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Abstract. The MicrObEs project is a pluridisciplinary project, which associates 
computer scientists and biologists. Its main objective is to simulate soil 
functioning by using an agent-based model. It intends to model earthworms, 
their physical environment and their impact on soil (soil structure modification, 
organic matter dynamics and micro-organism activities). Creating a model of an 
ecosystem leads to complexity problems. A soil is a multi-scale heterogeneous, 
three dimensional and dynamic environment, which is difficult to model. 
An approach based on fractal theory (often used in soil sciences) was chosen to 
model such a real complex environment; it was integrated into a Multi-Agent 
System (MAS). MAS allows to simulate situated agents in an virtual world. The 
originality of this present MAS is that it is based on a dynamic environment 
which builds itself, on demand, according to an abstract canvas tree and agent 
motions. 
The aim of this paper is to present this approach and its originality. A 
theoretical view of the approach is given and applied to a case study: the 
Lamto’s soil 
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1. Introduction 

The MicrObEs project aims at understanding biological soil functioning in the 
context of tropical agro-ecosystem managment. This project considers how changes in 
microbial diversity affect soil ecosystem services. Different abiotic and biotic factors 
are known to affect microbial diversity and activity. Among them, earthworms 
modify soil structure and organic matter dynamics, which strongly impacts microbial 
communities. We developed a model to simulate the effect of earthworms on soil 
structure and organic matter dynamics. 

In the literature several approaches are proposed to study ecological systems [14]. 
Some of them are based on analytical theories or simulation techniques such as fluid 
dynamics, cellular automata and Multi-Agent Systems (MAS). Agent-Based Models 
(ABM) appear to be interesting ways of solving our problem. This bottom-up 
approach allows describing a system at a micro level (e.g. earthworms and their local 
soil environment) in order to observe, during simulation, macroscopic changes (e.g. 
soil structure evolution and microbial dynamics). 

An ABM was developed with an intuitive approach: agents represent earthworms; 
the virtual environment defines the soil in which earthworms move. Creating this 
model deals with two major difficulties: 
• The description of earthworm behavior: many studies in ecology have focused 

on earthworms. Most of them express general assumptions about earthworm 
behavior, their attraction (food, humidity) but none has ever determined earthworm 
behavior detailed rules with accuracy [1,10,16,18].  

• Soil and its complexity: we wish to create a multi-scale and three dimensional soil 
model, in which organic matter (e.g. plant debris), mineral matter (e.g. clay, silt 
and sand) and cavities (e.g. micro- and macropores) are represented as volumes 
differently organized according to the size scale. 
 
Several approaches have been used to develop ABM of real complex space. They 

can be divided into two main categories: 
• Continuous approach: space is considered as a two or three-dimensional 

environments composed of surfaces or volumes. This type of space is fully used, 
for example, in the virtual-reality domain to reproduce a scene where agents evolve 
[11], or in geographical information systems to create maps and execute spatial 
searches [26]. 

• Discrete approach: space is often represented by a two or three-dimensional 
regular grid [12]. This technique is often used in the simulation domain because 
they are efficient and simple. 
 
In the present project, we applied a discrete approach to model the soil. In fact, we 

conceived an original technique dedicated to the creation of a three-dimensional and 
multi-scale model of real spaces (e.g. a soil). This technique, called APSF (Agent, 
Pores, Solid and Fractal), extends the PSF (Pore, Solid and Fractal) approach [3,27]. 
It is an adaptation of PSF approach to MAS. In addition, it contains some 
improvements to allow a heterogeneous space description, and some optimization 
techniques to limit model complexity. 



The aim of this paper is to present the APSF approach and its application in the 
MicrObEs project. This paper is organized as followed: first, we present the basic 
principles of the PSF approach, then APSF technique is introduced and finally, the 
case study is presented. 

