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Pressure ulcers prevention 

Pressure ulcers prevention for disabled, paraplegic 

and diabetic persons 
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Pressure ulcer prevention 

 What kind of artificial sensor for the 

measurement of the pressure at the buttocks / 

seat interface?   

 Three questions : 

 When deciding that there is a risk for pressure 

ulcer?   

 How to alert the person in case of a risk?   

 An Utility / Utilisability / Acceptability Study   



Tekscan Inc. 

Vista Medical Inc. 

Xsensor 

 Inc. 

What kind of artificial sensor? 



• Conclusions of the Utility / Utilisability / Acceptability 

Study:  

• The pressure mat has to be low cost 

• The pressure mat has to be comfortable (on or 

around the cushion) 

• The pressure mat has to be washable  

What kind of artificial sensor? 



 An embedded pressure mat made of textile 

(technology provided by Texisense company) 

100% textile 

What kind of artificial sensor? 



• Two outer layers form a matrix that defines the spatial 

resolution of the sensor: the nylon fibers coated with silver 

conduct current 
• Any normal forces exerted onto the middle layer change the 

electrical resistance of the material : fibers are coated with 

polymers   

 An embedded pressure mat made of textile 

(technology provided by Texisense company) 

What kind of artificial sensor? 



What kind of artificial sensor for the 

measurement of the pressure at the buttocks / 

seat interface?   

 Three questions : 

When deciding that there is a risk for pressure 

ulcer?   

 How to alert the person in case of a risk?   

Pressure ulcer prevention 



When deciding that there is a risk 

for PU? 

[Loerakker, 2011] 

(about2h) (around 10min) 

εi ≈ 20 % ; εd ≈ 50 % 



 How to estimate the deformations thresholds 

from the measured pressures at the buttocks / 

cushion interface for a given patient?   

 The use of a patient-specific biomechanical model 

of the buttocks bone / soft tissues 

[Linder-Ganz et al., 2009] 

When deciding that there is a risk 

for PU? 



• Explicit 3D Finite Element modeling: 

 not real time 

[Makhsous et al., 2007] 

Patient-specific biomechanical 

model of the buttocks 



• Semi implicit 3D Finite Element modeling: 

 close to real time 

• Using ArtiSynth, 3D biomechanical simulation 

platform (http://www.artisynth.org/) [Stavness, 

2011]. 
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model of the buttocks 



Patient-specific biomechanical 

model of the buttocks 
Acquisition of the patient morphology: 

• CT scan of the patient on his back -> too much 

deformations of the tissues. 



Patient-specific biomechanical 

model of the buttocks 
Acquisition of the patient morphology: 

• CT scan of the patient on his back -> too much 

deformations of the tissues. 

• CT scan of the patient on his side -> only one side 

deformed. 

• Segmented on the left side  

to avoid the constraints and  

reconstruct the morphology. 



Patient-specific biomechanical 

model of the buttocks 
Acquisition of the patient morphology: 

• Using ITK-Snap 
• Segmentation of the bones 



Patient-specific biomechanical 

model of the buttocks 
Acquisition of the patient morphology: 

• Using ITK-Snap 
• Segmentation of the bones 

• Segmentation of the skin and muscles 

Skin Muscles 



Patient-specific biomechanical 

model of the buttocks 
Acquisition of the patient morphology: 

• Using ModelEditor (TIMC-IMAG), symetry to get the full 

morphology 



Patient-specific biomechanical 

model of the buttocks 
Finite Element model corresponding to the patient: 

• Using TxMesher (Texisense), filling the surfaces with 

hexahedrons and tetrahedrons, leaving holes for the 

bones (fixed red nodes). 



