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Abstract

This paper presents an algorithm dealing with the data reduction and the approximation of 3D polygonal curves. Our
method is able to approximate efficiently a set of straight 3D segments or points with a piecewise smooth subdivision curve,
in a near optimal way in terms of control point number. Our algorithm is a generalization for subdivision rules, including
sharp vertex processing, of the Active B-Spline Curve developed by Pottmann et al. We have also developed a theoretically
demonstrated approach, analysing curvature properties of B-Splines, which computes a near optimal evaluation of the initial
number and positions of control points. Moreover, our original Active Footpoint Parameterization method prevents wrong
matching problems occurring particularly for self-intersecting curves. Thus, the stability of the algorithm is highly increased.
Our method was tested on different sets of curves and gives satisfying results regarding to approximation error, convergence
speed and compression rate. This method is in line with a larger 3D CAD object compression scheme by piecewise subdivision
surface approximation. The objective is to fit a subdivision surface on a target patch by first fitting its boundary with a
subdivision curve whose control polygon will represent the boundary of the surface control polyhedron.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The context of this work is the Semantic-3D project
(http://www.semantic-3d.net), supported by the French
Research Ministry and the RNRT (Réseau National de
Recherche en Télécommunications). The objective is the
low bandwidth transmission, in a visualization objective,
of CAD objects represented by 3D meshes, with multi-
resolution and adaptivity properties. Meshes are optimized
in terms of triangle numbers and original NURBS infor-
mation is not available. In this context, a 3D compression
algorithm is needed but the optimized tessellation and the
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need of a low bandwidth transmission make this problematic
very complex. The chosen approach is to convert the original
object into a set of light patches represented by subdivision
surfaces. This representation will bring a high compression
rate adapted to a low bandwidth and to a multi-resolution
displaying because of subdivision properties. Moreover, the
model will be adaptive because of the prior decomposition
into surface patches. In addition, this representation pro-
vides a compact and structured description of 3D objects
that might be convenient for 3D image processing tasks
such as indexing or characterization. This approximation
problematic can be linked with the inverse problem for sub-
division surfaces.Within this context, we present an efficient
algorithm dealing with the inverse problem for subdivision
curves, whose purpose is two-fold: firstly it represents a
sub-problem of the surface case, and secondly, subdivision
curves have the property to represent the boundary of a

http://www.elsevier.com/locate/patcog
http://www.semantic-3d.net
mailto:glavoue@liris.cnrs.fr


1140 G. Lavoue et al. / Pattern Recognition 38 (2005) 1139–1151

subdivision surface. Thus, dealing first with the boundary of
a patch and then with its interior, should be an efficient so-
lution. The visual aspect of the final compressed objects is
important and have led us to introduce the notion of sharp
features in our algorithms. In this context, our curve approx-
imation algorithm is able to deal with sharp vertices, and to
preserve them.
Section 2 details the whole 3D-object compression

scheme, whereas subdivision curves are presented in Sec-
tion 3. Section 4 presents the related work about smooth
curve fitting and Sections 5–7 deal with the different parts
of our method, the initial curve computation, the optimiza-
tion scheme and the footpoint determination. Finally, results
are presented and discussed in Section 8 and an example of
the surface approximation case is presented in Section 9.

2. Presentation of the whole compression process

The whole process can be decomposed into the following
parts:

2.1. Decomposition into patches

Firstly the CAD objects are segmented into surface
patches. The used method is based on the curvature ten-
sor field analysis and presents two distinct complementary
steps: a region-based segmentation which decomposes the
object into near constant curvature patches, and a boundary
rectification based on curvature tensor directions, which
corrects boundaries by suppressing their artifacts or dis-
continuities. These methods are detailed in Refs.[1] and
[2]. Resulting segmented patches, by virtue of their prop-
erties (known curvature, clean boundaries) are particularly
adapted to subdivision surface fitting (seeFig. 1).

2.2. Patch approximation

One of the most relevant problem in the fact of approxi-
mating an object by patches is the apparition of cracks be-
cause each patch will be approximated by a different sur-
face whose boundary will not be perfectly matched with
the others. A solution is to add constraints during the fitting
process but the complexity will highly increase. Indeed if
each patch has constraints with its neighbors, the algorithm
will become a global optimization problem. Another solu-
tion is to treat these cracks after the fitting process but the
fitted patches will be modified compared with the first ap-
proximation. Our solution is simpler and more effective. For
each patch the subdivision surface approximation problem
is divided into two sub-problems: a piecewise approxima-
tion of the patch boundary and the construction of the final
subdivision surface by interpolation of the found boundary
and approximation of the interior data, like the approach
proposed by Schweitzer[3]. In order to prevent our model
from cracks, for each patch the boundary is divided into

Fig. 1. Segmentation of Swivel (a) and Fandisk (b) objects into
patches adapted to subdivision surface fitting.