2. Pore Solid-Fractal Approach 

The Pore-Solid-Fractal (PSF) approach, originating from the work of Neimark [25] 
and Perrier [27], is an extension and generalization of the fractal approach to model 
soil structure. For example, in ecology, it is applied to study soil water retention and 
water flows [4]. 

The PSF approach intends to model a real space as an organized, discrete set of 
cells, which belong to three categories: 
• Pore cells representing soil cavities; 
• Solid cells representing compact particles without any cavities, such as sand or 

organic particles; 
• Fractal cells representing a subspace that can be decomposed into smaller pore, 

solid and fractal cells when the resolution increases. 

 
Fig. 1. Soil pattern. 

Cells are organized according to a given pattern (figure 1), which defines an 
abstract architecture of the virtual environment. It is reproduced at each level within 
the fractal cells (figure 2). For instance, at the first level, cells are organized according 
to the pattern. At the second stage, fractal cells of the first level are ordered according 
to the same pattern and so on… It has been shown that the proportions of pore, solid, 
and fractal cells can be selected to generate a virtual environment that reproduces 
some given soil characteristics (matter distribution, pore and solid sizes, total 
porosity, and so on). 

A PSF model synthesizes the studied soil architecture by a unique pattern, which 
is replicated at all levels. Studies have shown that this approach allows making a 
realistic model of a soil. Indeed, soil characteristics are preserved.  

Using this approach needs to make the assumption that the architecture of the 
studied system is homogenous because a same pattern is replicated at all fractal 
levels. But a real soil does not follow a fractal architecture. For this reason, this 
approach cannot be applied in our project. In addition, a PSF model is not suitable for 
being used in an ABM, because implementing a PSF model in a MAS leads to 
complexity problems: to be run, a PSF model must be deployed at the smallest size 
scale, and therefore much memory is needed. 

 



 
Fig. 2. Fractal decomposition of soil according to the pattern presented in the figure 1. 

 
As a consequence, PSF approach was improved by developing APSF approach, 

which allows modeling heterogeneous environment and reducing model complexity. 

3. APSF: a PSF improvement 

The APSF approach adapts PSF technique to agent paradigm. It allows building 
dynamically a MAS environment according to situated agent evolutions and actions. 
It models real complex system spaces (e.g. a soil) by an abstract representation 
composed of organized patterns.  

 

3.1 The approach 

The APSF approach uses the same philosophy than the PSF technique. It models a 
real space as a fractal environment composed of three kinds of cells (pore, solid and 
fractal cells). In addition, different types of solids can be defined in order to represent 
various kinds of soil materials: organic debris, sand particles, and so on (figure 3). 

 

 
Fig 3. APSF canvas. 

Contrary to a PSF description, different patterns, called canvases, are determined 
in an APSF model. Each of them characterizes a spatial organization of cells. All 



canvases are associated together to define a heterogeneous space whose structure 
evolves according to the position and the scale. 

 
Fig. 4a. Canvas tree example. 

 

 
Fig. 4b. Environment created according to the canvas tree presented in figure 4 

Canvases are organized in a tree structure (Figure 4a). A canvas is defined at the 
root of the tree. It models the structure of the space at the highest level (level 1). For 
each fractal cell of this first canvas, a new canvas is defined. It models a local 
architecture of a sub-space (at level 2). The same approach is used to each level of the 
environment. Note that tree leafs are recursive to permit an unlimited fractal 
decomposition. To illustrate this approach, the canvas tree showed in the figure 4a 
models the space presented on figure 4b.  



3.2 An auto-generated environment for MAS 

To reduce the complexity during a simulation, a dynamic MAS environment based on 
APSF approach was created. It builds up itself, dynamically and on demand, 
according to the APSF canvas tree model and agent actions.  

An agent action affects a very narrow area of the virtual space. Thus, there is no 
need to load all the space in memory and the only zones of the space explored by the 
agents are created and stored in memory. 

MAS environment contains a dynamic tree to store the explored space. The root of 
this tree contains all the space; it is composed of sub-spaces, which once-more, 
include under sub-spaces and so on. This approach is similar to octree [13].  