Patient-specific biomechanical 

model of the buttocks 
Finite Element model corresponding to the patient: 

• The role of the ischial tuberosities: 

Ischium 



Patient-specific biomechanical 

model of the buttocks 
Finite Element model corresponding to the patient: 

• Separating the different soft tissues layers: 



Patient-specific biomechanical 

model of the buttocks 
Finite Element model corresponding to the patient: 

• Separating the different soft tissues layers into 3 different 

Neo Hookean materials: 

• Skin: E = 200 kPa, ν = 0,49 

• Muscles: E = 40 kPa, ν = 0,49 

• Fat: E = 10 kPa, ν = 0,49 

 



Patient-specific biomechanical 

model of the buttocks 
Validation: 

• From pressure measurements under the patient buttocks 

while seating (on a zebris platform)  
 

Maximum 

constraint = 4 

N/Cm², in red 



Patient-specific biomechanical 

model of the buttocks 
Validation: 

• Simulation results 



Patient-specific biomechanical 

model of the buttocks 
Validation: 

• Simulation (only measured on one side) 

Von Mises Strain max = 66 %  (in red) 



Patient-specific biomechanical 

model of the buttocks 
Validation: 

• Simulation (only measured on one side) 

Von Mises Strain max = 66 %  (in red) 

Simulation time: 8 min and 45 seconds on a INTEL CORE DUO 

at 3.32 GHz and 3.50 Go of RAM 



• Internal overpressures monitoring, in real time 

Patient-specific biomechanical 

model of the buttocks 







What kind of artificial sensor for the 

measurement of the pressure at the buttocks / 

seat interface?   

 Three questions : 

When deciding that there is a risk for pressure 

ulcer?   

 How to alert the person in case of a risk?   

Pressure ulcer prevention 



 Conclusions of the Utility / Utilisability / Acceptability 

Study:  

 In case of risk for pressure ulcer, the alert sent to 

the person should: 

 be easily perceived 

 remain discrete, i.e. avoid the visual or 

auditory canals that are daily used 

 The use of the tactile modality 

How to alert the person in case of a 

risk? 



A tactilo-visual signal sent in case of alert 

alert: tactile vibration 

simple message 

+ 

alert: tactile vibration 

more complex messages 

How to alert the person in case of a 

risk? 



Clinical evaluation 

On going qualitative evaluation: 

A paraplegic volunteer equipped at home with our 

embedded prototype + video cameras, during a 

recording period of six months.  
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Foot and ulcers 

The “smart sock” [Bucki, 2011]: 

• Developed by TexiSense (http://www.texisense.com/). 

• Network of textile pressure sensors monitoring the 

stresses applied around the  

    foot. 

• Goals: 

– Estimate the internal strains, 

– Warn the patient when they  

reach a critical level. 
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The “smart sock” [Bucki, 2011]: 

• Developed by TexiSense (http://www.texisense.com/). 

• Network of textile pressure sensors monitoring the 

stresses applied around the  

    foot. 

• Goals: 

– Estimate the internal strains, 

– Warn the patient when they  

reach a critical level. 
 

Biomechanical modeling 



Foot and ulcers 

Foot anatomy: 

• 26 bones, 33 joints and more than 100 muscles, tendons 

and ligaments plus a network of blood vessels, nerves, 

skin, and soft tissues.  

• Complex interactions between those structures and the 

external environment.  
 



Foot biomechanical modeling 

Several existing models: 

• [Ledoux, 2004] modeled: 
– The soft tissues as a FE mesh with homogeneous elastic properties, 

– The bones as rigid FE meshes, 

– Contact between bones for the joints, 

– Ligaments for the mid foot. 
 



Foot biomechanical modeling 

Several existing models: 

• [Chen, 2010] modeled:  
– The soft tissues as a FE mesh with a Mooney Rivlin constitutive law with 

large deformations, 

– The bones as rigid FE meshes, 

– Main articulations modeled as contacts between bones. 
 



Foot model 

Our model proposes: 

• Realistic mechanical properties, 

• Light modeling,  

• Computationally fast to be embedded in the “smart sock” 

device. 

 

• Developed using the 3D biomechanical simulation 

platform, Artisynth (http://www.artisynth.org/) [Stavness, 

2011]. 



Foot model 

Bone and joint modeling: 

• 28 bones (26 + tibia and fibula) as rigid bodies (geometry 

from www.zygote.com) with a density of 3000, 

• 33 joints simulated by cylindrical or spherical pivots. 



Foot model 

Bone and joint modeling: 

• 28 bones (26 + tibia and fibula) as rigid bodies (geometry 

from www.zygote.com) with a density of 3000, 

• 33 joints simulated by cylindrical or spherical pivots. 

