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Objectives

Build a patient specific heart simulator

Estimate the parameters of this model _ from observations of the
cardiac function,

I::> Propose models having a low number of parameters

Develop clinical applications _(Cardiac Resynchronisation Therapy,
radiofrequency ablation,..)

Positioning of CardioSense3D

eIntegrate/Couple 4 physiological phenomena :
Electrophysiology, Contraction/Relaxation Mechanics,
Arterial Circulation, Perfusion/Metabolism

*To propose models having a low number of parameters in order to
estimate them from clinical data.

*Develop clinical applications (CRT, RF Ablation) based on
personalized models

Overview

Introduction

Work in progress
| m— Geometric Modeling
Electrophysiology Modeling
Mechanical Modeling
Clinical Evaluation

Conclusion




Cardiac Microstructure (ecrice 105

» Myocardial fibers
» Laminar sheets

« Play an important role in cardiac
modeling (Electrophysiology,
Mechanics)

« Correlation with DT MRI
eigenvectors [Scollan,1998] [Helm,2005]
primary as fiber orientation

secondary as orthogonal to fibres
in the sheet plane
tertiary as normal to sheet plane

‘ BIINRIA ‘

Modelling the Cardiac Anatomy

Dissection (P. Hunter group, Auckland University, New Zealand)

O\ @ @

Diffusion Tensor MR (NIH, JHU. Mean tensors: J-M Peyrat)

Statistical Atlas of cardiac DTI

Based on 9 canine hearts (E. McVeigh, NIH, JHU)

_Mean Canine Heart (Shape +Tensor)




Fiber Tracking on
the Average Cardiac DTI

Variability of Cardiac Structures

Primary

eigenvector

R

Secondary
eigenvector

Covariance Computed in the

O

Log-Euclidean Metrics

M. Peyrat, M. Sermesant, X. Pennec, H. Delingette,
C. Xu, E. McVeigh, N. Ayache, MICCAL, Oct
2006
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Patient-specific Model

From medical images to specific anatomy:
blood pool segmentation (fuzzy classification, semi-automatic)

affine registration with model (automatic)
biomechanical deformable model (semi-automatic)
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Work in progress
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Mechanical Modeling
Clinical Evaluation

Conclusion

Modelling Cardiac Electrophysiology

Three main approaches:
1. Biophysical ionic models
Hodgkin-Huxley, Luo-Rudy, Noble
2. Phenomenological models

Mitchell;Schaeffer, FitzHugh-
Nagumo, Aliev-Panfilov

3. Eikonal Equation

Keener, Colli-Franzone

Aliev-Panfilov reaction-diffusion equations

Ay = div (D Vu) + ku(l — u)(u — a) — uz
Gz =—z(ku(fu—a—1)+2))

u transmembrane potential
D diffusion tensor including fibre orientations
z repolarisation variable




ElectroPhysiology Simulation

J% = div(DDu)+ f(u)— z

a

]"Z =blu-cz)

Electrophysiology Modeling
Developing fast EP models for real-time simulation (training or therapy
guidance)

. ar (Keener, Colli-
clprl-+loar (o) =1| Ko

‘ 1 second of computation for 1 cardiac cycle !!

i Isochrones

] Propagation Front

Pathology Simulation (preliminary results)

Normal heart Infarcted Area
Ectopic Pacing Pseudo-potential 10 timgs less conductiv?
>Ventricular tachycardia

Blue: excitable
Red: depolarised - Ventricular fibrillation?

Yellow: refractory

‘ RIINRIA ‘




Pathology Simulation (preliminary results)

Normal heart
Ectopic Pacing

Depolarisation Front
Blue: depolarised side
Red: excitable side
Black: Repolarisation Front

’

Infarcted Area

10 times less conductive
>Ventricular tachycardia
- Ventricular fibrillation?