Fig. 2. Extraction of pieces of boundary (1,2,3,4) of a segmented
patch (P) from the Fandisk object.

pieces of boundary corresponding to the different adjacen-
cies with its neighboring regions (seeFig. 2). Once each
piece of boundary has been approximated by a subdivision
curve (this inverse problem is treated in this paper), the cor-
responding control polygons are put together to form the
control polygon of the whole boundary. According to sub-
division properties, this control polygon will represent the
boundary of the control polyhedron of the subdivision sur-
face representing the corresponding patch. Then, for each
patch, a subdivision control mesh is created using its bound-
ary information. The final control mesh defining the whole
surface will comprise control meshes of all regions.

3. Subdivision curve presentation

The subject of this paper is the approximation of a polyg-
onal curve with a piecewise smooth subdivision curve. A
subdivision curve is created using iterative subdivisions of a
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Fig. 3. Example of subdivision curve with one sharp vertex. (a)
Control polygon. (b and c) 2 iterations of subdivision, (d) limit
curve.

control polygon. In this paper we use the subdivision rules
defined for subdivision surface by Hoppe et al.[4] for the
particular case ofcreaseor boundary edges: new vertices
are inserted at the midpoints of the control segments and
new positionsP ′

i
for the control pointsPi are computed us-

ing their old values and those of their two neighbors using
the mask[5]:

P ′
i = 1

8(Pi−1 + 6Pi + Pi+1). (1)

With these rules, the subdivision curve corresponds to a
uniform cubic B-spline, except for its end segments. We
also consider specific rules (those defined by Hoppe[4] for
cornervertices) to handle sharp parts and extremities:

P ′
i = Pi . (2)

This subdivision curve will coincide with the boundary gen-
erated by commonly used subdivision surface rules like
Catmull–Clark[6] or Loop [7]. An example of subdivision
curve is presented inFig. 3.

4. Related work and framework

This inverse problem for subdivision curve ties up with
the smooth parametric curve approximation problematic,
with the additional difficulty that a subdivision curve does
not have a parametric formulation and cannot be evalu-
ated at any point. But this shortcoming can be solved using
different techniques like does Schweitzer[3]. The author

considers the subdivision curve as being composed of a se-
quence of cubic Bezier segments, except at each end. This
number of segments increases when subdividing. Thus any
point of the curve can be evaluated by founding the Bezier
segment (given by repeated subdivisions) which includes
the considered parameter, and then applying B-Spline basis
functions. Most of the smooth curve approximation meth-
ods are based on a data parameterization. LetVi being the
sequence ofp points to approximate, andS, our B-spline or
subdivision curve, the usual approaches compute the control
points that minimize an error functionF:

F =
p∑
i=1

‖S(�i )− Vi‖2 (3)

with �i the parameter value assigned to the data pointVi .
The minimization of this over determined quadratic system
is generally solved by a least square method, which leads to
a square linear system. The main problem lies in the choice
of the parameters�i which highly influence the result. Three
methods are commonly used to assign the approximation pa-
rameter locations (see Ref.[8]): Uniform, Chord Length and
Centripetal parameterizations. But none of these solutions
is optimal and readily adapted. Schweitzer[3], in its subdi-
vision curve approximation algorithm, starts with a Chord
Length parameterization and then corrects the parameters
by considering at each iteration the parameters of the data
point projections on the approximating subdivision curve.
Some authors have proposed more sophisticated and effi-
cient iterative parameter correction procedures, notably the
intrinsic parameterization of Hoschek[9], which was im-
proved by Saux and Daniel[10]. The algorithm firstly min-
imizes the system with respect toS, considering initial�i
values, and secondly with respect to�i (separately for each
parameter value). Another solution was proposed by Speer
et al.[11] which considers a global approach, both the con-
trol points and the parameters are considered as unknowns.
But fundamentally this parameterization remains a problem
because the correction procedures are time consuming and
take many iterations to converge (>50) [12].
In this context, Pottmann et al.[13] have proposed a

new and very efficient approach inspired by the active con-
tour models of Kass et al.[14]: the Active B-Spline Curve.
Their approximation scheme does not require parameteri-
zation. The idea is to make an active initial B-Spline con-
verge towards a target curve by minimizing local approx-
imate squared distances from the target curve. It is not a
point to point distance minimization but a point to curve
minimization which allows a very fast convergence (<10
iterations) (see Section 8). We have extended this optimiza-
tion scheme to handle piecewise smooth subdivision curves
(see Sections 5 and 6).
Unfortunately this method is very dependent of the initial