The figure 6a shows how MAS environment tree is modified according to the 
following agent action sequence: 
T0. At the beginning of the simulation, the environment is empty because no action 

has been done. Only the root of the tree is created. 
T1. Then, a second scale-sized agent is located at the first level sub-space A 

(coordinates 2,2) and at the second level sub-space B (coordinates 3,2) (figure 6b). 
This agent is then created at the location (11,10) in agent space (figure 6c). 

T2. At this step, the agent moves to (11, 9). According to the canvas C1 (figure 4), the 
agent moves to a new decomposable cell (fractal cell). This cell is created on the 
environment tree. 

T3. At the last step, the agent moves to (12, 9). The decomposable cell located at (3,2 
first level sub-space) has not been created yet. It is loaded at this time. According 
to the APSF tree model, this cell follows the canvas C2 (figure 4). Therefore, a 
solid cell of type 1 is stored in the tree and located at the position (0,1 second level 
sub-space).  

 
 

 
Legend: CellType(type, X,Y) 
• Celltype  kind of cell (pore, solid or fractal cell) 
• Type  used canvas or solid type 
• X, Y  relative cell coordinate 

Fig. 6a. Example of environment evolution in time resulting of agent actions. 

 



 
Fig. 6b. Agent location in the environment tree at the date T1. 

 
Fig. 6c. Agent location in the virtual world at the date T1 (coordinates 11,10). 

Note that the gain of APSF approach is significant. Locating a third scale agent in 
an environment leaded by a PSF model based on a canvas, which divides a cubic 
fractal into one thousand sub cells (each side of the cell is divided by 10), needs to 
create one billion cells (1000*1000*1000 cells). Conversely, locating the same agent 
in an environment leaded by an APSF model needs to create only 3 cells. 

In our modeling approach, the environment could be considered as a complex and 
autonomous entity, which is created and dynamically modified. It uses a predefined 
APSF tree model, whose evolution depends on “behavior rules” describing its 
reaction to other agent actions (e.g. earthworm movements). 

4. Case study: the MicrObEs project 

In the MicrObEs project, we aim at simulating the effect of earthworms on soil 
structure and organic matter dynamics. Firstly, an ABM is developed in order to 
describe the effect of earthworms on soil structure.  

The aim of this section is to present the approach used to model then to simulate 
modification of soil structure. This is based on a case study: the soil of Lamto (Ivory 

Sub-space A 
First scale 

Sub-space B 
Second scale 



Coast) for which many studies described the effect of earthworms on soil structure 
[5,6,7,9,17].  

At first, data on Lamto’s soil and earthworms are given. Secondly, the developed 
model is presented. Finally, simulation results are discussed. 

4.1 Studied system characteristics 

4.1.1 Soil characteristics 
As all soils, the soil of Lamto contains mineral and organic particles, and pores. A 
given volume of Lamto’s soil is composed of 53.7% of mineral particles, 1.3% of 
organic matter, and 45% of pores. Soil bulk density is 1.4 g/cm3 (with mineral density 
equal to 2.62 g/cm3 and organic matter density equal to 0.8 g/cm3) (table 1). 

Table 1 Main properties of Lamto’s soil and earthworm casts  

  Soil Earthworm casts 
Mineral 53.7% 67.3% 
Organic matter 1.3% 1.6% 
Porosity 45% 31.1% 
Bulk density  1.4g/cm3 1.8 g/cm3 

 
Mineral particles are divided into three types of particles: sand (0.05-2 mm), silt 

(0.002-0.05 mm) and clay (<0.002 mm). Lamto’s soil contains 83% of sand, 7% of 
silt and 10% of clay. It is called a sandy soil and does not contain any particles larger 
than 2 mm. 

4.1.2 Earthworm properties 
The main earthworm species modifying Lamto’s soil structure is Millsonia anomala 
[6,17]. This earthworm is 10 cm long, 2 mm diameter and weighs 4 g at the adult 
stage. 

