
3

Contributing Vertices-Based Minkowski Sum
of a Nonconvex–Convex Pair of Polyhedra

HICHEM BARKI, FLORENCE DENIS, and FLORENT DUPONT
Université de Lyon, CNRS
Université Lyon 1, LIRIS UMR5205

The exact Minkowski sum of polyhedra is of particular interest in many applications, ranging from image analysis and processing to computer-aided design
and robotics. Its computation and implementation is a difficult and complicated task when nonconvex polyhedra are involved. We present the NCC-CVMS
algorithm, an exact and efficient contributing vertices-based Minkowski sum algorithm for the computation of the Minkowski sum of a nonconvex–convex pair
of polyhedra, which handles nonmanifold situations and extracts eventual polyhedral holes inside the Minkowski sum outer boundary. Our algorithm does not
output boundaries that degenerate into a polyline or a single point. First, we generate a superset of the Minkowski sum facets through the use of the contributing
vertices concept and by summing only the features (facets, edges, and vertices) of the input polyhedra which have coincident orientations. Secondly, we
compute the 2D arrangements induced by the superset triangles intersections. Finally, we obtain the Minkowski sum through the use of two simple properties
of the input polyhedra and the Minkowski sum polyhedron itself, that is, the closeness and the two-manifoldness properties. The NCC-CVMS algorithm is
efficient because of the simplifications induced by the use of the contributing vertices concept, the use of 2D arrangements instead of 3D arrangements which are
difficult to maintain, and the use of simple properties to recover the Minkowski sum mesh. We implemented our NCC-CVMS algorithm on the base of CGAL
and used exact number types. More examples and results of the NCC-CVMS algorithm can be found at: http://liris.cnrs.fr/hichem.barki/mksum/NCC-CVMS

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling; F.2.2 [Analysis of Algorithms and
Problem Complexity]: Nonnumerical Algorithms and Problems—Geometrical problems and computations; J.6 [Computer Applications]: Computer-Aided
Engineering—Computer-aided design (CAD)

General Terms: Algorithms, Theory

Additional Key Words and Phrases: 2D arrangement computation, 3D intersection, computer-aided design, contributing vertices, Minkowski sum

ACM Reference Format:

Barki, H., Denis, F., and Dupont, F. 2011. Contributing vertices-based Minkowski sum of a nonconvex–convex pair of polyhedra. ACM Trans. Graph. 30, 1,
Article 3 (January 2011), 16 pages. DOI = 10.1145/1899404.1899407 http://doi.acm.org/10.1145/1899404.1899407

1. INTRODUCTION

The Minkowski sum or addition of two sets A and B in a vec-
tor space was defined by the German mathematician Herman
Minkowski (1864–1909) as a position vector addition of all ele-
ments a and b coming from A and B, respectively: A ⊕ B =
{a + b|a ∈ A, b ∈ B}.

Another definition states that the Minkowski sum of two sets
A and B is obtained by sweeping all points of A by B, that is,
translating B so that its origin (the common initial point of all its
position vectors) passes through all points of A, and taking the
union of all resulting points: A ⊕ B = ⋃

a∈A Ba , where ∪ denotes
the set union operation and Ba denotes the set B translated by a
position vector a.

This work is partially supported by the French Cluster ISLE of the Rhone-Alpes region within the LIMA Project and also by the ANR (Agence Nationale de
la Recherche, France) through MADRAS project (ANR-07-MDCO-015).
Authors’ addresses: H. Barki, F. Denis, and F. Dupont, Université de Lyon, CNRS – Université Lyon 1, LIRIS, UMR5205 – 43 Bd. du novembre 1918, F-69622
Villeurbanne, France; email: {hichem.barki, florence.denis, florent.dupont}@liris.cnrs.fr.
ACM acknowledges that this contribution was coauthored by an affiliate of the National Center for Scientific Research, France (CNRS). As such, the government
of France retains an equal interest in the copyright. Reprint requests should be forwarded to ACM, and reprints must include clear attribution to ACM and
CNRS.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to
post on servers, to redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© 2010 ACM 0730-0301/2011/01-ART3 $10.00 DOI 10.1145/1899404.1899407 http://doi.acm.org/10.1145/1899404.1899407

Our aim is to compute the Minkowski sum polyhedron S =
A ⊕ B. The polyhedra A and B are the respective boundary repre-
sentations of the sets A and B in R

3. Thus, the aforesaid Minkowski
sum definition based on the sweep operation becomes

S = A ⊕ B =
⋃

a∈A

Ba. (1)

This is a direct consequence of the boundary representation (poly-
hedra) we are dealing with, which means that in order to compute
the Minkowski sum polyhedron S, it is sufficient to sweep only the
boundary points of A by B and to take the boundary of the union
of the resulting points (see Figure 1).

ACM Transactions on Graphics, Vol. 30, No. 1, Article 3, Publication date: January 2011.



3:2 • H. Barki et al.

(a) (b)   (c)

A B

origin of B

BA⊕

Fig. 1. (a) Two polygons A and B; (b) sweeping all boundary points of A

by B; (c) the Minkowski sum polygon A ⊕ B.

(a)

⊕
A

B

BA⊕

A

B

BA⊕

=

A

B

BA

=

A

B

BA

A

B

BA

⊕
A

B

BA⊕

(b)

⊕

Fig. 2. Nonmanifold Minkowski sums of polygons. (a) Double vertices;
(b) a vertex touching an edge tangentially.

By definition, polyhedra are closed and two-manifold meshes.
The polyhedra we are working with are handled by the halfedge
data structure [Kettner 1999]. Each edge of a polyhedron is repre-
sented by two halfedges with opposite orientations. The closeness
property implies that a polyhedron does not contain any halfedge
which has no incident polyhedral facet (border halfedge). The two-
manifoldness property implies that the neighborhood of each point
belonging to the polyhedron’s surface is homeomorphic to a disk.
From these two definitions of closeness and two-manifoldness prop-
erties we conclude that each edge (or pair of opposite halfedges) of
a polyhedron is incident to exactly two polyhedral facets.

The Minkowski sum polyhedron S = A⊕B of two polyhedra A
and B is a closed polyhedron since it corresponds to the union of
translated versions of B, which is a closed and two-manifold poly-
hedron. These translations are defined by a closed and two-manifold
surface which is the boundary of the polyhedron A. However, the
Minkowski sum S is not necessarily two-manifold if at least one of
the two polyhedra is not convex. Examples of nonmanifold situa-
tions are edges which are incident to more than two facets, double
vertices, or facets that touch tangentially. Figure 2 illustrates some
of these nonmanifold situations in 2D.

1.1 Importance of the Minkowski Sum of Polyhedra

The Minkowski sum of polyhedra is of great interest for many ap-
plications, such as computer-aided design and manufacturing [Lee
et al. 1998], computer animation and morphing [Kaul and Rossignac
1992], morphological image analysis [Serra 1982, 1988], robot mo-
tion planning [Lozano-Pérez 1983], similarity measures for convex
polyhedra [Tuzikov et al. 2000], penetration depth estimation and
dynamic simulation [Kim et al. 2003], and solid modeling.

For many years, the lack of exact, robust, and efficient algorithms
for the computation of the Minkowski sum of polyhedra hindered

the development of such domains. As an example, mathematical
morphology tools used in the image analysis field can be consid-
ered. These tools are based on two dual operators: dilation (based
on Minkowski sum) and erosion (based on Minkowski subtraction).
The morphological image analysis theory has undergone important
changes since its birth in the 60s. This evolution is due in part to the
fact that these two basic operators are well defined and implemented
for images, because of the regular sampling used for digital image
representation. If we want to benefit from achievements of mathe-
matical morphology (dilation, erosion, opening, closing, skeletons,
filtering, classification, segmentation, etc.) and to use them in the
domain of polyhedra—we speak about polyhedral morphology in
this case, we need to define and implement these two basic operators
in an exact, robust, and efficient manner. Unfortunately, even one
of these two operators, that is, the Minkowski sum is not well de-
fined and implemented for polyhedra. This difficulty mainly comes
from the nature of polyhedra, which are boundary representations
of compact sets in R

3.
The same discussion applies for other domains where the compu-

tation of the Minkowski sum of polyhedra is crucial for tasks such
as the computation of collision-free path of translational robots, the
penetration depth estimation between polyhedra, the computation
of the shortest separation distance between two models, etc.

1.2 Overview of Our Previous and Current Works

In the literature, two main approaches are used for the Minkowski
sum computation of polyhedra. The first one is based on the con-
vex decomposition of polyhedra and the union of pairwise convex
Minkowski sums. The second one is based on the convolution op-
eration that computes a superset of the Minkowski sum and on the
winding number computation for the trimming of the superset. On
the one hand, the first approach is relatively easy to implement but
suffers from the large size of the decomposition and from the chal-
lenging union computation of the large number of convex pairwise
Minkowski sums. On the other hand, the second approach is difficult
to implement because it is not a trivial task to maintain 3D arrange-
ments and to compute the winding number robustly in R

3. Other
efficient approaches approximate the Minkowski sum by keeping
the same topology as the exact Minkowski sum and by bounding
the approximation error. However, not all applications tolerate the
approximated results, such as 3D mesh filtering, computer-aided
manufacturing, translational robot motion planning in the presence
of tight passages, etc. So, in this work, we are trying to add some
contribution to the existing work on Minkowski sum of polyhedra
and address at the same time the exactness, efficiency, and robust-
ness issues. More precisely, we propose an exact, efficient, and
robust contributing vertices-based algorithm for the computation of
the Minkowski sum of a nonconvex–convex pair of polyhedra.

We introduced the concept of contributing vertices for the first
time in Barki et al. [2009a]; this concept is related to the sweep-
based definition of the Minkowski sum (Eq. (1)). It allowed us to
develop the Contributing Vertices-based Minkowski Sum (CVMS)
algorithm: an exact, efficient, and degeneracy-free algorithm for
the computation of the Minkowski sum of convex polyhedra. The
experimentation we performed showed that our CVMS algorithm
outperforms the other state-of-the-art algorithms presented in Fogel
and Halperin [2007], Hachenberger et al. [2007], Weibel and Wu
et al. [2003]. The contributing vertices are defined as follows.

Definition 1. The contributing vertex vk,B associated to a particu-
lar facet fi,A with an outer normal ni,A is the vertex of B which is at a
maximal distance away from the supporting plane of fi,A. Formally,

ACM Transactions on Graphics, Vol. 30, No. 1, Article 3, Publication date: January 2011.



Contributing Vertices-Based Minkowski Sum of a Pair of Polyhedra • 3:3

A

f1,A

f2,A

f3,A

f4,A

A

f1,A

f2,A

f3,A

f4,A

BA⊕B

origin of Bv1,B

v2,B

v3,B B

origin of Bv1,B

v2,B

v3,B

A

f1,A

the face lying on 
the boundary of

BA⊕

v3,B

contributing vertex 
associated to f1,A

v3,B

A

f1,A

the face lying on 
the boundary of

BA

v3,B

contributing vertex 
associated to f1,A

v3,B

(a) (b)

(c)

Fig. 3. (a) Two convex polygons A and B; (b) the Minkowski sum A ⊕ B

depicted as a sweep; (c) the contributing vertex v3,B associated to the face
f1,A. The dotted line is the face that lies on the boundary of A⊕B. The two
other faces (dashed lines) are discarded.

the contributing vertex vk,B of a particular facet fi,A satisfies

〈vk,B, ni,A〉 = max
R

〈vl,B, ni,A〉 ∀l = 1, 2, . . . , vB, (2)

where 〈. , .〉 denotes the scalar product. The contributing vertices
associated to the facets of B can be computed in a similar manner
by interchanging A and B in Eq. (2).