active curve. Thus, the original method from Pottmann was
extended by Yang et al.[12] to permit a dynamic control
point insertion or removal. The choice of the initial number
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and placement of the control points is a remaining problem
in the approximation algorithms. Schweitzer[3] starts with
4 control points and then increases iteratively the number
according to the resulting error. Saux and Daniel[10,15]
consider initially a high number of control points and then
determine the minimum number using a dichotomic method.
Finally, Yang et al.[12] heuristically determine this num-
ber by considering the local direction monotony of the tar-
get curve. But their method leads to a generally too high
number of control points, so a removal algorithm is gen-
erally needed. Concerning the positions of the initial con-
trol points, the initial parameterization for the initial curve
determination is usually the Chord Length[12,3] or the
Centripetal[10] and thus gives rather poor initial results.
However these control point initial placement and number
are critical because, better is the initial approximation and
faster will be the convergence algorithm. A control point
insertion or removal, for instance, is a very time consum-
ing task because it will influence a significant part of the
curve and thus require an other cycle of iterations. Within
this context, we have developed an efficient determination
method for the number and positions of initial control points,
based on curvature analysis and theoretical foundations (see
Section 5). One other shortcoming of the Active B-Spline
Curve from Pottman et al. was raised in Ref.[12], and con-
cerns the wrong matching problem. The distance function
used for the optimization has often multiple local minima
and some of these minima can lead to a wrong matching of
the target curve. This problem occurs especially for highly
concave or self-intersecting target curves, or when the ini-
tial active curve is too different from the target. Our algo-
rithm will increase the stability and prevent from these prob-
lems, by introducing an active pseudo-parameterization of
the target data, calledActive Footpoint Parameterization (see
Section 7).

5. Initial control point processing

5.1. Sharp vertex detection

Correct number and positions of the control points of the
initial active curve are critical for our convergence algo-
rithm. Our initial control point placement method is based
on the curvature analysis of the target curve. Thus prior to
starting the algorithm we must detect and take into account
sharp vertices. Indeed even if, in practice, a curvature value
is associated with sharp vertices, the curvature is not theo-
retically defined on these features. That is why we process
a sharp vertex detection by fixing a threshold on the angle
of the two segments sharing each vertex. Each sharp vertex
will represent a sharp control point in the final control poly-
gon representing the final approximating subdivision curve.
Thus we cut the target curve at each sharp vertex and apply
our algorithm on each so extracted piece of curve. Finally,
correspondingly found control polygons are put together,

with associated sharp control points tagged assharp, to form
the final subdivision curve control polygon.

5.2. Theoretical foundations

Our subdivision curve (once cutted at its sharp vertices)
represents a uniform cubic B-Spline curve except for its end
segments (see Section 3), therefore except at its ends, the
curve is composed with polynomial curve segmentsSi . We
have studied the behavior of the curvature on such a segment,
in order to make the connection between the optimal number
of control points and the curvature of the target curve.

Theorem 1. Considering a uniform cubic B-Spline seg-
ment, local curvature maxima are necessarily located at
the extremities.

Proof. Each uniform cubic B-Spline segmentSi is associ-
ated with 4 control points(Pi−3, Pi−2, Pi−1, Pi). For any
parameter valueu such as 0�u�1, the corresponding po-
sition Si(u) on this segment is defined by:

Si(u)= 1
6((1− u)3Pi−3 + (3u3 − 6u2 + 4)Pi−2

+ (−3u3 + 3u2 + 3u+ 1)Pi−1 + u3Pi). (4)

Thus the second derivative vector is:

S̈i (u)= (1− u)Pi−3 + (3u− 2)Pi−2

+ (−3u+ 1)Pi−1 + uP i . (5)

The curvatureC(u), at each parameter, is defined byC =
‖S̈i (u)‖. Our goal is to study the variation of this curvature,
thus we have calculated its first derivative which can be
expressed as:

Ċ(u)= f (u)√
g(u)

(6)

with f linear in u andg quadratic inu. Thus the equation
Ċ(u)= 0 has one or zero solutionu0 ∈ [0,1], therefore the
curvature is either monotonic, or has one extremum over the
cubic segment (not located at an extremity).

• If the curve segment is monotonic there exists one cur-
vature maximum at one extremity (u=0 oru=1), there-
fore the theorem is verified.