Earthworm behaviors are partly driven by soil properties where they evolve. 
Previous studies showed that earthworms are particularly sensitive to soil humidity 
and soil organic matter content (their food). In general, earthworm behaviors are 
rather unknown. 

Earthworms dig into the soil in order (i) to get their food (organic matter), and (ii) 
to reach optimal conditions (humidity, temperature, pH and so on). Studies showed 
that Millsonia anomala earthwoms ingest 5 times its own weight of soil at the adult 
stage [17]. They can assimilate all sizes of organic matter from large debris to clay-
sized organic particles [22]. Their assimilation rate ranges from 3 to 7% [17,20]. The 
gut transit lasts 2-3 hours and the ingested soil is then egested in the form of casts 
(dejections).  

Earthworm casts are composed of organic matter, minerals and pores. Their 
structure is different from that of the non-ingested soil. Bulk density of casts is higher 
than that of the soil (table 1) because casts are very compacted [8]. As a consequence, 



porosity in casts is very low. As earthworms preferentially ingest organic matter, their 
casts are slightly enriched in it (table 1). Moreover, it has been demonstrated that 
earthworms do not reingest their casts. 

4.2 An ABM to simulate earthworm effects on soil structure 

4.2.1 Environment of the MAS 
To limit model complexity, the developed model reproduces a reduced sample of soil: 
20x20x20 cm. This sample size is enough to describe earthworm activity.  

In the soil, the particle size distribution is regular (factor 10): 0.2-2 mm coarse 
sand, 0.02-0.2 mm coarse silt + fine sand, 0.002- 0.02 mm fine silt, and <0.002 mm 
clay. We decided to create a canvas tree, which divides recursively a cubic fractal cell 
into one thousand sub cells (each side of the cell is divided by 10). Therefore, cells 
measure 20 mm at the first level , 2 mm at the second level, 0.2 mm at the third level, 
and so on. 

As said above, Lamto’s soil does not contain any particles larger than 2 mm. For 
this reason, two fractal canvases are defined (figure 7). The first one is used at the 
first scale to construct 20 mm side cells. It is only composed of decomposable cells. 
These cells are organized according to a second canvas used for all the following 
scales (from the second scale to the infinity).  

 

  
Fig. 7. Defined APSF canvas tree to model Lamto's soil. 

 
The second canvas is defined according to Lamto’s soil properties. We created a 

canvas composed of 21.8% of minerals, 0.5% of organic matter, 18.5% of pores and 
59.2% of decomposable cell (fractal cell) where the same canvas will be reproduced 
at following scales. These proportions have been chosen in order (i) to create a virtual 
soil with a realistic bulk density of nearly 1.4 g/cm3, and (ii) to keep the same 



concentrations of minerals, organic matter and pores measured for Lamto’s soil 
(table 1).  

The developed model is rather simple and could be more accurate. In this model, 
two canvases are defined. It implies that the virtual soil keeps the same structure at 
each scale level. Nevertheless analyses of Lamto’s soil give an accurate particle size 
distribution: 60% 0.2-2 mm particles, 26% 0.02-0.2 mm particles, 4.5% 0.002-
0.02 mm particles and 9.5% <0.002 mm particles. Consequently, additional canvases 
could be created to describe the soil in a better way. This will be done in a next phase 
of the model development. We aim first at validating earthworm behaviors. 

4.2.2 Agents to represent earthworms 
Earthworms are modeled by agents which are characterized by a specific behavior 
and limited abilities to interact with their environment, the virtual soil. In this section, 
we present successively agent physical aptitudes and their behavior. 

An agent perceives its virtual world as an artificial environment composed of cells. 
The size of perceived cells depends on the agent scale. For example, an agent 
evolving at the second scale perceives its environment as a set of second level cells. 
In this context, an agent moves into its space from a cell to another cell. It takes into 
account the qualities of nearby cells: category (pore, solid or fractal cells) and amount 
of organic matter. It also can perceive the number of nearby connected pore cells. 
Moreover, agents cannot: 
• perceive cells that are not located around them; 
• move into mineral or organic matter cells larger than them; 
• move into cells that contain their dejections; 
• egest their casts in solid and fractal cells but only in pores.  
 