An illustration of the concept of contributing vertices in 2D is
shown in Figure 3.

For two convex polyhedra A and B, we classified the Minkowski
sum facets into three categories: translated facets, corner facets,
and edge facets. The translated facets are computed by means of
translations or planar Minkowski sums of the facets of the first
polyhedron A. These translations and planar Minkowski sums are
defined by the contributing vertices computed for the facets of A.
The corner facets of the Minkowski sum polyhedron are computed
in a similar manner by considering the facets of the second polyhe-
dron B and their associated contributing vertices. Finally, the edge
facets are computed through the use of the visibility and the normal
orientation criteria [Barki et al. 2009a].

In Barki et al. [2009b], we took benefit from the concept of
contributing vertices and proposed a novel CVMS algorithm for
the computation of the Minkowski sum of a nonconvex–convex
pair of polyhedra without fold. First, we generated a superset of
the Minkowski sum facets by exploiting the concept of contribut-
ing vertices and by summing only the features (facets, edges, and
vertices) of the input polyhedra that have coincident orientations.
The envelope of this superset is the Minkowski sum polyhedron.
Secondly, we extracted the exact Minkowski sum boundary from
the generated superset by 3D envelope computation. However, this
approach is limited to polyhedra whose boundary is completely re-
coverable from three orthographic projections defined with respect
to (w.r.t.) three orthogonal basis vectors in R

3. The limitation of
this approach is due principally to the use of 3D envelope compu-
tation which assumes that each boundary point, to be recovered,
must be seen from outside the superset (or one can shoot a ray
from that point to infinity without intersecting any other facet) in

(a) (b) (c)

(d) (e) (f)

Fig. 4. (a) A nonconvex polyhedron A; (b) a convex polyhedron B; (c) the
entire superset of the Minkowski sum facets of A ⊕ B. (d) The translated
facets of A⊕B. (e) The corner facets of A⊕B. (f) The edge facets of A⊕B.

at least one of three orthogonal directions—hence the definition of
polyhedra without fold. Figure 4 taken from Barki et al. [2009b]
depicts a generated Minkowski sum superset for a star-shaped non-
convex polyhedron A and a convex polyhedron B (a geodesic
sphere).

The new algorithm we propose in this work benefits from the
superset already generated, but it extracts the Minkowski sum poly-
hedron in a different manner which will be proven to be more
efficient. Moreover, it is not restricted to polyhedra without fold,
so it can be applied to any nonconvex–convex pair of polyhedra. It
can be seen as belonging to the same class of CVMS algorithms
presented in Barki et al. [2009a; 2009b], but is a renewal or an im-
provement of these two algorithms. For these two reasons, we call
our algorithm the NCC-CVMS algorithm. While the CVMS abbre-
viation stands for “Contributing Vertices-based Minkowski Sum”
as for the two previous algorithms, the prefix NCC which stands for
“Non-Convex–Convex” distinguishes our algorithm in the current
article.

The algorithm proceeds as follows: (1) it computes the super-
set of the Minkowski sum facets through the use of the con-
tributing vertices concept, (2) it computes the arrangements in-
duced by the intersections among the superset triangles, and (3)
it uses the closeness and two-manifoldness properties to extract
the Minkowski sum facets and ignore the others (facets lying in-
side the Minkowski sum mesh). In step (2), we maintain a 2D
arrangement for each superset triangle, which eliminates the diffi-
culty arising with 3D arrangements and increases the algorithm’s
performance. In step (3), we start from a seed facet that is guaran-
teed to belong to the Minkowski sum polyhedron, then we examine
its neighborhood to find the facets that satisfy the two-manifoldness
property and belong to the Minkowski sum polyhedron bound-
ary. This process is repeated by considering the recently found
neighborhood facets as seed facets until the closeness property is
satisfied, that is, until the resulting mesh is closed. By doing so,
we avoid the challenging computation of the winding numbers
for the arrangements subdivisions and also gain additional per-
formance. In addition to the three mentioned steps, there is some
intermediate processing which aims at handling nonmanifold situa-
tions and avoiding degeneracies. This intermediate processing will
be discussed later in Section 3. Our NCC-CVMS algorithm also

ACM Transactions on Graphics, Vol. 30, No. 1, Article 3, Publication date: January 2011.



3:4 • H. Barki et al.

extracts polyhedral holes inside the outer boundary of the
Minkowski sum mesh through the use of the closeness and two-
manifoldness properties. The handling of nonmanifold situations
is detailed in Section 3.3 and the extraction of polyhedral holes is
discussed in Section 3.4.

The superset generation step which is the first step of our NCC-
CVMS algorithm is not new in this article and will not be discussed.
Readers interested in this step can refer to our earlier work [Barki
et al. 2009b] were it was proposed for the first time.

1.3 Article Organization

This article is organized as follows: a literature review is presented in
Section 2. In Section 3, we describe our algorithm for the extraction
of the Minkowski sum from the superset of facets. Finally, we
present some implementation details, a performance benchmark, a
comparative study, and some results.

2. RELATED WORK

The Minkowski sum of two convex polyhedra A and B is obtained
by performing the vector addition of all points of A and B and
by computing the convex hull of the resulting points. This process
takes O(mn) time for polyhedra with m and n features. For two
nonconvex polyhedra, the most common approach is based on con-
vex decomposition of polyhedra. It takes O(m3n3) time [Halperin
2002] to compute the sum by decomposing each nonconvex poly-
hedron into convex pieces [Chazelle 1981], computing the pairwise
Minkowski sums of all possible pairs of convex pieces, and per-
forming the union of the pairwise Minkowski sums [Aronov et al.
1997]. The main bottleneck of this approach is the union step which
is very time consuming.

Another decomposition method was proposed by Evans et al.
[1992]. The authors decomposed the boundary of the input poly-
hedra into affine cells (instead of convex pieces), computed the
pairwise Minkowski sums of transversal affine cells, and performed
their union. The decomposition into affine cells yields more pieces
than does the decomposition into convex pieces.

Recently, Hachenberger [2007] presented the first exact and ro-
bust implementation of a convex decomposition-based Minkowski
sum algorithm that performs in O(m3n3) time for polyhedra with
m and n features through the use of Nef polyhedra.

A Nef polyhedron in R
d is a point set resulting from a finite

number of open halfspaces by set complement and set intersection
operations. In R

3, a finite number of planes (defining a finite number
of halfspaces) partitions the space into cells of various dimensions
(vertices, edges, facets, and volumes). Such a partition augmented
with a label for each of its cells is called a Selective Nef Complex
(SNC) [Hachenberger et al. 2007]. The selective Nef complex is
called a Nef polyhedron in R

3 if the labels are Boolean (in, out).
The Boolean labels are called set-selection marks. Nef polyhedra
result from a finite number of halfspaces by set complement and
intersection operations. The other Boolean set operations (union,
difference, and symmetric difference) reduce to set intersection and
complement. Moreover, topological operations (boundary, interior,
exterior, and closure) that change between open and closed halfs-
paces are also handled by Nef polyhedra.

In his convex decomposition-based Minkowski sum algorithm,
Hachenberger [2007] implemented an optimal convex decompo-
sition algorithm similar to that proposed by Chazelle [1981]. He
decomposed nonconvex polyhedra by inserting walls that resolve
the reflex edges until all reflex edges are treated. He computed

the union of the pairwise Minkowski sums through the use of Nef
polyhedra which handle Boolean operations well.

To avoid drawbacks related to convex decomposition-based ap-
proaches, Varadhan and Manocha [2006] approximated the union
of the pairwise Minkowski sums by using an adaptively subdivided
voxel grid. They used Iso-surface extraction and guaranteed the
same topology as the exact Minkowski sum. Recently, Lien [2007]
used a point-based representation instead of the mesh-based one.
He constructed a point set by adding all points from two point sets
uniformly sampled from the boundary of two polyhedra. He used
three filters (a collision detection, normal, and octree filter) to dis-
card inner points and showed several applications of the point-based
representation. In the worst case (when the summands are convex),
the point-based approach has a time complexity of O(mnTfilter),
where m and n are the sizes of the point sets sampled from the
summands and Tfilter is the time complexity of filtering a single
point.

In his recent work, Lien [2008] proposed a nearly exact algorithm
for the computation of the Minkowski sum of polyhedra. First, he
computed a brute-force convolution of two input polyhedra in order
to generate a superset of the Minkowski sum. Then, he subdivided
each facet of this superset into subfacets induced by the facet-facet
intersections. After that, he stitched the subfacets into simple regions
which are either entirely on the boundary of the Minkowski sum or
entirely inside it. Finally, he used a collision detector to remove the
regions inside the Minkowski sum and to keep only those lying on
its boundary.

Some dual space-based approaches have been investigated for the
computation of the Minkowski sum. Ghosh [1993] presented a uni-
fied computational framework for the Minkowski sum of polygons
and polyhedra. Polyhedra are represented in a dual space: the slope
diagram. The sum polyhedron results from the merging of two slope
diagrams. The existent implementations of slope diagram-based al-
gorithms work only for convex polyhedra. Other slope diagram
variants can be found in Barki et al. [2009a], Bekker and Roerdink
[2001], Fogel and Halperin [2007], and Wu et al. [2003].

Guibas et al. [1983, 1987] defined the operation of convolution
on planar tracings in 2D. Basch et al. [1996] extended this defini-
tion to polyhedral tracings and used it to generate a superset of the
Minkowski sum. They used arrangement computations to extract
the exact boundary of the Minkowski sum. Their algorithm com-
putes the convolution Q of two polyhedral tracings of size m and
n in an output-sensitive time O(kα(k)log3k), where k is the size of
the convolution Q and α(k) is the familiar inverse Ackermann func-
tion. Nevertheless, at the best of our knowledge, the convolution-
based approach for polyhedra has not been implemented
yet.

At first glance, our NCC-CVMS algorithm appears to be simi-
lar to the convolution-based approach (since it relies on arrange-
ment computations). However, the two approaches differ for the
following reasons: (1) our NCC-CVMS algorithm generates the
Minkowski sum facets superset more efficiently than the convolu-
tion does. This is due to the use of the contributing vertices concept.
(2) the convolution-based approach deals with 3D arrangement
while the NCC-CVMS algorithm deals only with 2D arrangements,
and (3) the convolution-based approach computes the winding num-
ber of all 3D arrangement subdivisions in order to perform trim-
ming and to compute the Minkowski sum while the NCC-CVMS
algorithm uses only the closeness and the two-manifoldness simple
properties for the same task.

A comparative study of our NCC-CVMS algorithm, the topologi-
cally accurate approximation of Varadhan and Manocha [2006], and
the nearly exact method of Lien [2008] can be found in Section 4.3.

ACM Transactions on Graphics, Vol. 30, No. 1, Article 3, Publication date: January 2011.