‘ & INRIA

Simulating the 12-lead electrocardiogram

I
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i
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®Simulated ECG:

« — | PR

L [

I

®Normal ECG: (source http:/fr.wikipedia.org)
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-
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Electromechanical Coupling

Bestel-Clément-Sorine coupling equations
inspired from Huxley Filament model

Active non-linear visco-elastic anisotropic and
incompressible Material

pl? = div(K, &, + C, €

a4 CE + K &) =0

DI, = Kyluly = (|E] + |u])K.

. = aolul, — (|&] + |u))o. + K.E,

0+ CE+ K=K (6,-E)

Compact Model (5 variables) adapted to the
macroscopic modeling of the cardiac
function and clinical applications

Cardiac Contraction

4 Cardiac Phases: 2 Volumetric Conditions:
Filling Pressure Field in the endocardium
Isovolumetric Contraction Isovolumetric Constraint of myocardium

Ejection
Isovolumetric Relaxation

Slowed

6 times

VOLUME PRESSURE




Pathology Simulation

Simulation of a Left Bundle Branch Block

VOLUME PRESSURE
agors. ||| [ | | BiNriA|

Infarct Simulation

e [E] o4 os
Temps (2}
volume
Simulation Ejection Fraction:
Of Infarcted 56 % — 48 %

zone

Overview

Introduction

Work in progress
Geometric Modeling
Electrical Modeling
Mechanical Modeling
— Clinical Evaluation

Conclusion

10



Clinical Evaluation :

A Scalable Approach
Motion/Anatomical Electrophysiological Comments
Data Data
Tagged +
L £8 . l Socket of Very invasive
anatomical Electrod Registered data
ectrodes
+DTIMR E. McVeigh NIH

In Vivo Measures (Canine Heart)

National Institute of Health, Laboratory of Cardiac Energetics

Elliot McVeigh, Owen Faris, Hiroshi Ashikaga

Artificial electrical pacing

Electrical: epicardial electrodes socket (128 positions*
500 1)

Motion: MR Images (102 positions * 32 t)

4.5
N
1.6

[ (0.6
| 0.4
0.2

apparent conductivity

A large part of the infarcted area
is included in the zones of low
conductivity

Data acquisition, processing and fusion

Joint work with Sunnybrook Health Sciences Center, Toronto, Canada

Getting model and measures

Optical recording of electrical
waves based on voltage-
sensitive fluorescence dye

et
~— E\ -
l{_&ym

[Pop, M., Sermesant, M., Chung, D., Liu, G., McVeigh, E., Crystal, E.,
Wright, G.: An experimental framework to validate 3D models of

cardiac  electrophysiology via optical imaging and MRI . In:
FIMHO7 and submitted to Medical Image Analysis (in revision)]

B INRIA
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Data acquisition, processing and fusion

Joint work with Sunnybrook Health Sciences Center, Toronto, Canada

Getting model and measures

Optical recording of electrical
waves based on voltage-
sensitive fluorescence dye

raw signal

[Pop, M., Sermesant, M., Chung, D., Liu, G., McVeigh, E., Crystal, E.,
Wright, G.: An experimental framework to validate 3D models of
cardiac  electrophysiology via optical imaging and MRI . In:
FIMHO7 and subitted to Medical Image Analysis (in revision)]

B INRIA

Results on APD
Mean global error on action potential -
duration :
Initial > ms o
Calibration > ms
Adjustment > ms Parameter a e
L ; 2s
\\ I
N v
ol — = \TD e Initial error Adjustment error

B INRIA

Results on depolarization time

Mean global error on depolarization

times :
Initial > ms/ ms .
Calibration > ms / ms B

Adjustment > ms/ ms
Parameter d  Parameter d
Allzones (mgasured (synthetic fibers) X
fibers)

il

Caltration
—— Adjustment

K\~ M\% Initial error Adjustment error  Adjustment error

X3

i EREE ) (measured fibers) (synthetic fibers)

B INRIA

12



Clinical Evaluation

Motion/Anatomical Electrophysiological Comments
Data Data
Tagged +
L £8 . l Socket of Very invasive
anatomical Electrod Registered data
+DTIMR ectrodes NI
Tagged +
88 cal ESI . Less invasive
anatomica 3D endoc_ardlal Non-Registered data
MR mappin; Guy’s Hospital, KCL
pping it

