the preimagé of

considering the set of parametéss f3, y) such that the digitization of the associated plane
containss

D3p(S)={(a, p, 7)€l0, 11°x[0, 1[ | ¥(x, v, 2)€S, z<ax+fy+y < z+1}. 4)
The preimage, denotedzp(S), is either empty or a convex polyhedron in the 5, y)-

parameter space. Indeed, it is the intersection of linear inequalities. We also consider a
characterization of the digital plane based ondhighmetical naive plangl2]:
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Definition 5. An arithmetical naive plane, denoté«, b, ¢, u), with a, b, ¢, u € Z and
gcd(a, b, ¢) = 1 is defined as the set of voxels satisfying

P(a,b,c, ) ={(x,y.2) € Z°| u<ax + by + cz < .+ max(al, |bl, [}, (5)
where(a, b, ¢)T is the digital plane normal vector apds the lower bound.

In the following, we consider a naive plane such that<b <c¢ and thus max
(lal, |bl, Ic]) = c¢. As in dimension 2, for each finite subset of digital plaghe: Py given
by (o0, fo. 79), there exist, b, ¢, p € Z with 0<a<b <c such thatS C P(a, b, c, p).
Among all possible naive plane parameterizations such&hat P (a, b, ¢, 1), we only
consider the minimal set of parameters such ¢hatminimal.

In this arithmetical plane, we can also define special voxels, so-agbieer and lower
leaning pointsthe upper leaning points are the voxels satisfyaingt- by + ¢z = u and
lower leaning points are the voxels satisfying + by + cz = pt + max(la|, |b], |c]) — 1.

Since these points are coplanar, we also defineufigeer leaning polyggndenotedL
(resp.lower leaning polygomenotedL|qy) as the 2D convex hull of upper leaning points
(resp. lower leaning pointskig. 4illustrates these definitions.

Given a finite set piece of digital plaigif (a, b, ¢, 1) is the minimal set of parameters
for S thenScontains, at least, four leaning points®(a, b, ¢, ) (two upper and two lower
points, three upper and one lower points or one upper and three lower gdaints) the
following, when a digital naive plane parametrization is considered for a set of voxels, we
always suppose that the parametrization is minimal.

Inthe next section, we present links between preimage faces and leaning polygon vertices.

3.2. Digital plane preimage characterization

First of all, we suppose that the finite subset of digital pl&re P (a, b, ¢, p) contains at
least three upper leaning points and three lower leaning points (this point will be discussed
below). Thus, we first introduce vertices and face®efh(S) given by leaning polygons:

Proposition 6. Let S c P(a, b, ¢, 1) be a piece of naive plan@hen the polyhedron
containing all the Euclidean planeB3p(S) in the parameter space has the following
properties
e two particular vertices with coordinatesy,, (a/c, b/c, u/c) and Liy(a/c, b/c, (i +
1)/c) are identified They correspond to the planes containing the leaning polyd@eps
and Loy in the primal spacge
o the polyhedrors faces adjacent ta;,, (resp L) result from the lowe(resp. uppey
leaning polygois vertices

Proof. In the (o, 3, y)-parameter space, each popx, y, z) in Sintroduces two linear
constraintsC1(p) : ax + fy + 9 —z=0 andCa(p) : ox + fy + 7y — z — 1 <0 with

(o, B,7) € [0, 112 x [0, 1[. Since (o, p,y) are positive and according to Preparata and
Shamog11], the domainD3p(S) is given by computing the lower envelope of constraints
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.

Fig. 4. lllustration of an arithmetical digital plane(7, 17, 57, 0), lower and upper leaning points and lower and
upper leaning polygons with = 15.

C», the upper envelope of constraintg, and by merging these two envelopes. In other
words, we can independently analyze constraihtandCa.

Hence, we consider the constraifit®} of pointsp; in Sand the leaning plane containing
the upper leaning polygohyp. Since all pointg; are below the leaning plane by definition
of this plane, all half-planes defined by the constrafits(p;)} contain the point.j, in
the parameter space. Thus, since all upper leaning points have constpagioisag through
Lip L{}p is necessarily a vertex of the lower envelope of constrdifit§ and so,L, is
necessarily a vertex of the polyhedrpgp(S). Using same arguments, we prove thit,
is a vertex, in the parameter space, of the upper envelope of cons{iajts)} and thus,

low 1S @lso a vertex oD3p(S). The coordinates otﬁp andLy,, are given by definition of
leaning points.