Contributing Vertices-Based Minkowski Sum of a Pair of Polyhedra • 3:5

3. EXTRACTION OF THE MINKOWSKI SUM MESH
FROM THE SUPERSET

In the rest of this article, we will consider a nonconvex polyhedron
A and a convex polyhedron B. We denote by F = {f1, f2, . . . , fn}
the facets superset and by S = A ⊕ B the Minkowski sum polyhe-
dron. We will sometimes replace the term “Minkowski sum” by its
abbreviation “MS.”

The intersections among the superset facets (which are 3D poly-
gons) are maintained by the use of 2D arrangements. So, we will
first explain the correspondence between 3D features (3D facets,
3D segments, and 3D points) and the equivalent features in 2D (2D
arrangement faces, 2D arrangement segments, and 2D arrangement
points or vertices). After that, we will explain the MS boundary
extraction algorithm.

3.1 The Correspondence between the 3D MS
Superset Facets and the 2D Arrangements

Let us consider an arbitrary facet fi from the superset F , denote its
outer normal by ni(xni

, yni
, zni

), and denote its supporting plane by
Pi . To represent the 3D facet fi by a 2D arrangement arr(fi), we
need a bijection (or a one-to-one correspondence) that associates
a 2D point in arr(fi) to each 3D point lying on fi . Such a bijec-
tive function must be degeneracy-free, simple to implement, and
lightweight in terms of computation time.

A trivial solution consists in comparing the absolute values of the
coordinates xni

, yni
, and zni

of the outer normal ni and ignoring the
coordinate that has the largest absolute value. Therefore, given a 3D
point pfi

(x, y, z) lying on fi , the corresponding 2D arrangement
projected point parr(fi ) is computed as follows. We have

xarr = y and yarr = z, |xni
| = max(|xni

|, |yni
|, |zni

|), (3)

xarr = z and yarr = x, |yni
| = max(|xni

|, |yni
|, |zni

|), (4)

xarr = x and yarr = y, |zni
| = max(|xni

|, |yni
|, |zni

|), (5)

where xarr and yarr are the respective x and y coordinates of parr(fi )

in the 2D arrangement arr(fi) coordinate system.
The inverse bijective projection can be simply determined by us-

ing the supporting plane equation and the two retained coordinates.
Suppose that Pi is defined by aix + biy + ciz + di = 0, the ignored
coordinate value of the facet point can be computed by substituting
the values of the two known coordinates in the plane equation.

Throughout the subsequent sections, whenever we talk about
superset facets and the associated arrangements, the bijective pro-
jection presented in the current subsection is implicitly referred
to.

3.2 The MS Polyhedron Extraction Algorithm
in Depth

As stated before, our NCC-CVMS algorithm starts by the generation
of the superset of the Minkowski sum facets as done in Barki et al.
[2009b]. The 3D envelope of the superset is the Minkowski sum
polyhedron itself. However, some parts of the superset facets lie
inside the Minkowski sum polyhedron. Therefore, a trimming is
necessary to remove these “inside” parts of facets, which implies to
handle the intersections among the superset facets.

Let us start by giving an outline of our NCC-CVMS approach in
Algorithm 1. The implementation details of each step are deferred
to Section 4.1.

Given a nonconvex–convex pair of polyhedra A and B, we denote
by F the corresponding Minkowski sum facets superset. MS stack
denotes the stack used to manipulate the Minkowski sum facets,

Algorithm 1: An outline of the NCC-CVMS algorithm for a
nonconvex–convex pair of polyhedra

Input: A non-convex–convex pair of polyhedra A and B
Output: The Minkowski sum polyhedron S = A ⊕ B

1 Generate the Minkowski sum facets superset F for A and B;
2 Merge the “coplanar conjoint” superset facets and compute the

symmetric difference of the “opposite conjoint” superset
facets;

3 Triangulate the MS superset facets;
4 Compute the Iso-oriented bounding boxes for the superset

triangles and find the boxes’ intersections;
5 Compute the intersection of the superset triangles having

intersecting bounding boxes;
6 Construct the 2D arrangements (subdivisions of the superset

triangles into sub-facets) corresponding to each superset
triangle from the intersection segments;

7 Compute the seed sub-facet by finding the lexicographically
smallest or greatest point of the superset;

8 Push the arrangement face associated to the seed sub-facet into
MS stack;

9 repeat
10 MS top ← MS stack.top;
11 MS stack.pop (pop MS stack);
12 Find the neighbors of MS top (2D arrangement faces

associated to the superset sub-facets that are incident to
the edges of the sub-facet associated to the arrangement
face MS top);

13 Among the neighboring sub-facets, determine those
belonging to the boundary of the MS polyhedron by using
the closeness and two-manifoldness properties;

14 Tag the MS sub-facets appropriately;
15 Update the MS stack (push the MS top neighboring MS

sub-facets into it);
16 until (MS stack is empty);
17 Get the Minkowski sum polyhedron facets from the 2D

arrangement faces;
18 Triangulate the Minkowski sum polyhedron facets (optional);

which contains 2D arrangement faces. MS top denotes a variable
of type “2D arrangement face” storing the top of the stack. The
NCC-CVMS algorithm proceeds as follows.

Step (1) Generate the Minkowski sum facets superset F for A
and B. This step aims at computing a superset of the Minkowski
sum facets. Further details can be found in Barki et al. [2009b].

Step (2) Merge the “coplanar conjoint” superset facets and com-
pute the symmetric difference of the “opposite conjoint” superset
facets. Two facets lying on the same supporting plane are said
“coplanar conjoint” if the intersection of their interior is not empty.
The interior of a facet is defined by the set of points belonging to this
facet except those belonging to its incident edges and vertices. Two
facets lying on two opposite supporting planes are said “opposite
conjoint” if there exists at least a common point in their interior.

The principle of this step is the following.

(1) Partition the superset facets F = {f1, f2, . . . , fn} into several
clusters ci |i = 1, 2, . . . , m (m ≤ n) so that each cluster ci is
identified by a unique supporting plane Pi .

(2) Compute the union of the “coplanar conjoint” facets of each
cluster and replace these “coplanar conjoint” facets by their
union in the superset F (Figure 5(a)).

ACM Transactions on Graphics, Vol. 30, No. 1, Article 3, Publication date: January 2011.



3:6 • H. Barki et al.

supporting plane Pi identifying the cluster ci

fk

fl

fm
after union

outer normal ni of Pi

supporting plane Pi identifying the cluster ci

fk

fl

fm
after union

outer normal ni of Pi

after symmetric
difference

fo
fp

plane Pi

outer normal ni of Pi

fq fr

outer normal nj of Pj

plane Pj opposite to Pi

after symmetric
difference

after symmetric
difference

fo
fp

plane Pi

outer normal ni of Pi

fo
fp

plane Pi

outer normal ni of Pi

fq fr

outer normal nj of Pj

plane Pj opposite to Pi

fq fr

outer normal nj of Pj

plane Pj opposite to Pi

(a)

(b)

Fig. 5. (a) The coplanar conjoint facets fk , fl , and fm of the cluster ci

are merged to give a unique facet; (b) the symmetric difference between the
facets fo and fp lying on the plane Pi and the facets fq and fr lying on
the plane Pj opposite to Pi is computed and replaces these facets in the
superset F .

(3) Find all pairs of opposite supporting planes among those iden-
tifying the clusters ci .

(4) Compute the symmetric difference of the facets lying on each
pair (ci , cj ) identified by opposite planes Pi and Pj and replace
these “opposite conjoint” facets by their symmetric difference
in the superset F (Figure 5(b)).

Merging “coplanar conjoint” facets avoids some degeneracies
and simplifies the steps (5) and (13) as detailed shortly. It aims at
removing the superimposed parts of the superset facets (common
intersection regions for “coplanar conjoint” facets) and replacing
them by a unique region. It does not affect the correctness of the
subsequent steps since it preserves the closeness property. Com-
puting the symmetric difference of the “opposite conjoint” facets
allows to handle some nonmanifold situations (Section 3.3). It does
not introduce holes and does not affect the correctness of our algo-
rithm because it removes parts of the superset that are necessarily
inside the volume of the Minkowski sum polyhedron.

Step (3) Triangulate the MS superset facets. In order to perform
the trimming operation on the MS superset, we must handle inter-
sections between the facets f1, f2, . . . , fn after the previous step
has been accomplished. The naive computation of the intersections
between these geometric primitives is expensive and difficult at
the same time because some facets contain holes (as shown in
Figure 5(a)), others are convex, and others are nonconvex. To ease
the solution of this problem, we triangulate all the facets so that the
problem reduces to the computation of the intersections between
3D triangles.

After this step, the superset F will be composed of nT triangles,
that is, F = {t1, t2, . . . , tnT

}, (nT ≥ n) where n is the number of
polygonal facets in F and nT is the number of triangles in F .

Step (4) Compute the Iso-oriented bounding boxes for the su-
perset triangles and find the boxes’ intersections. The aim of this
step is to speed up the computation of the intersections among the
superset triangles by using bounding boxes. The exact intersec-
tion among two triangles is computed only when the corresponding
bounding boxes intersect. We chose the algorithm of Zomorodian
and Edelsbrunner [2002] which operates on Iso-oriented bounding

boxes aligned with the coordinate axes. Two Iso-oriented boxes
intersect if and only if they intersect in every dimension indepen-
dently. So the algorithm of Zomorodian and Edelsbrunner [2002]
reduces the 3D intersection problem into 1D interval intersection
problem which can be solved in a simple and efficient manner.

Step (5) Compute the intersection of the superset triangles having
intersecting bounding boxes. For that purpose, we use a slightly
modified version of the “interval overlap method” presented in
Möller [1997]. The principle of this method is to: (1) reject pairs of
nonintersecting triangles (pairs of triangles whose vertices are en-
tirely on one side of the other triangle’s supporting plane), (2) com-
pute the intersection line of the supporting planes of the two trian-
gles, and (3) find the overlap of the two segments at which this line
is clipped by the two triangles. If the segments overlap, the triangles
intersect.

For each triangle ti of the superset F , we maintain a list
intersection(ti). Each element in the list is a structure object com-
posed of a reference to a triangle tj intersecting ti along with the
segment resulting from this intersection.

The merging process of “coplanar conjoint” facets exhibits its
importance when computing intersections since two “coplanar con-
joint” triangles intersection results in a 3D polygon and not a 3D
segment. This polygon is not suitable for the construction of the
planar arrangements whose features are induced by the insertion of
(intersection) line segments into them and its computation is time
consuming. Therefore, a simple solution is to prevent such copla-
nar conjoint triangles from passing through the triangle-triangle
intersection step by a previous merging process.

Step (6) Construct the 2D arrangements (subdivisions of the
superset triangles into subfacets) corresponding to each superset
triangle from the intersection segments. This step aims at con-
structing planar (or 2D) arrangements for the nT triangles of the
superset F . A planar arrangement is the subdivision of the plane
into 0D, 1D, and 2D cells, denoted vertices, edges, and faces of the
arrangement, respectively [Wein et al. 2008; Agarwal and Sharir
1998]. This subdivision is induced by a set of curves which may
intersect each other. In our case, these curves are line segments.

The 2D arrangement arr(ti) corresponding to a superset triangle
ti , i = 1, 2, . . . , nT of F results from the intersection of other
superset triangles with the triangle ti . It is constructed by project-
ing the intersection segments stored in the list intersection(ti) into
arr(ti).