In Vivo Clinical Measures
King's College, division of Imaging Sciences
The Guy's, King's and St Thomas' School of Medicine

Electrical : Basket of electrodes inserted through catheters
Motion : tagged MRI + Angiography

Sermesant-Hill et al

Miccai’04

Clinical Case (Guy's Hospital)

«+ Patient aged 68 post-infarctus

. P
\ ~5 i
. S R
A
V)
MR' Tagged MR X-Ray Image
Anatomical Image with ESI system
Image
Data fusion
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Left Bundle Branch Block Simulation

1. Adjustment of
a generic model

2. Inclusion of infarted zones

3.

Registration of
Electrophysiological
Mapping on the Anatomical
Surface

Model initialised with ESI

~ D . ~ -, = : .
e +1d
e [ w4
Y T
aat ik i
INRIA
A Scalable Approach
Motion/Anatomical Electrophysiological Comments
Data Data
Tagged +
L £8 . l Socket of Very invasive
anatomical Electrod Registered data
+DTI MR ectrodes NI
Tagged +
&8 ical ESI . Less invasive
anatomica 3D endoc_ardlal Non-Registered data
MR mapping Guy’s Hospital
Cine MR or ECG or VCG Non invasive
3D echo or ECGI Partial data
HEGP InParys

Aqers |

‘ B INRIA
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Perspectives

Automatically adjust model parameters from observations
(preliminary results on EP and EM)

Validation the EM model by comparing cardiac motion from tagged
MRI + ECG

Optimization of pacemaker leads for CRT
Use of non-invasive Data (3D US + ECGI)
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Problem position

Understanding both the diffusion process of
gliomas and its mechanical influence
Using the model to

Characterize the tumor growth from MR Images

Identify invaded area that are not visible in the
MRI

Predict future evolution of the tumor

Necrotic center

Active tumor cells
+ angiogenesis

%
_
Edema and
infiltrating tumor Necrosis
cells
Observability !
Mass effect

T2 MRI T1 MRI + gad

Overview
Introduction
=> Glioblastoma growth simulation
Patient Specific Simulation

Radiotherapy margin computation

Perspectives

16



. Skull.

. Gray matter
. White Matter
. Ventricles

. Falx cerebri

Diffusion model

Reaction diffusion equation % =

@Iv1, marimm
el Cazzying
capacity: Cmax
i carabrs ]

Fal,
aifusivity = 0

[ JE—

Anisotropic diffusivity based on the DIT

OipOc)+ pe(1-e), (DOc) G, =0

;Y_}H_/

Cell diffusion

=

Cell multiplication

=>

Mechanical model

* Linear elasticity for the brain :

0 = Stress

0= Au(e)+2u¢ £=%(Du+|]ur)

€= Stress

« Influence of tumor cells on the mechanics

div(c-acl,)+Fe=0

Linsar slasticity
for brain parenchy 3 Fres vertices
(529 Ba) _ . at the ventricle:
suctace

OTVL ; caponcatial
volums tapansion

Stifer
£alx cerebri

200,000 Pa

A, = Lamé Coefficient
u = Displacement

a = Coupling factor
Fe = External forces

Summary:

Linear relationship force |
displacement

Tumor acts as a local pressure

17



Tumor Growth simulation

Results

March 2002

March 2002 +
initial contour

September 2002 +
simulation contours

Analyzing Diffusion Model

% =0(p0c)+ pe(1-¢)

vODp — T D/p

+ Growth speed « Tumor profile

« Parameter Estimation « Infiltration extent

+ Quantification « Extrapolation

« Observable from time series of images « Not observable from images
Cell density

t, D.p, >>D,p,>> Dsp; Cell density
Position

Cell density Cell density

D/p, >> D,/p,>> Dylp,

Position

18



Overview
Introduction
Glioblastoma growth simulation
=—> Patient Specific Simulation

Radiotherapy margin computation

Perspectives

Model Based Growth Quantification

* What is the speed in the white and in the grey matter?
« Speed of progression as a tool for characterization/quantification.
« Tumor fronts (CTV extent) :