• If the curve has one extremum, we will determine if it
is a maximum or a minimum. For this purpose, we have
determined the sign of the second derivativeC̈(u) of the
curvature. We found numerically that:

∀u ∈ [0,1], C̈(u)�0 (7)

thus Ċ(u) is increasing∀u ∈ [0,1], and therefore
Ċ(u)�0 for u ∈ [0, u0] and Ċ(u)�0 for u ∈ [u0,1].
As a resultC(u) is decreasing beforeu0 and increasing
after and thereforeC(u0) represents a local minimum.
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Thus curvature maxima are located at the extremities,
therefore the theorem is verified.�

Formal and limit calculation have been made using the
software Waterloo Maple�.
According to Theorem 1, a local maximum of curvature

located over the target curve is associated with the extremity
of a B-Spline segment and therefore there is necessary at
least one associated control point whose limit position is
at the extremum. So, forn local curvature maxima we can
affirm that at leastn initial control points are needed.

5.3. Algorithm

Our initial curve processing algorithm is the following:

(1) The curvatureC is calculated for each vertexVi of the
target curve. The curvature is defined as the opposite of
the radius of the circle circumscribed around the triangle
defined byVi−1, Vi andVi+1.

C(Vi)= sin(�i )
1
2di

, (8)

where�i is the angle between
−→

Vi−1Vi and
−→

ViVi+1 and

di is the norm‖ −→
Vi−1Vi+1 ‖.

(2) The curvature is smoothed by a Median Filter[16] (a
common image denoising filter), associated with a 1-
neighbourhood. Then, after a quantification, then local
maxima are extracted by theTop Hatalgorithm, a mor-
phological filter described by Meyer in Ref.[17].

(3) The number of control points is initialized ton, increased
by 2 for the extremities if the curve is open.

(4) The placement of then control points is determined with
a linearn×n system. Indeed, for a subdivision curve, the
limit positionP ′

i
of a control pointPi can be processed

according to its neighbors:

P ′
i = 1

6(Pi−1 + 4Pi + Pi+1). (9)

Since we know that these limit positions must coincide
with the local curvature maxima, we obtain the linear
n× n system.

Fig. 4 shows this initialization process: the variation of the
curvature (a) with the determination of the 5 local max-
ima, and the corresponding initial subdivision curve (b) pro-
cessed using the positions of these maxima. We can observe
that this initialization curve is very satisfying considering
the target curve, thus the number of convergence iterations
will be considerably reduced. Moreover, we have asserted
that this number of control points is minimum and there-
fore no control point removal will be needed for the further
optimization algorithm.

Fig. 4. Example of initial control point processing. (a) Curvature
variation over the target curve, (b) corresponding maxima and
initial subdivision curve with the associated control polygon.

There exist some special cases, in which our rule for the
initialization is modified:

• If the curvature is constant and not null or monotonic, thus
we consider 4 initial control points (2 and the extremi-
ties for open curves), with their limit positions uniformly
distributed over the target curve.

• If the curvature is null on the whole curve, we consider
a straight line linking up the extremities (this case is not
possible for closed curve).

Of course, this method is not suited for target curves of
which curvature does not fully characterize the shape. Com-
mon examples are spirals or helixes which have no local
maxima of curvature but exhibit a highly curly appearance.
For these curves, our method will start with 4 control points,
whereas they need much more, so the process will be slowed
down by the control point insertion mechanisms. However
this kind of curve remains marginal in our application.

6. Optimization scheme

Once the initial subdivision curve has been processed,
the optimization algorithm fits this curve to the target data
by displacing iteratively the control pointsPi . We have ex-
tended the method from Pottmann et al.[13] for subdivi-
sion rules. This method relies on the distance function of
the data curve�, which assigns to each point its shortest
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distance to�. In practical terms, not the distance function
itself, but the local quadratic approximants of the squared
distance function are considered.

6.1. Local quadratic approximants of the squared distance
function to 2D and 3D curves

Considering a 2D space� and a smooth curve�, the
Frenet frame(e1, e2) at a curve point�(t) is defined as
follows: e1 = �̇/‖�̇‖ is the unit tangent vector ande2 the
associated unit normal vector. Considering a pointp in �,
and its corresponding footpoint�(t0) (associated with the
shortest distanced of the curve), thus the coordinates ofp
in the Frenet frame defined in�(t0) are (0, d). Then the
local quadratic approximantFd(p) of the squared distance
of p to the curve� is given by:

Fd(x1, x2)= d

d + �
x21 + x22, (10)

wherex1 andx2 are the coordinate ofp with respect to the
Frenet frame and� is the curvature radius at�(t0). The
reader may refer to Ref.[18] for a detailed derivation and
proof of this formula. In the case of a 3D space, considering
p and the associated footpoint�(t0), a cartesian coordinate
system(e1, e2, e3) is defined such as:e1 = �̇/‖�̇‖ is the
unit tangent vector,e3 is in the direction ofp − �(t0) and
e2= e3∧ e1. In this frame, the local quadratic approximant
is given by[13]:

Fd(x1, x2, x3)= d

d + �
x21 + x22 + x23. (11)

In our case, the target curve is sampled and therefore not
continuous like�. However Pottmann et al.[13] have shown
that their estimator is still valid in this case, considering
discrete values for� as for the Frenet Frame.