• Only one cylindrical joint between talus and calcaneus: 

Talus 

Calcaneus 

Cylindrical 

pivot with 

only 1 DOF 



Foot model 

Bone and joint modeling: 

• All other joints simulated by spherical pivots: 

 

 

Spherical 

pivot with 3 

DOFs 



Foot model 

Bone and joint modeling: 

• All other joints simulated by spherical pivots: 

– Phalanges: with a possible rotation angle of 45 degrees, 

– Metatarsi: with a possible rotation angle of 30 degrees, 

– Mid and back foot: with a possible rotation angle of 0-5 degrees. 

 

 

Phalanges 
Metatarsi 

Mid and back foot 



Foot model 

Soft tissue modeling: 

• Muscles, fat, and skin modeled as 3 different layers using 

a Finite Element mesh adapted from the Zygote database 

using an automatic meshing method [Lobos, 2010]. 

36,894 elements  

and 22,774 nodes 



Foot model 

Soft tissue modeling: 

• Muscle layer limited to below the foot arch. 

• Skin layer separated into 2 parts: high stiffness plantar 

layer and softer rest of the skin. 

• Fat layer encapsulates 

 all the other elements. 



Foot model 

Soft tissue modeling: 

• Each layer modeled as a neo Hookean material [Sopher 2011]: 

– Muscle layer: E = 50 kPa, nu = 0.495, 

– Fat layer: E = 4 kPa, nu = 0.495, 

– Planter skin layer: E = 6 MPa, nu = 0.495. 



Foot model 

Soft tissue modeling: 

• Each layer modeled as a neo Hookean material [Sopher 2011]: 

– Muscle layer: E = 50 kPa, nu = 0.495, 

– Fat layer: E = 4 kPa, nu = 0.495, 

– Planter skin layer: E = 6 MPa, nu = 0.495, 

– Skin layer (except plantar skin): E = 200 kPa, nu = 0.495, and 

determined by LASTIC (aspiration device for characterizing the 

soft tissues’ elasticity) [Schiavone, 2008]: 

LASTIC 



Foot model 

Soft tissue modeling: 

• Bones rigidly coupled to the soft tissues. 

• Realistically rigidify the foot. 

• Decreases the FE matrix size and speed up the 

simulation. 

 



Foot model 

Ligaments modeling: 

• Cables representing the real ligaments interconnecting 

the bones through the FE nodes, with a stiffness of 200 

MPa in extension and of 0 MPa in compression. 

• Four main ligaments integrated in the simulation: 
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– Outer plantar fascia 
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– Inner plantar fascia 



Foot model 

Ligaments modeling: 

• Cables representing the real ligaments interconnecting 

the bones through the FE nodes. 

• Four main ligaments: 

– Outer plantar fascia 

– Inner plantar fascia 

– Transversal metatarsal  

head ligament 



Foot model 

Ligaments modeling: 

• Cables representing the real ligaments interconnecting 

the bones through the FE nodes. 

• Four main ligaments: 

– Outer plantar fascia 

– Inner plantar fascia 

– Transversal metatarsal 

head ligament 

– Achilles tendon 



Foot model 

Ligaments modeling: 

• Cables representing the real ligaments interconnecting 

the bones through the FE nodes. 

• Three smaller ligaments: 

– Triangular ligament 

between navicular, calcaneus 

and cuboid bones 



Foot model 

Ligaments modeling: 

• Cables representing the real ligaments interconnecting 

the bones through the FE nodes. 

• Three smaller ligaments: 

– Triangular ligament 

between navicular, calcaneus 

and cuboid bones 

– Internal ligament between 

calcaneus and navicular,  

– Internal ligament between 

talus and navicular. 



Foot model 

Boundary conditions: 

• Foot weight: 2 Kg, and subject to gravity. 

• Tibia and fibula bones fixed to constrain the foot. 