In our model, we made the assumption that all casts egested by agents had a unique 
defined architecture. As a consequence, a cast canvas was defined (figure 8). It is used  
to create decomposable cells in their environment, when agents egest casts. 
Characteristics of this canvas are chosen in order to preserve the characteristics of 
earthworm casts in Lamto’s soil (table 1). 

 

 
Fig. 8. Agent cast (dejection) canvas. 

 
Agent movements are the results of theirs behavior rules, which take into account 

the filling rate of their guts and the quality of cells around them (pores, or organic or 
mineral matter). Two main behaviors drive agent motions: 



• Moving and ingestion behavior: when they move, agents eat organic debris 
and bulk soil, and create pores. Thanks to their perception, agents move to 
the nearby cell containing the highest level of organic matter (organic or 
fractal cell). 

• Moving and egestion behavior: when their guts are filled, agents move in 
pores and egest soil as casts (dejections) as long as their guts are not empty. 
Thanks to their perception, agents perceive the size of nearby pores and 
move to the largest one. 

These two behaviors change periodically during the day. The period is chosen 
according to the duration of Millsonia anomala digestion and the quantity of bulk soil 
they have to eat (average 5 g/day). A day is divided into 20 periods (10 ingestion 
periods alternating with 10 egestion periods). 

To summarize, an agent can do three kinds of action on the environment: (i) 
moving without changing its environment, (ii) moving and creating pores when 
ingesting soil particles (solid and fractal cells), (iii) moving and filling pores with 
casts (fractal cells). After each action, agents get a new perception of their 
environment (figure 9). 

 
Fig. 9. Interaction between agents and their environment. 

4.3 Simulation results 

The model was implemented on a multi-agents simulator to obtain results. The 
simulator extends a MAdKit platform [23,24] plug-in, called RAFALE-SP [19]. 

At the beginning of this section, simulator outputs are presented. Then, simulation 
results are analyzed to verify the impact of one or several agents on their 
environment. 

4.3.1 Simulator outputs 
This simulator generates several data to measure the impact of earthworms on soil 
structure. It gives quantitative and graphical outputs of the simulated systems such as: 



• VRML1 models to display a 3 dimensional view of the virtual soil state at a chosen 
time step (figure 10). These models present only soil areas where agents moved, 
i.e., only environment zones loaded in simulator memory. 

• Images showing sections of the virtual soil, at a chosen time step (figure 12). 
• Animated images showing the evolution of the virtual soil structure with time. 
• Graphics and numerical data to present the evolution of few parameters with 

time, for example organic matter quantity contained into the soil, food quantity 
eaten by the agents and so on (figure 11). 

 
Bluesand particles 
Greyfractal particles 
Yellowcavities 

Fig. 10. VRML model presenting an example of MAS environment state after a simulation. 

4.3.2 First simulation result: impact of one agent on soil organic matter 
content 

In this first experiment, one agent was simulated in the environment to verify 
behavior rules. For that purpose, we simulated its impact on soil organic matter 
content whose results are presented in figure 11.  

                                                             
1 Virtual Reality Markup Language 



 
Fig. 11. soil organic matter content evolution. 

On this figure, we can observe and analyze agent activity, which is the result of 
ingestion and egestion behaviors. When the curve goes down, agent is eating the 
virtual soil and soil organic matter content decreases. When the curve goes up, agent 
is ejecting casts in the environment and soil organic matter content increases. 
Figure 11 shows a constant decreasing trend caused by activity of the simulated agent. 
Indeed, in our model, an earthworm assimilates 3% of organic matter going through 
its gut. 