6.2. Optimization algorithm for subdivision rules

The optimization process is the following, for each itera-
tion:

• Several sample pointsSk are chosen on the subdivision
curve, and the associated footpointsOk are calculated
on the target curve. In our case, sample points are the
vertices of the subdivision curve at a finer levell0, after
application of several steps of subdivision. Sample points
Sk can be computed as linear combinations of the control
pointsPi (see Section 3):

Sk = Ck(P1, P2, . . . , Pn). (12)

The functionalsCk are determined using iterative multi-
plications of the subdivision matrices associated with our
subdivision rules. Forn control pointsPi , then×2n sub-
division matrixM1 which gives the 2n verticesSj after

one step of subdivision has the form (see Eq. (1)):

M1 = 1

8




. . . . . .

. 4 4 0 0 .

. 1 6 1 0 .

. 0 4 4 0 .

. 0 1 6 1 .

. 0 0 4 4 .

. . . . . .



. (13)

Thus the functionalsCk , for the levell0, are the lines of
the matrixC such as:

C =
l0∏
l=1

Ml × Ll0. (14)

Ll0 is the limit matrix which give the limit positions of
the considered control points at the levell0 (see Eq. (9)).

• For eachSk the local quadratic approximantFk
d
of the

squared distance function ofSk to the target curve, is
computed according to the Frenet frame atOk .

• New positions of control points are processed by mini-
mizing the sum of the local quadratic approximants:

F =
∑
k

F kd (Sk)=
∑
k

F kd (Ck(P1, P2, . . . , Pn)). (15)

The minimization of this quadratic function in the new
position of the control points, leads to the resolution of a
linear squared system.

These iterations are repeated until the approximation error or
the variation of the approximation error is lower than a given
threshold. The convergence of the algorithm is very fast.Fig.
5 presents three iterations of the algorithm:Fig. 5a shows
the initial position of the subdivision curve with a sample
pointSk and the corresponding footpointOk , whereasFigs.
5b and c present the new positions of the control points after,
respectively, 1 and 2 iterations of the optimization algorithm.
At the second iteration the target curve is perfectly fitted.

7. Footpoint determination

7.1. The wrong matching problem

The footpoint determination algorithm used in Refs.[13]
and[12], consists, for each sample point, in considering the
smallest distance point on the target curve. Ref.[12] pre-
computes the discrete distance field using the Fast March-
ing Method in order to increase the speed, but the result
is the same. Considering this method, a problem will oc-
cur for a self intersecting target curve or when a part of
this target curve is very close to another part: sample points
will be associated with incorrect footpoints belonging to
wrong parts of the curve. This wrong matching was also ob-
served by Yang et al.[12] who found no general solution.
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Fig. 5. Example of the optimization procedure. (a) Initial subdi-
vision curve, (b and c) resulting curve after, respectively, 1 and 2
optimization iterations.

As a consequence, either the convergence of the algorithm
will slow down because a higher number of iterations is
required, or the convergence will become impossible. This
problem is illustrated inFig. 6. We have developed an effi-
cient solution for this problem, based on the determination
of Generalized Footpoints (GF) and their Active Parameter-
ization.

7.2. Generalized footpoint computation

The footpointOk corresponding to a pointSk is defined
as the point belonging to the target curve and associated with
the shortest distance fromSk . Since the target curve is usu-
ally defined by a highly sampled polygonal curve, the foot-
point determination consists generally in computing point
to segment distances and considering the projected point as-
sociated with the shortest distance. In the continuous case,
considering a smooth curve� (at leastC1), a footpointOk
is necessarily issued from an orthogonal projection ofSk
onto the curve. We introduce GF as the set of pointsOg

k
issued from an orthogonal projection ofSk . In our polyg-
onal case, GF are more complex to determine since the
normals are not continuous but piecewise constant. The de-
termination process is the following: each pointTi of the
target curve is associated with a parameterti (Chord Length

Fig. 6. Illustration of the bad footpoint placement problematic. (a)
Subdivision curve with misplaced footpoints (corresponding to the
surrounded sample points), (b) footpoint parameter distribution,
with an evident discontinuity corresponding to the misplaced ones.