If we consider now the adjacent faces to the p(m'tg of D3p(S), each face with normal

vector (x;, y;, zi)" is created by the upper leaning point with coordinatesy;, z;). We
denote{e’}; ,, the vertices of the leaning polygdn,p and byv a coplanar voxel to points
{e'}1 ,n, inside the polygon. Sincéyp is the planar convex hull of upper leaning points,
we havev = Y w;e', where{w;}; ,, € R are such that); >0 and}_"" ;w; = 1. Then,
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Fig. 5. lllustration of Proposition 6: (Left) vertice{s"}lmm of the upper leaning polygon and the poinlying
inside this polygon, (Right) the constraint generatedfyas a normal vector linearly dependent with positive
weights on normal vectors of facés }; ,, in the parameter space.

[

the constraint generated byn the dual space contaits;, and has a normal vector which

is linearly dependent with positive weights to normal vectors of fé€gs ,, (seeFig. 5).
Thus,v is not an adjacent face bﬁp in D3p(S). Finally, all the adjacent faces lmp are

only generated by the upper leaning polygon’s vertices. Similarly, all the adjacent faces to
Ly, inthe parameter space are generated by lower leaning polygon’s vertides.

At this point, we have proved that the preimaBep(S) has two characteristic vertices
associated to the leaning planes and particular faces created by the leaning polygon’s ver-
tices. We can now discuss on pathological cases when the number of upper (resp. lower)
leaning points is less than 3. If only two upper (resp. lower) leaning points exist, the two
associated faces belong B3p(S) and define an edge d@3p(S) that can be viewed as a
degeneracy oL, (resp.Lf,, ). If there is only one upper leaning point, only the associated
face belongs t@3p(S). In the following, we prove that, with some hypotheses on the digital
plane, the preimag®sp(S) does not contain other faces.

Definition 7. LetS C P(a, b, c, ) be a piece of naive plane. We define ttmuble cone
in the parameter space associate8 &md denote bycone(S) the domain where faces are
generated by leaning polygons’ vertices.

For the sake of clarity, we suppose in the following that the leaning polygons have at
least three points.
As a corollary of Proposition 6 and whatever the digital plane, we have

D3p(S) S DeonelS). (6)

The following theorems show that we have an equality between these two polyhedra if we
add some hypotheses &n
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x

Fig. 6. lllustration of Theorem 8 hypotheses: the projection of the voxelst belong to the projections of the
two leaning polygons.

(a) (b) (c)

Fig. 7. lllustration of the proof of Lemma 8 in the 2D case.

Theorem 8. Let S C P(a, b, ¢, n) (with 0<a <b <) be a piece of naive plane where
each point(x;, y;, z;) is such thatx;, y;) lies inside the projections onto the plane- 0 of
the two leaning polygon3hen we havé3p(S) = DcondS).

Proof. Let us consider a voxal that belongs to the digital planB(a, b, ¢, 1) and that
satisfies theorem hypothesis. We first consider the constfaipf) and show thatCs(v)
does not intersed¢one(S). TheFig. 6illustrates the hypotheses of the theorem.
Sincev belongs td5, C2(v) necessarily contains the poibfy(a/c, b/c, (1+1)/c) inthe
parameter space. In other words, the pl@aév) crosses the straight Iineéﬁ,’ngﬁp) ata
pointp with y-coordinate greater than thecoordinate ofL{, (seeFig. 7). If C2(v) crosses

the domainDcone(S), then the translation af2(v) by the vectorpLu;p crosses the domain

too. This transformation translates the plai€v) into a planeC’ that goes through .. In
the primal space, this translation corresponds to a vertical projection of thewort the
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upper leaning plane. According to the hypothesis on the digital plane voxels, this vertical
projection ofv lies inside the upper leaning polygon. Thus, using the same arguments as
in the proof of Proposition 6, the normal vector©f is linearly dependent with positive
weights of the face normal vectors created by the upper leaning polygon’s vertices. Hence,
C’ does not belong to the lower envelope of constréiatg and does not cross the domain
DcondS). Then,Co(v) does not cross the domain too.

Considering the constrair; (v), similar arguments are used with projection onto the
lower leaning plane. Finally, if all voxels @are such that the vertical projection of such
points lies inside both leaning polygon projections, the voxies not change the preimage
and thusD3p(S) = Deond S). O

In the following we prove that for a digital plane containing at least three leaning points
on each line along thgaxis or thex axis, D3p(S) does not contain more faces than those
described in Proposition 6. In order to prove this statement, we use the Lemma 4 on digital
line preimage presented in Section 2 and the following decomposition of a digital plane
into digital lines.

