Recalage non linéaire d'images TEP et TDM du poumon, prenant en compte un modèle de respiration et les éventuelles pathologies

Isabelle Bloch, Elsa Angelini, Sylvie Chambon, Antonio Moreno Anand P. Santhanam 2,3 , Jannick P. Rolland 3

¹ TELECOM ParisTech (ENST), CNRS UMR 5141 LTCI, Paris, France ² ODALab, University of Central Florida, Etats-Unis

³ Department of Radiation Oncology, MD Anderson Cancer Center, Orlando, Etats-Unis

Financement : projet ANR MARIO et Segami

Contexte d'application

- Cancer du poumon et radiothérapie
- Inconvénient de la radiothérapie : toxicité pour les tissus sains
- Il est important de connaître avec précision la position et l'extension de la pathologie pour réduire les doses de radiation dans les tissus sains

 \Rightarrow Acquisition d'images complémentaires : anatomiques (TDM ou CT) et fonctionnelles (TEP)

Projet MARIO : Modélisation de l'Anatomie normale et pathologique pour le Recalage non-linéaire entre Images CT et TEP en Oncologie

Recalage multimodalité

TDM/CT anatomie acquisition rapide (quelques secondes) a apnée ou respiration normale bonne précision : $\sim 1 \times 1 \times 1$ mm³

TEP/PET métabolisme acquisition lente (\sim 30 minutes) image moyennée image floue : $\sim 4 \times 4 \times 4$ mm³

VOLUMES 3D

Recalage multimodalité

TEP recalée

COUPE AXIALE 1

C OUPE AXIALE 2

Objectifs de ces travaux

- Développer des outils pour le recalage CT/TEP dans le cas des tumeurs : contraintes pour la radiothérapie
- Déformations physiologiquement réalistes :
 - Utilisation de points d'intérêt anatomiques
 - Prise en compte de la respiration : utilisation d'un modèle de respiration spécifique au patient

CT en fin d'expiration

CT en fin d'inspiration MÊME COUPE CORONALE

Segmentation

SEGMENTATION DES POUMONS EN CT ET EN TEP

SEGMENTATION DU CŒUR EN CT

Segmentation

Méthode directe de recalage

Introduction d'un modèle de respiration

Modèles de respiration

- Modèles mathématiques [Segars 02]
 - Non-Uniform Rational B-Spline (NURBS)
- Modèles physiques [Santhanam 06]
 - CTs obtenus avec un coordinateur actif de respiration (Active Breathing Coordinator – ABC) à partir du CT 4D d'un cas normal
 - Utilisation de la relation Pression-Volume (PV)
 - Génération précise des formes 3D intermédiaires des poumons

Relation PV

Fin d'inspiration

Modèle de respiration spécifique au patient

Déplacements des points de la surface des poumons :

- 1. Directions : données par le modèle
- 2. Amplitudes : spécifiques au patient
 - Estimées grâce à la segmentation des données CT 3D initiales

TYPIQUEMENT 10 INSTANTS

Sélection du maillage CT

Sélection des points d'intérêt

Courbures moyenne et gaussienne

- 1. Calculer la courbure pour chaque point de la surface du poumon
- 2. Trier les points par ordre décroissant des courbures
- 3. Sélectionner les points en s'appuyant sur la courbure et une distance géodésique
- 4. Ajouter des points dans les zones "plates"

MÊME COUPE AXIALE DU POUMON

Appariement des points d'intérêt

Appariement des points d'intérêt

Déformation volumique de l'image TEP

Déformation en chaque point *t* :

$$oldsymbol{f}(oldsymbol{t}) = oldsymbol{\mathcal{L}}(oldsymbol{t}) + \sum_{j=1}^{N_{\mathcal{L}}} oldsymbol{b}_j \, \sigma(oldsymbol{t},oldsymbol{t}_j)$$

 $N_{\mathcal{L}}$: nombre de points d'intérêt t_j

Premier terme : transformation linéaire = somme pondérée des transformations linéaires L_i

$$\mathcal{L}(m{t}) = \sum_{i=1}^{n_0} w_i(m{t}) \, L_i \quad$$
 pour les n_0 objets rigides O_1, O_2, \dots, O_{n_0}