Parameterization), such as:

t1 = 0 and tn = 1,

ti+1 = ‖Ti+1 − Ti‖∑n−1
i=1 ‖Ti+1 − Ti‖

. (16)

For each pointTi of the target curve, we consider the two
incident segmentsSeg1 andSeg2 and the associated pro-
jectionsp1

k
andp2

k
of the consideredSk on lines carrying

Seg1 andSeg2. Different cases are considered:

• p1
k

∈ Seg1 (resp.p2
k

∈ Seg2) thus p
1
k
(resp.p2

k
) is

considered as a GF (seeFig. 7a).
• p1

k
/∈ Seg1 andp2

k
/∈ Seg2, and they are not on the same

side of their respective segments, thusT is considered as
a GF (seeFig. 7b).

• p1
k
/∈ Seg1 andp2k /∈ Seg2, and they are on the same side

of their respective segments, there is no associatedGF
(seeFig. 7c).

Fig. 8 shows an example of the determined GFOg
k
for a

sample pointSk . Only one of them corresponds to the cor-
rect one within our optimization procedure, this choice is
detailed in the next subsection.

7.3. Active footpoint parameterization

Parameter valuesUOk are associated with footpointsOk ,
they are computed by a linear interpolation between the
parametersti of the target curve points which surround the
considered footpoints. However these parameters are not
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Fig. 7. Generalized Footpoints (GF) determination mechanism for a piece of target curve consisting of two segments, (a and b) determination
of a GF, (c) noGF.

Fig. 8. Example of the set of Generalized FootpointsOg
k
for a

sample pointSk .

linked with the parametric correspondence introduced by
traditional fitting methods[9,10], they just aim to select
the appropriate footpoints. We have studied the variation of
these footpoint parameter valuesUOk for sample pointsSk
along the active curve. We consider the set of footpointsOk
as correct if theUOk distribution is strictly increasing.Fig.
6a shows misplaced footpoints, the correspondingUOk dis-
tribution is presented inFig. 6b. An evident discontinuity
appears in the distribution which notifies the wrong match-
ing problem. Our goal is to find a footpoint distribution
which gives a strictly increasingUOk distribution. Our al-
gorithm, so called Active Footpoint Parameterization is the
following:

• We compute GF (see Section 7.2), for each sample point
of the subdivision curve.

• For each sample pointSk , we consider among its GFO
g
k
,

the smallest increasing one:

Ok = argmin
O
g
k

(‖Og
k

−Ok−1‖), (O
g
k

−Ok−1)>0.

(17)

• If the foundOk is too high compared withOk−1, thus it
is considered incorrect and eliminated, the correspond-
ing Sk is not considered in the optimization process
for the current iteration, because no coherent foot-
points have been found. It is the same if noOk can be
found.

Fig. 9. Illustration of Active Footpoint Parameterization result for
the footpoint determination, (a) subdivision curve with correspond-
ing correct footpoints, (b) footpoint parameter distribution.

With this algorithm, the set of determined footpoint parame-
ters is strictly monotonic and increasing, whatever the curve
to treat. Thus wrong matching is eliminated and the opti-
mization procedure is prevented from instability or oscilla-
tions. As a consequenceFig. 9a shows the curve presented
in Fig. 6a, with correct footpoints determined with our Ac-
tive Footpoint Parameterization method. Results are now
correct, resulting footpoints are coherent and adapted to the
optimization procedure. TheUOk distribution, presented in
Fig. 9b, is increasing and much more correct that the distri-
bution inFig. 6b.

8. Complete algorithm and results

The whole subdivision curve approximation algorithm is
the following:

• Detection of the sharp vertices and decomposition of the
input target curve into smooth parts (see Section 5.1).
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• For each smooth part:

(1) Initialization of the subdivision curve, according to
the curvature of the target curve (see Section 5.3).

(2) Computation of the correct footpoints, using the
Active Footpoint Parameterization (see Section 7).
The number of sample points on the subdivision
curve is chosen by the user, in our examples we
consider vertices of the curve subdivided twice.

(3) Optimization procedure (see Section 6). The subdi-
vision curve is moved toward the target curve, by
minimizing a sum of quadratic distances. The ap-
proximation errorE is computed.

(4) (2) and (3) are repeatedm times until E< � or
m<m0. � andm0 are, respectively, a maximum
fixed error and a maximum iteration number.

(5) If E< � then the process is terminated, else a new
control point is inserted onto the subdivision curve,
where the local error is maximum and the process
goes to step (2).

• Smooth parts are put together with associatedsharp
tagged control points.