Figure 6 depicts the construction of the planar arrangement arr(ti)
associated to a triangle ti according to the intersection segments e1,i ,
e2,i , . . . , e7,i . We distinguish two kinds of intersection configura-
tions or intersection segments in the MS superset. The “edge-edge”
intersection configuration results from two superset triangles shar-
ing a common edge, that is, two superset triangles intersecting only
in their boundaries. The intersections between the triangles ti and
tl (edges e1,i and e2,i), between the triangles ti and tm (edge e3,i),
and between the triangles ti and tn (edge e4,i and e5,i) are exam-
ples of the “edge-edge” intersection configuration. The “interior”
intersection configuration results from the intersection of a superset
triangle which crosses another superset triangle in its interior. The
intersections between the triangles ti and tj (edge e6,i) and between
the triangles ti and tk (edge e7,i) depicted in Figure 6 are exam-
ples of the “interior” intersection configuration. Because we have
previously merged the “coplanar conjoint” facets, there will be no
other intersection configuration such as two coplanar triangles hav-
ing common interior region. The case of an edge intersecting the
interior of another triangle is handled as an “interior” intersection
configuration.

ACM Transactions on Graphics, Vol. 30, No. 1, Article 3, Publication date: January 2011.



Contributing Vertices-Based Minkowski Sum of a Pair of Polyhedra • 3:7

Fig. 6. (a) A list of superset triangles intersecting the triangle ti ; (b) the
planar arrangement arr(ti ) before the insertion of intersection segments. It
comprises an unbounded face; (c) the arrangement arr(ti ) after the insertion
of the intersection segments e1,i , e2,i , . . . , e7,i .

Each arrangement arr(ti) comprises vertices, bounded edges, and
bounded faces that constitute a hole inside a unique unbounded face
(see Figure 6(b) and 6(c)). The arrangements we are maintaining
in our algorithm are planar or 2D arrangements embedded on the
x-y, y-z, or z-x planes through the use of the bijective projection
previously described. This approach reduces the problem dimen-
sionality, is an easier task, and is much more efficient than working
directly with 2D arrangements embedded on the triangles’ support-
ing planes.

The planar arrangement arr(ti), when projected back onto the
supporting plane of ti , is a subdivision of the triangle ti into bounded
subfacets. In order to simplify our discussion, we will not mention
the bijective projection mechanism and simply say that the planar
arrangement arr(ti) is a subdivision of the triangle ti into bounded
subfacets.

Let us demonstrate that each bounded subfacet of the subdivi-
sion of ti has a unique membership state w.r.t. the Minkowski sum
polyhedron.

PROPOSITION 1. Let us consider a triangle ti , the list of its in-
tersection segments intersection(ti) with the other triangles of the
MS superset F , and the associated planar arrangement arr(ti),
which defines the subdivision of ti into ni bounded subfacets
f1,i , f2,i , . . . , fni ,i . A bounded subfacet fm,i , 1 ≤ m ≤ ni either
lies completely on the boundary of the Minkowski sum polyhedron
or lies completely inside this boundary (or inside the Minkowski
sum polyhedron).

PROOF. Let us do it by contradiction. Consider an arbitrary sub-
facet fm,i and assume that it lies partly on the boundary of the
Minkowski sum and partly inside the Minkowski sum boundary.
This assumption implies that fm,i crosses the Minkowski sum
boundary in order to have a part of it on the MS boundary and
the other part of it inside the MS boundary. But this crossing is
impossible since the arrangement arr(ti) was induced by all the
possible intersections of the triangle ti and the other triangles of
the superset, so there is no intersection or crossing inside the sub-
facet fm,i . We conclude that fm,i either lies completely on the MS
boundary or lies completely inside it (fm,i cannot lie outside the

y

x

psmallest

pgreatest

xgreatestxsmallest

seed face

MS superset

Fig. 7. The selection of the seed face (edge) of an MS superset in 2D. The
seed face can be any one of the two faces (edges) drawn as solid lines.

MS boundary because the superset is the result of the addition of
the features of A and B).

As a result of this step, we have a planar arrangement arr(ti)
associated to each superset triangle ti , 1 ≤ i ≤ nT . These planar
arrangements define subdivisions of the superset triangles into sub-
facets, each subfacet has a unique membership state (either it lies
completely on the MS boundary or it lies completely inside it).

Step (7) Compute the seed subfacet by finding the lexicographi-
cally smallest or greatest point of the superset. We already said that
the MS polyhedron S is the envelope of the generated MS superset
F . This implies that all the subfacets of the superset that are visible
from outside it belong to the MS boundary. Thus, knowing that the
visibility state does not change inside a subfacet, it is sufficient to
find only one visible point inside a subfacet to conclude that this
subfacet lies on the MS boundary. We will demonstrate that a seed
subfacet can be chosen by taking a subfacet incident to the lexico-
graphically smallest (or greatest) point among the superset vertices
so that the other subfacets incident to the lexicographically smallest
(or greatest) point lie on the negative side of its supporting plane.

PROPOSITION 2. A subfacet fm,i of the planar arrangement arr(ti)
incident to the lexicographically smallest point psmallest of the MS
superset so that all the other subfacets incident to the lexicographi-
cally smallest point psmallest are on the negative side of its supporting
plane is a facet of the boundary of the MS polyhedron.

PROOF. Since psmallest is the lexicographically smallest point of
the superset F , its x coordinate value is the smallest among all x
coordinate values of the superset. So, we can trace a ray parallel
to the x-axis starting from psmallest towards the negative infinite
values of x without intersecting any MS superset feature. Therefore,
psmallest is visible from outside the MS superset and at least one of
the subfacets incident to it is also visible from outside the superset.
Suppose that the list of subfacets incident to psmallest has been
determined and suppose that fm,i is a subfacet of this list so that all
other subfacets of this list lie on the negative side of the supporting
plane of fm,i . This means that fm,i is not occluded by the other
subfacets (because they lie on the negative side of its supporting
plane). Therefore, fm,i is visible from outside the MS superset. In
conclusion, since fm,i is visible from outside the MS superset, it is
an MS subfacet.

The proof remains the same if we choose the lexicographically
greatest point. Only the direction of the traced ray must be reversed
(towards the positive infinite x values).

Figure 7 depicts an MS superset in 2D, the corresponding lex-
icographically smallest point psmallest , and the lexicographically

ACM Transactions on Graphics, Vol. 30, No. 1, Article 3, Publication date: January 2011.



3:8 • H. Barki et al.

greatest point pgreatest . In 2D we deal with edges instead of facets.
So the edges or 1D-faces incident to psmallest are determined first.
After that, the seed edge or 1D-face is chosen so that the other edges
incident to psmallest lie on the negative side of its supporting line. In
Figure 7, the seed edges are drawn as solid lines. The same logic
applies if we have chosen pgreatest .

Once the seed subfacet has been found, the computation of the
other Minkowski sum facets by neighborhood traversal can be
started.

Step (8) Push the arrangement face associated to the seed sub-
facet into MS stack. The aim of this step is to initialize MS stack
with the arrangement face corresponding to the seed subfacet found
in the previous step.

Steps (9) to (16) Traversal of the seed subfacet neighborhood and
determination of the MS boundary subfacets. In step (8), MS stack
is initialized with the arrangement face corresponding to the seed
subfacet determined in step (7). This arrangement face is tagged as
“MS face” because it lies on the boundary of the MS polyhedron and
also as “already stacked” because it is pushed into MS stack. The
tag “already stacked” prevents the arrangement faces from being
pushed into MS stack more than once, thus it avoids processing
an arrangement face and the corresponding superset subfacet more
than once.

The processing of MS stack or the “repeat-until” loop iterations
(lines 9 to 16) are intended to: (1) store the arrangement face at the
top of MS stack in MS top, a variable used to backup the value at
the top of MS stack before popping it, (2) pop MS stack, (3) find the
subfacets in the neighborhood of the subfacet fMS top associated to
the arrangement face MS top, that is, find the subfacets that are inci-
dent to the edges of fMS top, (4) among these neighboring subfacets,
determine those that satisfy the closeness and two-manifoldness
properties, tag them as “MS face” because they necessarily lie on
the boundary of the MS polyhedron, and (5) push the subfacets re-
cently tagged as “MS face” into MS stack and tag them as “already
stacked.”

At the beginning, MS top is the arrangement face associated to
the seed subfacet. At subsequent iterations, MS top will be one
of the arrangement faces associated to one of the MS subfacets
neighboring the subfacet fMS top of the previous iteration.

Let us consider the arrangement face MS top at an arbitrary it-
eration and its associated 3D subfacet fMS top, which lies in the
subdivision of a superset triangle ti (see Figure 8(a) and 8(b)). It is
clear that fMS top is a subfacet of the Minkowski sum polyhedron
since the stacked faces are arrangement faces tagged as “MS-face”
and associated to subfacets lying on the boundary of the Minkowski
sum polyhedron. Furthermore, let us consider an arbitrary 3D seg-
ment or edge ej of the subfacet fMS top and let us denote by ej,i the
arrangement edge of arr(ti) associated to ej . We will search for the
subfacets sharing ej .

To simplify the discussion, we will suppose first that each ar-
rangement edge ej,i belonging to the arrangement arr(ti) results
from the intersection of exactly two superset triangles, that is, there
are no three or more superset triangles intersecting at the same 3D
segment ej . The general case will be discussed later.

To determine the intersection configuration of the 3D segment
or edge ej of the subfacet fMS top, we examine the planar arrange-
ment arr(ti) of the triangle ti . More precisely, we examine the
arrangement edge ej,i which is the projection of ej in the planar
arrangement arr(ti). ej,i is incident to the arrangement face MS top
of arr(ti) associated to fMS top and to another arrangement face fn,i .
If the second face fn,i incident to ej,i is the unbounded face of the
arrangement arr(ti), we conclude that the intersection configuration

Fig. 8. Determination of the MS subfacet fm,k incident to the edge ej .
(a) The edge ej has an “edge-edge” intersection configuration; (b) the edge
ej has an “interior” intersection configuration, two subfacets fm,k and fn,k

are incident to it; (c) the subfacet fm,k is the MS subfacet.

corresponding to ej is an “edge-edge” one because if ej resulted
from the intersection of another triangle crossing ti in its interior,
fn,i would be a bounded face corresponding to a subfacet of the
triangle ti . Otherwise, if fn,i is a bounded face of the arrangement
arr(ti), we conclude that the intersection configuration correspond-
ing to the edge ej is an “interior” one.

The two-manifoldness and closeness properties imply that each
edge of the MS polyhedron is incident to exactly two subfacets.
The 3D segment ej is incident to the subfacet fMS top and to another
subfacet of the MS polyhedron that must be determined according
to the intersection configuration of ej .

If the intersection configuration is of type “edge-edge” (see
Figure 8(a)), it exists only one subfacet fm,k incident to ej and
adjacent to fMS top. This subfacet belongs to the subdivision of an-
other superset triangle tk which is the unique triangle intersecting
ti at the edge ej as previously assumed. The subfacet fm,k can be
found by examining the list of intersection segments intersection(ti)
that gives a reference to the superset triangle tk intersecting ti at ej .
Therefore, the subfacet fm,k is the MS subfacet we are searching
for because ej must be incident to two subfacets (fMS top and fm,k).
The subfacet fm,k is tagged as “MS face,” pushed into MS stack,
and tagged as “already stacked” subfacet.