 $\rightarrow w_i(t)$ inversement proportionnel à la distance $d(t, O_i)$

Quand t est proche de l'objet O_i , sa transformation linéaire est proche de L_i

Déformation volumique de l'image TEP

Déformation en chaque point *t* :

$$oldsymbol{f}(oldsymbol{t}) = \mathcal{L}(oldsymbol{t}) + \sum_{j=1}^{N_{\mathcal{L}}} oldsymbol{b}_j \, \sigma(oldsymbol{t},oldsymbol{t}_j)$$

 $N_{\mathcal{L}}$: nombre de points d'intérêt t_j

Deuxième terme : transformation non-linéaire fondée sur les TPS (*Thin-Plate Spline*)

- t_i et u_i : marqueurs sur les images source et cible
- b_j calculés pour satisfaire les contraintes des marqueurs (les correspondances des points d'intérêt) :

$$\forall i, \quad \boldsymbol{u}_i = \boldsymbol{t}_i + \boldsymbol{f}(\boldsymbol{t}_i)$$

 \rightarrow Introduction de contraintes de rigidité :

• $\sigma(t, t_j)$ tend vers zéro quand t ou t_j est proche d'une tumeur

Introduction des structures rigides

$$\sigma(\boldsymbol{t}, \boldsymbol{t}_j) = d(\boldsymbol{t}, O_0) \, d(\boldsymbol{t}_j, O_0) \, |\boldsymbol{t} - \boldsymbol{t}_j|$$

p.23/27

Résultats : cas normal

Méthode directe

CT 1

Modèle de respiration + sélection pseudo-uniforme

CT 2

DÉTAILS DE RECALAGE

> Méthode directe

Modèle de respiration

CORRES-PON-DANCES

RECALAGE

Résultats : cas pathologique

VOLUMES

Modèle de respiration

CT 1

CT 2

Modèle de respiration + sélection pseudo-uniforme

DÉTAILS DE RECALAGE

Méthode directe

Modèle de respiration

p.25/27

CORRES-PON-DANCES

RECALAGE

Résultats quantitatifs

Méthode	FP	FN	RIU	SIM	SEN	SPE	MOY (mm)	RMS (MM)
Cas normal								
TEP/CT ORIGINAUX	0.99	0.12	0.44	0.62	0.88	0.47	18.61	28.32
NONMR-NONUNI	1.45	0.01	0.4	0.57	0.99	0.4	15.7	20.7
NONMR-UNI	1.45	0.01	0.4	0.57	0.99	0.4	15.7	20.6
MR-NonUni	0.82	0.02	0.54	0.7	0.98	0.54	11.4	16.4
MR-UNI	0.82	0.02	0.54	0.7	0.98	0.55	11.2	16.2
TEP/CT PLUS PROCHE	0.45	0.36	0.44	0.62	0.64	0.59	15.17	18.8
Cas pathologique								
TEP/CT ORIGINAUX	1.37	0.07	0.39	0.56	0.93	0.4	18.95	27.7
NONMR-NONUNI	1.64	0.03	0.37	0.54	0.97	0.37	17.7	26.5
NONMR-UNI	1.65	0.03	0.36	0.53	0.97	0.37	17.9	26.9
MR-NonUni	1.83	0.05	0.33	0.5	0.95	0.34	15.2	23.7
MR-UNI	1.4	0.05	0.4	0.57	0.95	0.41	13.7	21.4
TEP/CT PLUS PROCHE	0.47	0.38	0.42	0.6	0.62	0.57	13.77	17.97

Conclusions

Contributions :

- Introduction d'un modèle de respiration dans une méthode de recalage
- Sélection automatique de points d'intérêt fondée sur la courbure
- Méthode de recalage non-linéaire avec contraintes de rigidité

Meilleurs résultats :

- Modèle de respiration
- Sélection pseudo-uniforme des points d'intérêt

Travaux en cours :

- Comparaison et évaluation quantitative sur un plus grand nombre de données
- Introduction de nouvelles structures rigides (cœur)
- Comparaison avec d'autres modèles de respiration [Sarrut 06]
- Comparaison avec une série de maillages déduits d'un CT 4D