Proposition 9. LetS C P(a, b, ¢, u) be a naive planeLet us define the decomposition of
S into3D digital straight lines along the y axis§; = {(x, y,z) € S|y = j}. Then we have

S= U S; and D3p(S) = ﬂ D3p(S)). (7)
J J

We can map each set of voxelsto a digital naive line Pr@fS;) in the (Ox2 plane. This
mapping is one-to-one and onto, and, if we denotély, b, ¢, i) the digital naive plane,
the digital line is exactlyV (a, —c, i — bj) (se€2]). In the general case, i.e. on finite subset
Sof P(a, b, ¢, ), Lemma 10 describes the relation between the paramet&araf those
of Proj(S;). In the parameter space, the preimage pfs a prism whose basis (fgf=0
andf=1) is the preimage o (a, —c, 1 — bj) and whose directional vector(®, 1, —j)'.
Fig. 8 shows an example of a 3D lin® preimage andrig. 9illustrates the digital plane
preimage computation based on g} preimage intersections.

Lemma 10. Let S be a piece of digital plane of parametéssb, c, 1) and S; a line of
its decompositionConsider a voxeb of S which belongs t§;, and its projectiorProj(v)
onto the(Ox2 plane Thenv is a leaning point of S if and only Froj(v) is a leaning point
for the parametersga, —c, i — bj). Moreover if S; contains at leasB leaning points of S
Proj(S;) is the digital lineN (a, —c, u — bj).

Proof. Consider a point(x, y, z) of S Thenwe havex + by +cz=pu+r, with0<r <c.
If v belongs toS;, then we havewx + cz = u — bj + r. The point Projv) = (x, z)is a
leaning point for the parametets, —c, u — bj) ifand only ifax +cz=p—bj +c—1
orax + cz = pu — bj, i.e. if and only ifv is a leaning point of.

Then, if S; contains at least three leaning points$Proj(S;) contains three leaning
points for the parametel®, —c, u — bj), and then PrgS;) is the digital lineN (a, —c,
w—=>bj). O
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a

Fig. 8. Preimage of the 3D digital straight line definedyby: 1 in the planeP (1, 3, 4, 0).

Digital Lines Preimages

(a3

(b)

Fig. 9. lllustration of the proof of Theorem 10.

Theorem 11. LetS C P(a, b, ¢, n) a piece of discrete naive plane such tifat UjS.,
with S; = {(x, y,2) € S|y = j}. We assume that for al| |5; is connectedThen if each
S; contains at least three leaning poir(tsne lower leaning poinbne upper leaning point
and any third ong we haveD3p(S) = DcondS).

Proof. From Proposition 6, the preimage 8fhas two particular vertices and the faces
adjacent to those points correspond to the plane leaning points. Let us consider a voxel
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Fig. 10. (a) A piece of plan@ (1, 3, 4, 0); (b) preimages of 3D digital straight lines in parameter sgac§, y);
(c)—(d) the preimage of the piece of plane is the intersection of the digital lines preimages, arrowiamt

andLy, (d).

v(x, y, z) connected t@which is not a leaning point d&. We show that the preimage of
S U v is equal to the preimage & which proves that any face d3p(S) goes through
eitherLy, or Ly, -

Let us consider the decomposition 8finto 3D digital lines{S;}. Fig. 10 gives an
illustration of the notations used in this proofbelongs to one and only one line of this
decompositions$,. Thus, only the preimage ¢f, may be reduced by. Now we consider
the projection of this line in the 2D spa@®x2, and denote it Prgf, ). Hence, the preimage
of S, is a prism whose basis is the preimage of BSgj. The whole prism is modified by
a constraint associated taf and only if its basis is modified. From Lemma 10 we know
that the leaning points of Pr@j,) are exactly those of,. As a consequence, is not a
leaning point of PrgjS,), and according to Lemma 4, the preimage of B¥gj (denoted
D7p(Proj(Sy)) in Fig. 10 does not change after the insertion of the vaxeHence, the
preimage ofS, does not change either. This means thdbes not modify the preimags.

Finally, sinceD3p(S) is the intersection of allS; } preimages and sinasdoes not modify

the S, prism,v does not change the domainp(S). O
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©

Fig. 11. (a) Set of points generated {1y, gi modh)} with ¢ =5 andh = 17, (b) convex hull computation on a
[1, k.h — 1] x [1, [.h — 1] window, (c) convex hull computation on a general window.

4. Bounds on the number of faces

It has been proved in previous theorems how to construct the preimage of a digital plane.
In this section, we present a bound on the number of faces of this preimage. Let us suppose
adigital planeS C P(a, b, ¢, u) satisfying hypothesis of Theorems either 8 or 11 (or both).
Hence, the number of faces Bgp is exactly the number of both leaning polygons’ vertices.
We also suppose th&is a rectangular piece of digital plane. More precisely, there is a
one-to-one and onto mapping between the voxelS afid the points in th€Oxy) plane
contained in 41, m] x [1, n] window.