The control point insertion algorithm is the following: first,
the sample pointSk associated with the maximum error is
extracted. Since it comes from several steps of subdivision
from the initial control polygon, it is easy to locate con-
trol pointsPi andPj , of which limit positionsSi andSj
surroundSk . Then the new control pointPk is inserted by
carrying forward the ratioSiSk

SiSj
:

Pk = Pi + SiSk

SiSj
× −→
PiPj . (18)

We have conducted many tests on different target curves
from different natures, in order to demonstrate the efficiency
of our method. We present here several examples about the
different characteristics of our algorithm. Most of the pre-
sented curves are 2D (except forFig. 14) in order to improve
visibility but our algorithm work as well on 3D curves. The
average errorE is defined by the mean of the distances from
each sample point to its corresponding footpoint. All curves
considered in the experiments were normalized in a bound-
ing box of length equal to 1.

8.1. Initial control points placement examples

First, we have conducted experiments about the efficiency
of the subdivision curve initialization presented in Section
5. For different target curves, we have considered 2 different
initial curves, one processed with our algorithm and the
other, with the same number of control points with limit
positions evenly sampled on the target curve. Results are
presented onFig. 10. On one hand,Fig. 10c presents the
initial curve computed with our curvature based method
(10 control points) whereas its optimization result which

Fig. 10. Optimization results starting from two different initial sub-
division curves. (a and b) Initial evenly distributed control points
and corresponding final convergent result (after 7 iterations). (c
and d) Initial control point processing using curvature and corre-
sponding final convergent result (after 7 iterations).

converges after several optimization iterations is inFig. 10d.
On the other hand, the other initial curve, computed by a
regular sampling of the same number of control points, and
the corresponding convergent result are presented inFigs.
10a and b.
The resulting curve corresponding to our curvature based

initialization is very closed to the target curve (the resulting
error is 2.302×10−3) and particularly, is closer than the reg-
ular sampling one of which resulting error is 5.168×10−3.
These resulting errors appear more clearly inFig. 11. The
evolution of the optimization results is presented for each
iteration. The error associated with the curvature based ini-
tialization is always lower than the other. Our initialization
procedure provides a near optimal set of control points in
term of placement, and a number generally sufficient for a
good approximation.
Other results for the two target curves ofFig. 14 are

presented inTable 1. Curve14acorresponds toFigs. 14a
and b andCurve14ccorresponds toFigs. 14c and d. For
both target curves, the error is much lower at each iteration
for the curvature-based initial curve (CBI). In the case of
Curve14cthe approximation error for the regular sampling
initial curve (RSI) will finally reach the value 4.38× 10−3

(≈ error value for the 3rd iteration of the CBI curve), but
only at the 25th iteration, thus our curve initialization has
considerably increased the convergence speed. In the case
of Curve14a, the approximation errors presented at the 6th
iteration for both RSI and CBI curves are approximately the
convergence values. Thus in this case our curve initialization
has permitted a better approximation, even with an infinite
number of iterations.

8.2. Active footpoint parameterization examples

We have tested the efficiency of our footpoint deter-
mination algorithm (see Section 7). We have conducted
experiments on curves with close branches (seeFig. 12) or
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Fig. 11. Optimization result evolution for several iterations, starting from two different initial subdivision curves: Curvature-based initialization
(CBI) and regular sampling initialization (RSI).

Table 1
Error (×10−3) evolution for several iterations, for the target curves
presented inFig. 14and different initialization methods

Iterations 0 1 3 6

Curve14a, RSI 17.09 8.62 5.09 5.05
Curve14a, CBI 12.35 3.15 1.90 1.85
Curve14c, RSI 24.3 16.22 13.87 12.41
Curve14c, CBI 26.48 8.10 4.38 4.38

self-intersections (seeFig. 13). Fig. 12a presents a target
curve with close branches and the corresponding initial
curve with classic footpoint determination, wrong matching
problems appear and thus the final curve after several itera-
tions converges toward a bad approximation (seeFig. 12b).
On the other hand, our footpoint determination algorithm,
presented inFig. 12c leads to a very satisfying approx-
imation (seeFig. 12d), moreover the convergence was
obtained very rapidly after only 4 iterations. Concerning
the self-intersected curve presented inFig. 13, results are
also very satisfying. Bad convergence results are observed
for the classic footpoint determination (seeFigs. 13a and b)
whereas our method gives a very good approximation (the
convergence was obtained after 5 iterations) by carrying
out the footpoint matching successfully.

8.3. Complicated curve examples and compression rate
analysis

We have tested our algorithm forcomplicated target
curves in order to test the efficiency of our method whose
final purpose is to decrease the amount of data in our final
compression objective. Examples are presented for a curve
with several concavities and self-intersections (Figs. 14a
and b) and for a 3D curve with a complex shape (Figs.
14c and d). Figs. 14a and c present target curves with
the initial subdivision curves computed according to the

Fig. 12. Effect of the Active Footpoints Parameterization on a
curve with close parts. Initial curve with associated footpoints
computed by the classical method (a) and by our Active Footpoints
Parameterization (c) and results of the optimization process (b and
d) (4 iterations).

curvature analysis presented in Section 5. Final subdivision
curves processed according to the complete algorithm de-
scribed at the beginning of this section are presented on
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Fig. 13. Effect of the Active Footpoints Parameterization on a
self-intersecting curve. Initial curve with associated footpoints com-
puted by the classical method (a) and by our Active Footpoints
Parameterization (c) and results of the optimization process (b and
d) (5 iterations).