If the intersection configuration is of “interior” type (see Figure
8(b) and 8(c)), only two subfacets fm,k and fn,k incident to ej and
adjacent to fMS top exist. These two subfacets belong to the subdi-
vision of another superset triangle tk which is the unique triangle
intersecting ti at the edge ej as we previously assumed. fm,k and
fn,k can be found by examining the list intersection(ti), which gives
a reference to the superset triangle tk intersecting ti at the edge ej .
As ej must be incident to exactly two MS subfacets, one of which
is fMS top, we must choose only one subfacet among fm,k and fn,k

to be the second one.
The closeness property is verified by the choice of fm,k or fn,k ,

but only one of these two subfacets satisfies the two-manifoldness
property. Now, consider the case presented in Figure 8(b) and 8(c).
If we choose fn,k to be the MS subfacet, the second subfacet fm,k

incident to ej lies outside the boundary of the MS polyhedron. Thus
fn,k cannot be chosen as an MS subfacet because there is no subfacet
lying outside the MS polyhedron. If we choose fm,k to be the MS

ACM Transactions on Graphics, Vol. 30, No. 1, Article 3, Publication date: January 2011.



Contributing Vertices-Based Minkowski Sum of a Pair of Polyhedra • 3:9

subfacet, the second subfacet fn,k incident to ej lies inside the MS
superset, thus fm,k satisfies the two-manifoldness property of the
Minkowski sum polyhedron. From Figure 8(b), we conclude that
the subfacet to be considered as the MS subfacet incident to ej is the
subfacet lying on the positive side of the supporting plane of ti (in
our example, fm,k is the MS subfacet). Therefore, fm,k is tagged as
“MS face,” pushed into MS stack, and tagged as “already stacked”
subfacet.

The configuration where the subfacets fm,k and fn,k lie on the
same supporting plane of ti will never happen owing to the merging
process of “coplanar conjoint” parts. We do not need to worry about
such a configuration.

We have determined the subfacet of the MS superset that is in-
cident to the edge ej of the subfacet fMS top. The process can be
repeated for the other edges incident to fMS top. At the end of this
process, all MS subfacets adjacent to fMS top are determined. These
MS subfacets are correctly tagged and pushed into MS stack.

The “repeat-until” loop stops when MS stack is empty, that is,
when all subfacets of the Minkowski sum boundary have been
determined so that the final result is the closed Minkowski sum
polyhedron.

It remains to handle the case where more than two triangles
intersect at the same segment ej . As stated before, let us consider
the arrangement face MS top, the associated 3D subfacet fMS top

lying on the triangle ti at an arbitrary iteration and consider an edge
ej of fMS top. Suppose that ej results from the intersection of ti with
three superset triangles t1, t2, and t3 (see Figure 9(a)). The discussion
remains similar if there were more than three triangles intersecting
ti at ej .

First, we consider only the superset triangle t1 intersecting ti at
the edge ej and determine the subfacet fm,1 (lying on t1) that sat-
isfies the closeness and two-manifoldness properties. This will be
performed as before by detecting the intersection configuration of
ej , where we supposed that each edge ej results from the intersec-
tion of exactly two superset triangles. After that, we consider each
of the remaining triangles t2 and t3 apart and also determine the sub-
facets fn,2 and fp,3 satisfying the closeness and two-manifoldness
properties as done before for the triangle t1. In other words, we take
each pair of triangles (ti , t1), (ti , t2), and (ti , t3) independently and
determine the subfacets that are supposed to be MS facets if the
other pairs do not exist. We obtain three subfacets fm,1, fn,2, and
fp,3 lying on the triangles t1, t2, and t3 respectively. We must choose
one subfacet among these three subfacets to be the MS subfacet in-
cident to ej and adjacent to fMS top. As before, any chosen subfacet
satisfies the closeness property but only one of them satisfies the
two-manifoldness property. The subfacet to be chosen is the one
lying on a supporting plane that forms the minimal angle w.r.t. the
supporting plane of ti (see Figure 9(b)). This plane angle criterion
guarantees that the other nonchosen subfacets lie inside the MS
polyhedron. For the example depicted in Figure 9, the subfacet to
be chosen is fn,2 lying on the triangle t2.

As a conclusion to this step, the boundary of the MS polyhedron
is determined by finding, for each stacked MS subfacet, the adjacent
subfacets satisfying the closeness and two-manifoldness properties.

Step (17) Get the Minkowski sum polyhedron facets from the
2D arrangement faces. At this point, all the MS superset sub-
facets lying on the boundary of the Minkowski sum polyhedron are
properly tagged. Therefore, in order to obtain the Minkowski sum
polyhedron facets, we iterate through all 2D arrangements, find the
2D arrangement faces which have been tagged as “MS face,” and
project them on the supporting planes of the triangles associated to
their arrangements.

(a) (b)

edge ej

ti

t2

t1
t3

ni

n2

n1
n3

ti

t2

t1

t3
n3

n1

n2
ni

minimal angle

Fig. 9. The plane angle criterion for the determination of the MS subfacet
among several others incident to the edge ej . (a) The triangles t1, t2, and
t3 intersect the triangle ti in the same edge ej ; (b) the minimal angle is the
one between the supporting plane of ti and the supporting plane of t2. The
second MS subfacet incident to ej is a subfacet lying on t2.

Step (18) Triangulate the Minkowski sum polyhedron facets (op-
tional). This optional step aims at triangulating the Minkowski
sum facets for more convenience to avoid the presence of noncon-
vex facets.

3.3 Handling of Nonmanifold Situations

As previously mentioned, our NCC-CVMS algorithm handles non-
manifold Minkowski sums. In this subsection, we list all non-
manifold situations and show how to handle them.

Six nonmanifold situations may occur in the superset F :
(1) double vertices, (2) a vertex and an edge touching tangentially,
(3) a vertex and a subfacet touching tangentially, (4) an edge inci-
dent to more than two subfacets, (5) an edge and a subfacet touching
tangentially, and (6) two “opposite conjoint” facets.

Because the traversal of the MS boundary subfacets is based
on the edges’ neighborhood examination through the use of the
two-manifoldness and closeness properties, the nonmanifold cases
induced by the presence of vertices touching tangentially other
primitives (nonmanifold situations (1), (2), and (3) mentioned be-
fore) are automatically handled. Indeed, the vertices’ neighborhood
is not considered during the traversal of the MS boundary.

The nonmanifold situation (4) where an edge is incident to more
than two subfacets is also automatically handled. Given a nonman-
ifold edge incident to more than two subfacets, when examining
the MS subfacet fMS top incident to such a nonmanifold edge at an
arbitrary “repeat-until” loop iteration, the two-manifoldness prop-
erty allows to choose only one subfacet incident to this edge as the
MS subfacet. The other MS subfacets incident to this nonmanifold
edge are automatically recovered when examining the neighbor-
hood of the other edges incident to these subfacets because the
algorithm stops only when the result is a closed mesh. If one of
the subfacets incident to this nonmanifold edge was missed, this
means that another subfacet incident to the missed subfacet has
a border edge, which is not allowed by our algorithm. Therefore,
no Minkowski sum subfacet is missed even in this nonmanifold
situation.

The situation (5) where an edge touches a subfacet tangentially
resumes to the case (4) because this edge is originally incident to
two subfacets plus the other subfacets induced by the splitting of
the subfacet which touches it tangentially.

Finally, the nonmanifold situation (6) is handled by the interme-
diary processing of step (2) of our algorithm. Especially, because
we already computed the symmetric difference of the “opposite
conjoint” facets, this situation does not occur during the traversal
of the MS boundary.

ACM Transactions on Graphics, Vol. 30, No. 1, Article 3, Publication date: January 2011.



3:10 • H. Barki et al.

(a)

superset F

outer boundary of

non-processed edges

missed polygonal 
hole polygonal holeouter boundary

B

A

(b) (c)

(d) (e) (f)

BA⊕

BA⊕

Fig. 10. (a) A nonconvex–convex pair of polygons A and B; (b) and (c) the
sweep of A by B and the generation of the superset F ; (d) the application
of algorithm 1 allows to only compute the outer boundary of the MS;
(e) the edges that are not processed by Algorithm 1 and the missed polygonal
hole; (f) the correct MS polygon is composed of an outer boundary and a
polygonal hole.

3.4 Extraction of Polyhedral Holes Inside
the Minkowski Sum Outer Boundary

The extraction of the outer boundary of the MS and the handling of
nonmanifold situations are not sufficient for some input polyhedra.
Consider the example depicted in Figure 10, where the MS polygon
is composed of an outer boundary and a polygonal hole which must
be recovered (Figure 10(e)). The application of Algorithm 1 on
the superset of Figure 10(c) only extracts the outer boundary. The
traversal of the MS outer boundary excludes edges lying inside it as
shown in Figure 10(e) and the polygonal hole is therefore missed.

In this section, we address the extraction of eventual polyhedral
holes inside the MS mesh, which is an additional functionality of
our NCC-CVMS algorithm that must be applied after the extraction
of the outer boundary, that is, after performing all steps of Algo-
rithm 1. The key idea is to propagate membership states through
the neighboring subfacets and to change them for the subfacets en-
countered after crossing the MS boundary. As detailed in the next
paragraphs, the extraction of polyhedral holes relies on the two
following properties: (1) the uniqueness of the membership state
inside each subfacet and (2) the change of the membership state at
the two sides of the crossed MS boundary.

We already demonstrated in Proposition 1 that each subfacet of
the superset has a unique membership state w.r.t. the MS mesh.
Let us now examine the triangles of the superset. On the one hand,
for a triangle lying partially on the boundary of the MS mesh,
the edges of the frontier separating its MS subfacets from its non-
MS subfacets result from crossing the MS boundary. On the other
hand, it is not possible to have a subdivision of a triangle lying
completely on the boundary of the MS mesh or completely inside
the volume defined by this mesh. This is because such a subdivision
implies that some of its subfacets are MS-facets while the others are
non-MS subfacets, which is contradictory since the whole triangle
has a unique membership state. This allows the classification of
the superset triangles into three categories as illustrated in 2D by
Figure 11(c).

(c)

(d)

A
B

A
B

superset Fsuperset F

face of type (1)
face of type (2)
face of type (3)

face of type (1)
face of type (2)
face of type (3)

+

+

++

+ means crossing the MS boundary
non-MS face
MS face

+

+

++

+ means crossing the MS boundary
non-MS face
MS face

polygonal hole

outer boundary

BA BA

polygonal hole

outer boundary

BA⊕

(b)(a)

(e)

non-MS sub-face incident 
to an MS sub-face

first found MS sub-face 
for the hole

Fig. 11. Illustration of a polygonal hole extraction from a Minkowski sum
facets superset in 2D. (a) A nonconvex–convex pair of polygons A and B;
(b) their MS faces superset; (c) the different categories of faces of the super-
set; (d) the crossing of the MS frontier implies to change the membership
state at the two sides of the frontier; (e) the MS A⊕B composed of an outer
boundary and a polygonal hole that was successfully extracted.