« Tumor infiltrated edema extent for high grade tumors

« Bulk tumor extent for low grade tumor

Front Motion Approximation

- Using the asymptotic approximation

in the 1D case: //_

| A Sam

Tumor cell
density

cm
« Assuming visible tumor front is an iso-density

surface. [O7 DOT = 1
« Generalizing into 3D gives the traveling time 2\/;
formulation for the motion of the tumor front:




Front Approximation 2" Order

« A second order approximation
includes:

« Transient motion towards the
asymptotic speed.

wpeed (emidays)

« Effect of the curvature on the
3D tumor front.

v(t) = 2/(n' Dn)p —% ”'f;” - (n' D)k
\_y_/ \_v_)

convergence  curvature

JATDOT = 21yAl07]
4107|307 -27/(O7' DOT) pK

Recursive Fast Marching

Anisotropic Eikonal equation

Recursively correcting errors due to anisotropy.

Normal Fast Recursive Fast (\
Marching Marching -
Fast and efficient even for very high
anisotropies.

Works on general meshes.

Comparing Approximation with the Model

Green: Tumor iso-density surface computed with
the reaction-diffusion model.

Red: Same iso-density computed with the
asymptotic approximation.

20



Speed of Progression

« Speed in wm and speed in gm
between two images.

« Inputs are tumor delineations.

r1
« Optimizing the D and the p such 1 _
that mathematical formulation C,,v,)= 2 [dist (l'z, r, ) dist ﬁ r, )]
explains the observed
delineations. AT =16-1,

r= 1
JOT'pOT =——,7(,)=0
2Vp

Speed of Progression

« Gives us simple numerical values
characterizing the tumor:

* Statistics on populations

v, = 0437 « Staging of the tumor
day

« Therapy efficacy
v, =0.0417%

day « Gives us the patient specific

parameters for the general model.

Blue : Manual delineation of the tumor at
the 15! time acquisition.

Black : Tumor front computed by the model
for the 2" time acquisition with the
optimum parameters.

Overview

Introduction

Glioblastoma growth simulation

Patient Specific Simulation

—> Radiotherapy margin computation

Perspectives

21



Extrapolating Tumor Invasion

¢ CT and MR have limited resolution for tumor cells.
« We do not see the whole tumor infiltration.

« Use of growth dynamics to understand the extents of the
tumor.

tumor cell density

tumor cell density

Tail Distribution

dc

o ~HPO =0 \ u(f):uoexp[_\j~ ;T{]
Traveling wave solution in the nUDm)

infinite cylinder with constant D:

c(x,) =u(xm—vt) = (@)

g

t=63,90,125
2z
£ ool | days
3 a
= i\
PR
50
5 W\
- )
oo AN
\

Effect of the Boundary Condition

No flux boundary condition affects the tumor
cell density.

Therefore it affects the tails of the tumor
profile.

This can be taken into account in the tail
distribution formulation by method of

Result of the reaction-
reflection.

diffusion equation with
boundary conditions.

Reflecting the tumor cells off the boundaries.
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Comparison with the Model

White: Visible part of the tumor

Yellow — Red: Tails of the tumor from 10% to 1% of the tumor cell capacity.

Tails of the tumor computed by Tails approximated by the
the reaction-diffusion model extrapolation method

‘ RIINRIA ‘

Invasion Extent vs. Irradiation Margin

Il Invaded area targetted by

: . dioth

o Simulated probability of radioherapy

Visible tumor finding tumor cells [ Area targetted by radiotherapy
BUT NOT invaded

. . [ Area invaded BUT NOT
Radiotherapy margin (2cm) targetted by radiotherapy

B INRIA

Perspectives

Validation of the model through
Predicting growth for untreated cases.
Recurrence after surgery/therapy.

Provide a confidence interval
In the extent of the tumor
In the tumor cell probability

Modeling the therapy response
Response to drug.

Response to irradiation.

Including more modalities and improving the model.

Spectroscopy
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Thank you.
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