Fig. 14. Approximation results for a highly concave,
self-intersecting target curve (a and b) and a complex 3D one (c
and d) whose bounding box is represented. (a and c) Initial subdi-
vision curves. (b and d) Results after the whole algorithm.

Figs. 14b and d. Chosen sample points, for the footpoint de-
termination, are vertices of the curve after two subdivision
steps and the error tolerance is� = 1× 10−3.

Table 2
Resulting errors (E), Final control points numbers (CtrlNb) and
compression rates (CR) associated to curves approximation ofFig.
14

(a) (b) (c) (d)

CtrlNb 18 21 13 19
E (×10−3) 12.34 0.99 26.48 0.86
CR 89.5% 87.7% 93.2% 90.2%

Fig. 15.Approximation results for a target curve with sharp vertices.
(a) Decomposition of the target curve. (b) Initial subdivision curves.
(c) Results after the whole algorithm.

Table 2presents the results. The numbers of points of
the target curves are 171 forFigs. 14a and b and 194 for
Figs. 14c and d. At the end of the algorithm, final numbers
of control points (CtrlNb) of the approximated subdivision
curves are, respectively, 21 and 19. This is equivalent to
compression rates (CR) of 87.7% and 90.2%. These are
very satisfying results regarding to the small approximation
errorsE (respectively, 0.99× 10−3 and 0.86× 10−3). All
experiments were conducted on a PC, with a 2Ghz XEON
bi-processor. Processing times were 922ms forFig. 14b and
875ms forFig. 14d. Initial curve processing times were
about 16ms for each.
We also have conducted tests with target curves containing

sharp vertices. An example is shown onFig. 15. The target
curve contains 78 vertices, whereas the control point number
of the final control polyhedron is 8, with 4 points tagged
sharp. The associated compression rate is 89.7%. We can
ignore the amount of data carried by the flags embedded in
each control point.

9. Future work for surface approximation

The subdivision curve approximation algorithm presented
in this paper represents the first step in our surface mesh
compression objective, by piecewise subdivision surface ap-
proximation (see Section 2). An example of this process is
presented inFig. 16.



1150 G. Lavoue et al. / Pattern Recognition 38 (2005) 1139–1151

Fig. 16. Surface compression mechanism. (a) A mesh to compress. (b) Extraction and approximation of the boundary. (c) Construction of
the final subdivision surface control polyhedron.

For a given surface patch, we first extract the bound-
ary (seeFig. 16b), and determine the approximating sub-
division curve, containing 6 control points in the example
(P0, P1, P2, P3, P4, P5). This control polygon represents
the boundary of the searched subdivision control polyhe-
dron, thus we will use it, as a foundation to determine the
approximating subdivision surface. InFig. 16c, the control
polyhedron was determined by adding a control point (P6)
to those of the boundary, meshing correctly these control
points, and optimizing the placement ofP6 according to the
target surface.

10. Conclusion

We have presented in this paper an efficient algorithm,
based on the analysis of the data, for the inverse problem
of curve subdivision. For any polygonal target curve, our
algorithm computes the approximating piecewise smooth
subdivision curve optimized in terms of the number of con-
trol points. A curvature analysis supported with theoretical
foundations permits to compute near optimal numbers and
placements of control points for the initial curve construc-
tion. The optimization scheme, based on the local quadratic
approximations of the squared distance of curves, is an ex-
tension for subdivision rules of that presented by Pottmann
et al. [13] and dealing with B-Splines. Our original
footpoint determination method based on an active pa-
rameterization, allows to overcome the wrong projections
occurring particularly for self-intersecting curves. Thus the
stability of the method is highly increased by this good
convergence guaranty. Many experiments demonstrate the
efficiency of the method for approximation or compression
of polygonal curves. This approximation method is involved
in a larger surface compression scheme. Target objects are
CAD meshes, previously segmented into surface patches.
Our purpose is to determine the best approximating sub-
division surface for each patch. The method presented in
this paper approximates the boundary of a patch with a
subdivision curve of which control polygon has the prop-
erty to represent the boundary of the control polyhedron
of the approximating subdivision surface. We plan now to

develop the surface approximation algorithm taking as input
the target surface patches and their associated subdivision
boundary curves.
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