(1) Triangles lying completely on the boundary of the MS mesh.
These are nonsubdivided triangles since there is no change of
the membership state inside them.

(2) Triangles lying completely inside the volume defined by the
MS mesh. These triangles are also nonsubdivided ones for the
same reason as before.

(3) Triangles lying partially on the boundary of the MS mesh
and partially inside it. These are triangles subdivided into
subfacets, some of which lie completely on the boundary of
the MS mesh while the others lie inside the volume defined by
this mesh.

This equivalence between the crossing of the boundary of the MS
mesh and the change of membership state of the subfacets at the two
sides of the frontier, together with the impossibility of having a sub-
division of a triangle with a unique membership state (categories (1)
and (2) of triangles) gives us a mean to compute eventual polyhedral
holes inside the MS outer boundary, by examining the intersections
between the remaining triangles and changing the membership state
of the subfacets of the subdivided triangles. Figure 11 illustrates the
extraction of a polygonal hole from a Minkowski sum facets super-
set in 2D.

Therefore, after computing the outer boundary of the Minkowski
sum mesh, the extraction of the eventual polyhedral holes of the
MS mesh reduces to the following.

(1) Find a bounded non-MS subfacet of a triangle subdivision that
is incident to an MS subfacet of the same triangle’s subdivision.
In Figure 11(d), such a bounded non-MS subface is shown.

(2) Traverse nonvisited neighboring triangles until arriving to a
subdivided triangle which necessarily crosses the MS mesh
boundary. The crossing of the MS boundary is located by the
+ sign in Figure 11(d).

(3) Set the bounded subfacet at which the triangle is entered as
a non-MS subfacet and its adjacent subfacets lying on the
subdivision of this triangle as MS subfacets of a polyhedral hole

ACM Transactions on Graphics, Vol. 30, No. 1, Article 3, Publication date: January 2011.



Contributing Vertices-Based Minkowski Sum of a Pair of Polyhedra • 3:11

A

B

A

B

superset F

+

+
+

+

++

+ +

+ crossing the MS boundary

superset F

+

+
+

+

++

+ +

+

+
+

+

++

+ +

+ crossing the MS boundary

BA⊕

(a) (b) (c)

Fig. 12. Extraction of two polygonal holes from a Minkowski sum facets
superset in 2D. (a) A nonconvex–convex pair of polygons A and B; (b) their
MS faces superset. The + sign indicates where the MS boundary is crossed
and where the membership state must be changed; (c) the MS polygon
containing two holes.

because they are encountered after crossing the MS boundary.
In Figure 11(d), the first MS subface found after crossing the
MS boundary is indicated.

(4) Consider the recently found MS subfacet as a seed subfacet
and use steps ranging from 8 to 18 of Algorithm 1 to recover
the polyhedral hole. The faces drawn as solid lines in Figure
11(d) that are located inside the MS outer boundary are faces
of a polygonal hole.

(5) Repeat steps ranging from (1) to (4) until all the subfacets of
the superset F are visited.

The previous procedure is able to extract any number of polyhe-
dral holes as illustrated in Figure 12. Some examples of nonmanifold
MS meshes and another one containing a polyhedral hole computed
by our algorithm are depicted in Figures 15 and 16 of Section 4.

4. IMPLEMENTATION, PERFORMANCE
BENCHMARK, AND COMPARATIVE STUDY

In this section, we give some implementation details, provide a
comparison with other approaches, and present some results.

4.1 Implementation

The NCC-CVMS algorithm has been implemented using C++
and CGAL [CGA], the Computational Geometry Algorithms Li-
brary. The polyhedra are handled by the CGAL Polyhedron 3
data structure, which is in turn based on the halfedge data struc-
ture [Kettner 1999]. The computation of the planar Minkowski
sums involved in the NCC-CVMS algorithm is done by the func-
tion minkowski sum 2 provided in the 2D Minkowski sum pack-
age of CGAL. This function implements the convolution operation
[Guibas et al. 1983].

As stated previously, we followed the exact computation
paradigm to guarantee the exactness of the obtained results. For
our implementation, we used the exact number types provided by
the GNU Multi Precision (GMP) library [GMP ] under CGAL. By
using exact number types, we penalize running time performance
w.r.t. to the built-in floating point number types. To overcome this
problem, we used the lazy kernel adapter [Fabri and Pion 2006;
CGA] which speeds up exact computations and reduces the over-
head in comparison with the floating-point-based computations.

The merging of “coplanar conjoint” superset facets is done by
first projecting the 3D polygonal facets to obtain the corresponding
2D polygons (see Section 3.1), computing the union of the resulting
2D polygons through the use of the 2D regularized Boolean set op-
erations package [Fogel et al. 2008] of CGAL, and projecting back

the union result on the supporting plane of the merged facets (see
again Section 3.1). The computation of the symmetric difference of
“opposite conjoint” superset facets is done in a similar manner.

The triangulation of the superset facets is also done in 2D through
the 3D-to-2D and 2D-to-3D projections mentioned earlier. If the
facet to be triangulated is a convex facet without holes, the trian-
gulation is performed by simple Euler operations. If the facet is a
nonconvex facet without holes, we first convex-partition it into con-
vex polygons using the algorithm presented in Hertel and Mehlhorn
[1983] and then we use the Euler operations to triangulate the convex
polygons. If the facet contains holes, we use the constrained De-
launay triangulation algorithm of Yvinec [2008]. The constrained
edges are the edges incident to the holes and the edges of the outer
boundary of the facet.

The Iso-oriented bounding boxes intersection is computed by the
fast algorithm presented in Zomorodian and Edelsbrunner [2002].

The 3D triangle intersection computation is achieved by a slightly
modified version of the “interval overlap method” presented in
Möller [1997].

The 2D arrangements that store the triangles’ intersections are
handled by the 2D arrangement package of CGAL [Wein et al.
2008].

We shall note the use of the Nef polyhedra implementation
[Hachenberger and Kettner 2008] provided by CGAL for the com-
parison of the running times in Section 4.2.2.

4.2 Performance Benchmark

For our benchmark, we carried out three series of tests. The first
one aims at measuring the amount of time consumed for each step
of the NCC-CVMS algorithm w.r.t. the overall running time of the
algorithm. In the second series, we compared the NCC-CVMS al-
gorithm with the Nef polyhedra-based algorithm which is to the
best of our knowledge the unique one handling Minkowski sum of
nonconvex polyhedra in an exact way. Another reason for choosing
this approach for comparison is the availability of its source-code.
The last series of tests concerns nonconvex–convex pairs of polyhe-
dra without fold and aims at comparing our NCC-CVMS algorithm
with the CVMS algorithm we presented in Barki et al. [2009b]. All
experiments were done on a 4GB RAM, 2.2 GHZ Intel Core 2 Duo
personal computer.

4.2.1 Comparison of the Running Times of the Different Steps
of the NCC-CVMS Algorithm. In the current tests, we will delib-
erately choose a geodesic sphere and another convex polyhedron
to be summed with each nonconvex polyhedron A. The choice of
the sphere is motivated by its complexity since it is composed of
hundreds of facets with hundreds of different outer normals and
thus constitutes a challenge for the superset generation step and
for the Minkowski sum polyhedron extraction step. More results of
Minkowski sum of several other polyhedra can be downloaded from
our Web page at: http://liris.cnrs.fr/hichem.barki/mksum/NCC-
CVMS.

The running times for the NCC-CVMS algorithm and the ratio
for each step are reported in Table I. The numbers of triangles of A,
B, the MS superset, and the MS polyhedron are also given.

From Table I, the MS superset triangles’ intersection computation
is in average the most time-consuming step of the NCC-CVMS. An-
other interesting observation is that, for some samples, the merging,
symmetric difference computation, and triangulation process con-
sumes more time than the triangles’ intersection computation. This
is justified by the presence of a large number of “coplanar conjoint”
and/or “opposite conjoint” facets in the generated superset.

ACM Transactions on Graphics, Vol. 30, No. 1, Article 3, Publication date: January 2011.



3:12 • H. Barki et al.

Table I. Percentage of Running Times for the Different Steps of the NCC-CVMS Algorithm for Several Samples
Operands (triangles number) Percentage of Running Times (%)
A B SC MST BI TI AC BT TR Overall time(s) Sup. size MS size

Wrench (772) Rhomb.Tr.Icosa.(62) 10.2 14.3 0.2 41.3 20.7 12.1 1.3 53.219 7056 4041
Wrench (772) Sphere (500) 15.5 31.3 0.1 28.3 15.4 8.6 0.9 97.532 9648 5205
Grate1 (540) Tr.Tetra. (8) 6.5 5.8 0.1 48.7 19.2 16.9 2.9 15.171 1634 1915
Grate1 (540) Sphere (500) 11.2 35.5 0.1 31.4 12.7 8.3 0.7 107.968 10311 5524
Bunny (1500) Cube (12) 5.7 14.5 0.1 36.9 16.5 24 2.4 21.720 2606 3386
Bunny (1500) Sphere (500) 24.9 24.3 0.1 22.5 11.1 15.3 1.7 136.421 10217 13281

Knot (992) Rh.Triacon. (30) 8 12.6 0.1 37.1 17.9 20.7 3.6 41.656 4426 6481
Knot (992) Sphere (500) 13.2 30.7 0.1 26.1 13.1 14.4 2.4 172.047 13521 17759

Grate2 (942) Rh.Dodeca. (12) 5.2 8.2 0.1 40.5 15.5 26.3 4.2 21.031 2690 4619
Grate2 (942) Sphere (500) 8.4 48.3 0.1 18.6 7.8 15.7 1 280.063 18663 23760

Dinausor (5000) Cube (12) 5.3 31.6 0.1 29.9 15 16.1 2 107.546 9582 11422
Dinausor (5000) Sphere (500) 14 58.2 0.1 15.2 7.9 4.1 0.6 1010.842 42495 29265
Average running time percentage 10.7 26.3 0.1 31.4 14.4 15.2 2.0 - - -

Rhomb.Tr.Icosa. - RhombiTruncatedIcosahedron, Tr.Tetra. - TruncatedTetrahedron, Rh.Triacon. - RhombicTriacontahedron, Rh.Dodeca. - RhombicDodecahedron
SC - Superset Computation , MST - Merging of “coplanar conjoint” superset facets, Symmetric difference computation of the “opposite conjoint” facets, and Triangulation, BI -
Iso-oriented Boxes Intersection computation, TI - superset Triangles’ Intersection computation, AC - 2D Arrangements Construction, BT - computation of the seed facet and Boundary
Traversal, TR - optional TRiangulation of the MS polyhedron facets, Sup. size - number of triangles of the MS superset after the merging, symmetric difference computation, and
triangulation steps, MS size - number of triangles of the MS polyhedron.
Some of the reported models are taken from http://masc.cs.gmu.edu/wiki/SimpleMsum.

The NCC-CVMS algorithm works well with big size polyhedra,
having until tens of thousands of facets. As an example, for the
Dinausor model to be summed with the sphere model, the NCC-
CVMS algorithm handled correctly the superset of 42K triangles
and computed the Minkowski sum in less than 17 minutes. For the
models reported in Table I, the NCC-CVMS algorithm computed
about 6.2K triangles per minute in average. This measure gives a
first vision about the efficiency of our algorithm.