4.3.3 Second simulation result: compacting effect analysis 
In this second simulation, several agents were simulated in the environment to verify 
agent impact on soil structure. For that, we observe and analyze the evolution of the 
virtual soil structure, which results of agent actions. 

Figure 12 presents the structure evolution of a soil section during a simulation in 
which 20 agents were placed and moved in the virtual environment. This experiment 
was executed during about 327 310 steps which simulate 19 days in the reality (1 
simulation step represents 5 seconds in the reality).  

 
 

Blue sand particles  Black fractal particles 
Green organic matters  Grey casts 
White pores 

Fig. 12. earthworm compacting effect on a bulk soil. 

 
This simulation gives realistic results; it reproduces the compacting effect of 

Millsonia anomala. At the beginning of the simulation, the soil is characterized by a 

Casts 



homogeneous structure. At the end, this soil structure has changed into a new one in 
which soil matter is predominantly located in compact zones (earthworm casts). 
Between casts (grey zones, figure 12), large pores appear (white zones). This 
architecture is similar to the structure of Lamto’s soil explored by Millsonia anomala. 

Nevertheless, note that sand particles do not move and their organization 
(localization) do not change. Agents cannot displace sand particles because they do 
not eat this kind of elements. To solve this problem, modifying agent behavior to 
allow them to eat few sand particles, would help solving this problem. At last, as 
gravity is not taken into account in the MAS, particles do not “fall down” and stay in 
suspension in the environment. This should also be improved in order to get a better 
representation of the effect of earthworms on soil structure. 

5. Conclusion 

The Agent-Pore-Solid-Fractal (APSF) approach associates agent paradigm with a 
fractal approach to model and simulate real and multi-scale complex systems. The 
efficiency of this approach lies in a simplified, but not too simplistic, description of a 
real space thanks to an abstract structure, called canvas tree. This tree aggregates the 
architecture of a heterogeneous space (e.g. a soil) into a set of canvases for which 
different space architectures (i.e. cell organizations) are determined. Theses canvases 
are organized in a tree according to the scale and the location of the sub-space they 
represent.  

This model defines the environment of an ABM. It is a virtual world where 
simulated agents move. This environment is dynamic because it builds up itself, on 
demand, according to agent moving and action. This strategy allows reducing the 
memory used by the environment during a simulation.  

The APSF approach was applied to a real case study, the Microbes project. We 
developed an ABM in order to simulate the effect of earthworms (Millsonia anomala) 
on Lamto’s soil structure and organic matter dynamics. In this model, agents 
represent earthworms, and an APSF model describes the soil. Agents are 
characterized by simple behavior rules (ingested and egested bulk soil). The APSF 
approach allows creating a simple, but realistic, model of Lamto’s soil. 

Executing the ABM gives interesting results. It reproduces the earthworm effects 
on soil structure and organic matter content. These results validate agent behavior 
rules modeled in our study and verify a few assumption concerning Millsonia 
anomala behavior.  

Simulations showed us advantages and limitations of the APSF approach and the 
model. The APSF approach will be improved in order to incorporate environment 
optimization features. The aim of these new functionalities is to reduce simulator 
complexity bt means of algorithms that simplify the simulated environment and 
minimize used memory.  

To achieve the objectives of the project, the model must be improved in few ways: 
• Additional canvases should be created to better describe the soil. Analyses of 

Lamto’s soil give an accurate particle size distribution.  



• Gravity is not taken into account in the MAS. This should also be improved in 
order to get a better representation of the effect of earthworms on soil structure 

• During agent digestion process, egested mass is nearly the same than egested mass 
(the difference is the result of earthworm assimilation). In addition, the number of 
egested mineral particles is the same as ingested ones. Therefore, the fractal 
structure of cast generated by agents must change according to the ingested 
matters.  
 
The APSF approach has been developed to describe soil structure. This technique 

contains a generic structure (canvas tree) that allows describing complex spaces. 
APSF use can be extended to other fields of agent-based simulation e.g. virtual reality 
or health. 
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