As given in Definition 5, an arithmetical plan®(a, b, ¢, 1) is composed of a set of
arithmetical nets given by the solutions of the diophantine equation by + ¢z = r with
r ey, ..., u+ maxlal, |b|, |c]) — 1}. Given a piece of digital plane, the problem is to
bound the number of vertices of the upper (resp. lower) leaning point convex hull. First
note that the upper (resp. lower) leaning net can be projected ont@&yeplane without
changing the number of vertices of the convex hull. The problem is to consider the convex
hull size of the bidimensional nek + by =r (modc) in am x n window. We first construct
two vectors, denotet! (p, ¢g) andV (s, t), that compose a basis of the net using the classical
Blankinship’s algorithm in number theof¢]. In other words, all upper leaning points are
generated by these two vectors. Using scale changes on the grid axis, we can construct a
net defined by the canonical vectdfs #) and(1, g). This one-to-one and onto mapping
from the net generated Hy/, V] to the net generated HYO0, ), (1, g)] does not change
the number of convex hull vertices (given two vectors in the plane, the transformation does
not change the sign of the determinant of those vectors).

The net generated kYO0, i), (1, g)] in ank x h window (seeFig. 11(a)), is exactly the
points{(i, gi modh)} with 0 <i < h. As proved by Reveillés and Yaaco}il8], the number
of vertices of the convex hull of such points igl@y(g)) (authors illustrate links between
such a net and continued fractiongfh). Hence, over a squafé, » — 1] x [1, h — 1], the
complexity is known (se€ig. 11(a)). In the following, the netifl, » — 1] x [1, A — 1] is
called aperiod
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The general problem concerns a windéiof general siz¢l, m] x [1, n]. First of all, if
W is such thain = k.h — 1 andn =[.h — 1 with k, [ in Z, the convex hull of the net can
be decomposed into the following elements: two vertical straight segments defined by the
horizontal extremal points of the net, two horizontal straight segments joining the vertical
extremal points and four parts of the convex hull in one period Esgel (b)). Hence, the
number of vertices of the convex hull owafis bounded by the number of vertices in one
period, i.e. Qlog(g)).

If we consider a general windoW, similar elements are present: we have four straight
segments to connect horizontal and vertical extremal points, and four parts of convex hulls
of net subsets over a period (d€ig. 11(c)). Hence, we have to study the size of the convex
hull on windows[1, ¢] x [1, €] with ¢, ¢ in Z ande, ¢ < h. In fact, Reveillés and Yaacoub
also proved that the convex hull size of the H@t (gi + emodh)} with ¢ in {0, ..., i},
over a period is also bounded byI@y(g)) [13]. In other words, we can shift the net by
the vector(0, &), we do not change the size of the convex hull. Similarly, we can prove that
the translation by the vectdr’, 0) do not change the complexity of the convex hull too.
Hence, the number of vertices of a piece of the convex hull in a window] x [1, &'] is
always bounded by bg(g)). Finally, the size of the overall convex hull in the windgWw
is bounded by @og(g)).

Hence, given &z x n rectangular digital plane with minimal parametétsb, c, 1), we
first have G<a <b < ¢ < max(m, n). Since,g andh are linear combinations & b andc,
the size of both the upper and the lower leaning polygon is boundedlbg@ax(m, n))).

Theorem 12. Let S be a rectangularn x n piece of digital plane satisfying hypothesis of
either Theoren8 or 11 (or both). Then the number of faces of the preimage of S is bounded

by O(log(max(m, n))).
5. Conclusion

In this paper we have presented some first results about digital plane preimage. We have
shown that with some hypothesis on the piece of digital plane, the shape of the preimage
is a double cone whose structure is very similar to the one of 2D digital straight segments
preimages.

We have also introduced the decomposition of a digital plane segment into 3D digital
straight segments, which suggests interesting arithmetical properties on the polyhedron’s
faces and vertices. Indeed, each 3D digital line segment preimage face is resulting from a
side of a 2D digital segment preimage which have known arithmetical structure.

Finally, we have shown that under some hypotheses, the number of faces of a rectangular
m x n digital plane segment preimage is bounded flo@max(mn, n))). As in 2D, such
a result together with the other ones of this paper can lead to the design of a very efficient
digital plane recognition algorithm. In future works, efforts must be made to enlarge the
scope of the theorems whole considering general pieces of plane without constraints.
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