The NCC-CVMS algorithm handles well the change of genus.
As an example, the Wrench model in Table I has a genus of 4 while
the Minkowski sum polyhedra Wrench ⊕ Sphere and Wrench ⊕
RhombitruncatedIcosahedron have a genus of 0 (see Figure 14(d)).
Models with higher genus are also well handled. The models Knot
and Knot ⊕ Sphere have a genus of 9 (see Figure 14(a)).

For some models such as the Grate2 model, the size of the MS
polyhedron is greater than the size of the MS superset. At first
glance, this might seem contradictory since the MS polyhedron is
the result of the trimming of the MS superset (some subfacets of the
superset will not be present in the MS polyhedron). However, this is
natural because in some cases, the triangulation of the MS subfacets
retained after the trimming operation yields a lot of triangles due to
the geometry of these facets.

4.2.2 Comparison between the NCC-CVMS Algorithm and the
Nef Polyhedra-Based Minkowski Sum Approach. For some of the
models reported in Table I, we computed the Minkowski sum by
using our NCC-CVMS algorithm and the Nef polyhedra-based con-
vex decomposition method implemented within CGAL. The run-
ning times are reported in Table II. We avoided deliberately to report
the sizes of the polyhedra A and B which are the same as in Table I.

We shall note that Nef polyhedra-based convex decomposition
approach is more powerful than necessary for the Minkowski sum
computation. The Nef polyhedra data structure is complex and not
restricted to the Minkowski sum computation. It is also used for
other needs such as Boolean operations on polyhedra [Hachenberger
et al. 2007]. Moreover, the computation of the pairwise Minkowski
sums performed by overlaying two Nef polyhedra embedded on the
sphere, with lower-dimensional features, unbounded or bounded
boundaries, etc., is not optimized for the Minkowski sum.

Table II. Comparison of the Running Times for the Nef Polyhedra-
Based Approach and the NCC-CVMS Algorithm

Operands Nef Polyhedra NCC-CVMS
A B Conv. dec. A Nef (s) NCC-CVMS (s)

Grate1 Tr.Tetra. 47 20.547 15.171
Grate1 Sphere 47 272.406 107.968
Bunny Cube 869 733.266 21.720
Knot Rh.Triacon. 690 4262.800 41.656

Grate2 Rh.Dodeca. 230 114.125 21.031
Grate2 Sphere 230 2052.890 280.063

Dinausor Cube 3193 2842.480 107.546
Rhomb.Tr.Icosa. - RhombiTruncatedIcosahedron, Tr.Tetra. - TruncatedTetrahedron,
Rh.Triacon. - RhombicTriacontahedron, Rh.Dodeca. - RhombicDodecahedron
Conv. decomp. of A - The number of convex pieces resulting from the decomposition
of the non-convex polyhedron A.

From the running times reported in Table II, it appears that our
NCC-CVMS algorithm is more efficient than the Nef polyhedra-
based approach. Moreover, our algorithm is even much more ef-
ficient than the Nef polyhedra for models yielding more convex
parts, such as the the Bunny and the Dinausor models. However, as
claimed previously, the Nef polyhedra-based approach deals with
nonconvex pairs of polyhedra that can not been handled by our
NCC-CVMS algorithm at the moment.

4.2.3 Comparison between the NCC-CVMS Algorithm and the
CVMS Algorithm for Nonconvex–Convex Pairs of Polyhedra without
Fold. In this section, we computed the Minkowski sum of some
nonconvex–convex pairs of polyhedra without fold by using our
NCC-CVMS algorithm and also by using the CVMS algorithm we
previously proposed in Barki et al. [2009b]. The running times are
reported in Table III along with the percentages of the superset
computation step.

Besides the fact that the NCC-CVMS algorithm handles polyhe-
dra having fold and that the CVMS algorithm cannot handle them,
Table III shows that NCC-CVMS performs better than CVMS for
nonconvex–convex pairs of polyhedra without fold. The envelope
computation in CVMS induces some redundancy, that is, a large
number of the MS facets that are computed more than once before

ACM Transactions on Graphics, Vol. 30, No. 1, Article 3, Publication date: January 2011.



Contributing Vertices-Based Minkowski Sum of a Pair of Polyhedra • 3:13

Table III. Comparison of the Running Times for the CVMS Algo-
rithm of Barki et al. [2009b] and Our NCC-CVMS Algorithm

Operands CVMS Algorithm NCC-CVMS
A B Sup. comp. Env. comp. CVMS(s) NCC-CVMS(s)

L(20) Tetra.(4) 15.9% 84.1% 0.390 0.266
L(20) Sphere(500) 3.3% 96.7% 16.046 5.045

Path(28) Sphere(500) 3.3% 96.7% 20.218 6.313
Star(24) Sphere(500) 1.5% 98.5% 42.235 9.673

Average 2.7% 97.3% - -
Tetra. - Tetrahedron.
Sup. comp. - Percentage of the running time of the superset computation step in the
CVMS algorithm of [Barki et al. 2009b], Env. comp. - Percentage of the running time
of the envelope computation step in the CVMS algorithm of [Barki et al. 2009b].

the union. In contrast, NCC-CVMS deals with each MS facet only
once.

The envelope computation in CVMS is the most time-consuming
step (97.3% in average). The superset computation step consumes
in average 2.7% of the overall time. In NCC-CVMS, the superset
computation consumes in average 10.7% (see Table I). The increase
of the superset computation ratio in NCC-CVMS is due to the
reduction of the running time devoted to the other steps of NCC-
CVMS compared to the envelope computation step of the CVMS
algorithm.

4.3 Comparative Study with Other Approaches

In this subsection, we give a comparative study of our NCC-CVMS
algorithm and two other approaches handling the Minkowski sum of
nonconvex polyhedra in an efficient and nearly exact way. The first
approach is the topologically accurate approximation of Varadhan
and Manocha [2006] and the second one is the nearly exact method
of Lien [2008].

Varadhan and Manocha used a convex-decomposition-based ap-
proach and approximated the union of the pairwise Minkowski
sums by generating a voxel grid, computing signed distance on the
grid points, and performing Iso-surface extraction from the distance
field.

Lien first computed a superset of the Minkowski sum through a
brute-force convolution of the two input polyhedra. Then, he sub-
divided each facet of this superset into subfacets induced by the
facet-facet intersections. After that, he stitched the subfacets into
simple regions which are either entirely on the boundary of the
Minkowski sum or entirely inside it. Finally, he used a collision
detector to decide about the regions lying on the boundary of the
Minkowski sum. However, the used collision detector cannot dis-
tinguish between two objects which are in contact configurations
or which collide. To overcome this problem, the author perturbed
each sampled point with an infinitesimally position vector pointing
in the direction of the concerned subfacet outer normal. For that
reason, the method is said “nearly exact.”

We compare our NCC-CVMS algorithm to the mentioned ap-
proaches on the base of the following criteria: class of handled
input polyhedra, class of handled output, exactness, efficiency, and
implementation.

—Class of handled input polyhedra. The method of Lien and the ap-
proach of Varadhan and Manocha both handle nonconvex polyhe-
dra. Our NCC-CVMS algorithm only handles nonconvex–convex
pairs. To be able to handle nonconvex pairs of polyhedra, the su-
perset generation step of our NCC-CVMS algorithm must be
updated.

Fig. 13. Internal views for Minkowski sum polyhedra computed by the
NCC-CVMS algorithm. (a) For the MS of the Dinausor model and the Cube
model; (b) for the MS of the Wrench model and the Sphere model; (c) for
the MS of the Bunny model and the Sphere model.

—Class of handled output. Concerning the method of Lien, there is
no claim about the handling of nonmanifold situations. Moreover,
there is no handling of “coplanar conjoint” facets or “opposite
conjoint” facets. If some subfacets which are either “coplanar
conjoint” or “opposite conjoint” belong to the boundary of the
Minkowski sum, they satisfy the collision detector, create non-
handled nonmanifold situations, and induce erroneous results.
The approach of Varadhan and Manocha does not handle non-
manifold output because the sampling algorithm used to generate
the voxel grid does not handle primitives touching tangentially.
NCC-CVMS handles nonmanifold output and is able to recover
eventual polyhedral holes of the Minkowski sum (see the next
subsection for examples of these situations).

—Exactness. The method of Lien gives an exact solution in most
cases. However, it does not guarantee the exactness of the re-
sult for all input models because the perturbation mechanism
used in the collision detector for the distinction between non-MS
subfacets and MS subfacets is empirical. The approach of Varad-
han and Manocha gives an accurate approximation of the result.
NCC-CVMS gives an exact result.

—Efficiency. Lien’s method is the more efficient among the three
due to the use of built-in number types, the parallelized imple-
mentation, and because it is not based on convex decomposition.
The approach of Varadhan and Manocha suffers from the large
size of the convex decomposition. Moreover, the decomposition
algorithm is not optimal and the convex hull method used for the
computation of the pairwise Minkowski sums is not the most effi-
cient for the task at hand (see Barki et al. [2009a] for a discussion
of the approaches used for the computation of the Minkowski sum
of convex polyhedra). Our algorithm uses exact number types,
it is more efficient than the approach of Varadhan and Manocha
since it processes about 6.2K triangles per minute in average
while the approach of Varadhan and Manocha takes few minutes
to compute the Minkowski sum of models composed of hundreds
of triangles.

—Implementation. The approach of Lien and that of Varadhan and
Manocha are both implemented using built-in number types and
suffer from round-off errors. NCC-CVMS is implemented using
exact number types and does not suffer from such issues.

ACM Transactions on Graphics, Vol. 30, No. 1, Article 3, Publication date: January 2011.



3:14 • H. Barki et al.

Fig. 14. Minkowski sum polyhedra generated by our NCC-CVMS algorithm. From top to bottom of each subfigure: the polyhedron A, the polyhedron B,
and the Minkowski sum polyhedron S = A ⊕ B. (a) The MS of the Knot model (of high genus) and the Sphere model; (b) the MS of the Grate1 model
and the TruncatedTetrahedron model. The teeth overlap is robustly handled; (c) the MS of the Grate2 complex model and the RhombicDodecahedron model;
(d) the MS of the Wrench model and the RhombiTruncatedIcosahedron model. The change of genus is correctly handled; (e) the MS of the Bunny model and
the Sphere model; (f) the MS of the Dinausor model and the Cube/Sphere models. The NCC-CVMS algorithm works well on big size polyhedra.

4.4 Examples

In this subsection, we present two sets of examples of Minkowski
sum meshes we computed with NCC-CVMS. The first one con-
cerns results that are polyhedra while the second gives examples of
Minkowski sums exhibiting nonmanifold situations and polyhedral
holes.

For the first set of examples, we present two views for the
Minkowski sum polyhedron from a view point that is:

—inside the MS polyhedron (Figure 13). This view aims at showing
that the trimming is done correctly during the traversal step and
that no non-MS subfacet is present in the MS polyhedron.

—outside the MS polyhedron (Figure 14). This view aims at show-
ing that no subfacet is missed during the traversal step and that
there is not any hole in the boundary of the MS polyhedron.

In Figure 14, some models reported in Table I are shown from
outside view points. The overlap of the rods in the Grate1 model
does not cause any problem to our algorithm (Figure 14(b)).

