

UNIVERSITAT DE BARCELONA	1	En	npiri	cal E	Evalı	Jatic	n	
B	B Building the Knowledge Base							
Case gene	eratic	on:						
- 7 prototypical populations								
- AEI's 108 (=6x6x3) different parameters: 756 cases								
• $fine_{rinkt}, fine_{frant} \in \{0, 3, 6, 9, 12, 15\}$ 2000 ticks each								
· · · · · · · · · · · · · · · · · · ·								
• $police \in \{0.8, 0.9, 1\}$								
Populations	Pop. 1	Pop. 2	Pop. 3	Pop. 4	Pop. 5	Pop. 6	Pop. 7	
fulfill_prob	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
$high_punishment$	0	3	5	8	10	12	14	
inc_prob	0.4	0.4	0.4	0.4	0.4	0.4	0.4	
$fine^*_{right}$	2	5	8	11	13	14	15	
$fine_{front}^{*}$	1	4	6	9	12	13	15	
$police^*$	1	1	1	1	1	1	1	

Conclusions

- AEI proposed as an extension of the current Els: – Autonomic capabilities.
- Adaptation by CBR approach:
 Case definition, Retrieval process: distance measure
- Implementation of a traffic AEI case study:
 - AEI learns traffic norms and the percentage of institutional agents needed to fulfill its goals
- adapting to different agent populations.
- Empirical evaluation (statistical analysis)
 - AEI is able to adapt to new and changing populations
 In a short time and with low error.