For the second set of examples, we manually generated some
models whose Minkowski sums either are nonmanifold meshes or
contain a polyhedral hole. Figures 15(a), 15(b), and 15(c) illustrate
nonmanifold Minkowski sums computed by NCC-CVMS in the
presence of double vertices, a nonmanifold edge, and two facets
touching tangentially. Figure 16 shows a Minkowski sum with a
polyhedral hole that was successfully extracted.

We shall note here that nonmanifold Minkowski sums and
Minkowski sums with polyhedral holes are uncommon in practice.
For this reason, we manually generated the input models illustrated
in Figures 15 and 16 in order to produce such meshes. For the
models depicted in Figure 16, NCC-CVMS computed the whole
Minkowski sum (842 triangles) in 8.328 seconds, among which
15.4% was spent in the computation of the polyhedral hole.

We also validated the correctness of our results by compar-
ing the distance between the Minkowski sum polyhedra com-
puted by our NCC-CVMS algorithm and those computed by
the Nef polyhedra-based approach through the use of the Metro
software which can be found at: http://vcg.isti.cnr.it/activities/
surfacegrevis/simplification/metro.html.

Fig. 15. Non-manifold Minkowski sums computed by the NCC-CVMS
algorithm. (a) Double vertices. (b) A non-manifold edge. (c) Facets touching
tangentially.

More results of the NCC-CVMS algorithm and some animations
showing the traversal of the boundary and the incremental con-
struction of some MS polyhedra can be found in our Web page at:
http://liris.cnrs.fr/hichem.barki/mksum/NCC-CVMS.

5. CONCLUSION AND FUTURE WORK

We have presented the NCC-CVMS algorithm, an original con-
tributing vertices-based algorithm for the computation of the
Minkowski sum of a nonconvex–convex pair of polyhedra A and B
which handles nonmanifold output and extracts eventual polyhedral
holes of the Minkowski sum result. First, we computed a superset

ACM Transactions on Graphics, Vol. 30, No. 1, Article 3, Publication date: January 2011.



Contributing Vertices-Based Minkowski Sum of a Pair of Polyhedra • 3:15

Fig. 16. A Minkowski sum with a polyhedral hole computed by the NCC-
CVMS algorithm. (a) The two operands and the whole MS mesh; (b) two cuts
better showing the geometry of the nonconvex operand and the polyhedral
hole inside the MS outer boundary.

of the Minkowski sum facets of A and B. Second, we computed the
intersections among the superset triangles and maintained them by
2D arrangements. Finally, starting from a seed facet that is guaran-
teed to belong to the boundary of the Minkowski sum, we examined
its neighborhood and determined the Minkowski sum facets satis-
fying the closeness and two-manifoldness properties. This process
was repeated until the closeness property of the Minkowski sum
polyhedron was satisfied, that is, until the resulting polyhedron was
closed.

We followed the exact computation paradigm in the implemen-
tation of the NCC-CVMS algorithm. Degenerate cases were well
handled and robustness issues related to built-in number types were
avoided. Moreover, nonmanifold Minkowski sum meshes were also
well handled by our algorithm. Experimental results showed that
our NCC-CVMS algorithm outperforms the Nef polyhedra-based
convex decomposition method of Hachenberger [2007] which also
handles nonconvex polyhedra in an exact fashion. We gave a com-
parative study of our approach and two other approaches computing
Minkowski sum of nonconvex polyhedra but in an inexact way: the
nearly exact approach of Lien [2008] and the topologically accurate
approximation of Varadhan and Manocha [2006].

The NCC-CVMS algorithm is more general and more efficient
than the algorithm we previously proposed in Barki et al. [2009b]
for a nonconvex–convex pair of polyhedra without fold.

As a part of our future work, we are working on the general-
ization of our algorithm to any pair of nonconvex polyhedra. For
that purpose, the superset generation step has to be updated accord-
ingly. The Minkowski sum boundary extraction algorithm presented
here will then be applied without significant modifications since the
closeness and two-manifoldness properties are not altered by the
nonconvexity of polyhedra.

REFERENCES

CGAL. Computational geometry algorithms library. http://www.cgal.org.

GNU MP. the GNU MP bignum library. http://gmplib.org.

AGARWAL, P. AND SHARIR, M. 1998. Arrangements and their applications.
In Handbook of Computational Geometry, Elsevier Science Publishers
B.V. North-Holland, 49–119.

ARONOV, B., SHARIR, M., AND TAGANSKY, B. 1997. The union of convex
polyhedra in three dimensions. SIAM J. Comput. 26, 6, 1670–1688.

BARKI, H., DENIS, F., AND DUPONT, F. 2009a. Contributing vertices-
based minkowski sum computation of convex polyhedra. Comput. Aid.
Des. 41, 7, 525–538.

BARKI, H., DENIS, F., AND DUPONT, F. 2009b. Contributing vertices-based
minkowski sum of a non-convex polyhedron without fold and a convex
polyhedron. In Proceedings of the IEEE International Conference on
Shape Modeling and Applications (SMI’09). IEEE Computer Society,
73–80.

BASCH, J., GUIBAS, L., RAMKUMAR, G., AND RAMSHAW, L. 1996. Poly-
hedral tracings and their convolution. In Proceedings of 2nd Workshop
on the Algorithmic Foundations of Robotics. 171–184.

BEKKER, H. AND ROERDINK, J. 2001. An efficient algorithm to calculate
the Minkowski sum of convex 3d polyhedra. In Proceedings of the
International Conference on Computational Sciences-Part I (ICCS’01).
Springer, 619–628.

CHAZELLE, B. 1981. Convex decompositions of polyhedra. In Pro-
ceedings of the 13th Annual ACM Symposium on Theory of Computing
(STOC’81). ACM, New York, 70–79.

EVANS, R., OÒCONNOR, M., AND ROSSIGNAC, J. 1992. Construction of
Minkowski sums and derivatives morphological combinations of arbitrary
polyhedra in CAD/CAM systems. US Patent 5159512.

FABRI, A. AND PION, S. 2006. A generic lazy evaluation scheme for
exact geometric computations. In Proceedings of the 2nd Library-Centric
Software Design.

FOGEL, E. AND HALPERIN, D. 2007. Exact and efficient construction of
Minkowski sums of convex polyhedra with applications. Comput. Aid.
Des. 39, 11, 929–940.

FOGEL, E., WEIN, R., ZUKERMAN, B., AND HALPERIN, D. 2008. 2d reg-
ularized boolean set-operations. In CGAL User and Reference Manual,
3.4 Ed., C. E. Board, Ed.

GHOSH, P. 1993. A unified computational framework for Minkowski
operations. Comput. Graph. 17, 4, 357–378.

GUIBAS, L. AND SEIDEL, R. 1987. Computing convolutions by reciprocal
search. Discrete Comput. Geom. 2, 175–193.

GUIBAS, L. J., RAMSHAW, L., AND STOLFI, L. 1983. A kinetic frame-
work for computational geometry. In Proceedings of 24th annual IEEE
Symposium on the Foundation of Computer Science. 100–111.

HACHENBERGER, P. 2007. Exact Minkowski sums of polyhedra and exact
and efficient decomposition of polyhedra in convex pieces. In Proceedings
15th Annual European Symposium on Algorithms. 669–680.

HACHENBERGER, P. AND KETTNER, L. 2008. 3d boolean operations on
Nef polyhedra. In CGAL User and Reference Manual. 3.4 Ed., C. E.
Board, Ed.

HACHENBERGER, P., KETTNER, L., AND MEHLHORN, K. 2007. Boolean
operations on 3d selective nef complexes: data structure, algorithms,
optimized implementation and experiments. Comput. Geom. Theory
Appl. 38, 1-2, 64–99.

HALPERIN, D. 2002. Robust geometric computing in motion. Int. J.
Robotics Res. 21, 3, 219–232.

HERTEL, S. AND MEHLHORN, K. 1983. Fast triangulation of simple poly-
gons. In Proceedings of the International FCT-Conference on Funda-
mentals of Computation Theory. Springer, 207–218.

ACM Transactions on Graphics, Vol. 30, No. 1, Article 3, Publication date: January 2011.



3:16 • H. Barki et al.

KAUL, A. AND ROSSIGNAC, J. 1992. Solid-interpolating deformations:
construction and animation of PIPs. Comput. Graph. 16, 1, 107–115.

KETTNER, L. 1999. Using generic programming for designing a data
structure for polyhedral surfaces. Comput. Geom. Theory Appl. 13, 1,
65–90.

KIM, Y., OTADUY, M., LIN, M., AND MANOCHA, D. 2003. Fast penetration
depth estimation using rasterization hardware and hierarchical refine-
ment. In Proceedings of the 19th Annual Symposium on Computational
Geometry (SCG’03). ACM, New York, 386–387.

LEE, I.-K., KIM, M.-S., AND ELBER, G. 1998. Polynomial/rational ap-
proximation of Minkowski sum boundary curves. Graph. Models Image
Process. 60, 2, 136–165.

LIEN, J.-M. 2007. Point-based Minkowski sum boundary. In Proceed-
ings of the 15th Pacific Conference on Computer Graphics and Applica-
tions (PG’07). IEEE Computer Society, 261–270.

LIEN, J.-M. 2008. A simple method for computing Minkowski sum
boundary in 3d using collision detection. In Proceedings of 8th Workshop
on the Algorithmic Foundations of Robotics.

LOZANO-PÉREZ, T. 1983. Spatial planning: A configuration space ap-
proach. IEEE Trans. Comput. 32, 2, 108–120.

MÖLLER, T. 1997. A fast triangle-triangle intersection test. J. Graph.
Tools 2, 2, 25–30.

SERRA, J. 1982. Image Analysis and Mathematical Morphology, vol. 1.
Academic Press, London.

SERRA, J. 1988. Image Analysis and Mathematical Morphology, vol. 2.
Academic Press, New York.

TUZIKOV, A., ROERDINK, J., AND HEIJMANS, H. 2000. Similarity measures
for convex polyhedra based on Minkowski addition. Patt. Recogn. 33,
979–995.

VARADHAN, G. AND MANOCHA, D. 2006. Accurate Minkowski
sum approximation of polyhedral models. Graph. Models 68, 4,
343–355.

WEIBEL, C. Minkowski sums. http://roso.epfl.ch/cw/poly/public.php.
WEIN, R., FOGEL, E., ZUKERMAN, B., AND HALPERIN, D. 2008. 2d

arrangements. In CGAL User and Reference Manual 3.4 ed., C. E.
Board, Ed. http://www.cgal.org/Manual/lotest/doc.html/cgal manual/
contents.html

WU, Y., SHAH, J., AND DAVIDSON, J. 2003. Improvements to algo-
rithms for computing the Minkowski sum of 3-polytopes. Comput. Aid.
Des. 35, 13, 1181–1192.

YVINEC, M. 2008. 2d triangulations. In CGAL User and Ref-
erence Manual 3.4 Ed., C. E. Board, Ed. http://www.cgal.org/
Manual/lotest/doc.html/cgal manual/contents.html

ZOMORODIAN, A. AND EDELSBRUNNER, H. 2002. Fast software for box
intersections. Int. J. Comput. Geom. Appl. 12, 1-2, 143–172.

Received June 2009; revised August 2010; accepted October 2010

ACM Transactions on Graphics, Vol. 30, No. 1, Article 3, Publication date: January 2011.