Evaluation 



Evaluation 

Pressure assessment 

• Measuring the plantar foot pressure distribution under the 

right foot of a young healthy volunteer while standing on 

a commercially available pressure sensor system (Zebris 

platform, http://www.zebris.de/): 

 

Pressures range from 0 (green) to 10.5 N.cm-2 (red) 



Evaluation 

Simulation of the standing position: 

• While tibia and fibula bones are fixed, the rest of the foot 

is let loose under the influence of gravity for 0.2 s to 

reach a resting position.  

% of pressure 

Time 0.2 s 



Evaluation 

Simulation of the standing position: 

• While tibia and fibula bones are fixed, the rest of the foot 

is let loose under the influence of gravity for 0.2 s to 

reach a resting position.  

• From t = 0.2 s to 3 s, application of the measured 

pressures to the nodes of the foot sole following a ramp 

(0% at 0.2 s and 100 % at 3 s) to model normal standing.  

% of pressure 

Time 0.2 s 3 s 

100 % 



Evaluation 

Observing the foot deformation at t = 3 s 

• Von Mises strains: 



Evaluation 

Observing the foot deformation at t = 3 s 

• Von Mises strains on the skin surface and below the 

bones (internally): 

Location 

Foot surface 

VM strain 

Internal VM 

strain 

5th toe MT 2.7 % 63.3 % 

4th toe MT 5.2 % 96.8 % 

3rd toe MT 8.0 % 63.0 % 

2nd toe MT 4.1 % 84.2 % 

1st toe MT 5.1 % 43.0 % 

Heel  5.0 % 69.8 % 



Evaluation 

Observing the foot deformation at t = 3 s 

• Von Mises strains on the skin surface and below the 

bones (internally): 

Realistic higher 

internal strains 

Location 

Foot surface 

VM strain 

Internal VM 

strain 

5th toe MT 2.7 % 63.3 % 

4th toe MT 5.2 % 96.8 % 

3rd toe MT 8.0 % 63.0 % 

2nd toe MT 4.1 % 84.2 % 

1st toe MT 5.1 % 43.0 % 

Heel  5.0 % 69.8 % 



Conclusion 

• New biomechanical models to prevent buttock and foot 

ulcer, associated with new devices (mat and sock) 

• Realistic behavior in terms of external and internal 

strains,  

• Provide tools to study the mechanical behavior of the 

buttock and foot and the creation of pressure ulcers. 



Perspectives 

• Apply pressures measured with the Texisense sensor to 

the buttock and foot surfaces: 

– To study their behavior when submitted to real pressures, 

– To develop a precise patient specific process to prevent pressure 

ulcer. 

• Use a more realistic model to simulate the soft tissues 

(Mooney Rivlin, anisotropy…). 

• Speed up the simulation to reach interactive time (for 

now, 8 min for the buttocks and 22 min for the foot…) and 

embed it in the Texisense controller for daily evaluation of 

the internal strains. 
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Perspectives 

• Dynamic analysis of subject walking: 

Location (a) Ext. 

strain 

(a) Int. 

strain 

(b)Ext. 

strain 

(b) Int. 

strain 

5th MTT 1.8% 72.7% 3.7% 171% 

4th MTT 2.8% 83.4% 6.3% 204% 

3rd MTT 4.5% 81.8% 6.5% 152% 

2nd MTT 3.2% 33.4% 5.1% 31.6% 

1st MTT 3.3% 37.5% 7.7% 92.6% 

Heel 1.8% 137% 0.6% 59.3% 



Foot and ulcers 

Creation of foot pressure ulcers: 
 Equivalent for 

the foot: 

Calcaneus 

Soft tissues 

Ground 

[Husain, 1953] 



Foot and ulcers 

Creation of foot pressure ulcers: 
 Equivalent for 

the foot: 

Calcaneus 

Highest deformations are internal: 
possibly leading to foot ulcer 

Soft tissues 

Ground 

[Husain, 1953] 
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Buttocks and ulcers 



• Application de la pression d’un seul côté 

 

Nappes Déformation 

maximum(%) 

Nappe initiale zebris 57.1 

Nappe unilatérale 61.6 

30 

Buttocks and ulcers 



• Patient assis 

 

 

 

 

 

 

 

 

 

110 ° 90 ° 
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Buttocks and ulcers 



• Patient assis 

 

 

 

 

 

 

• Ischions plus saillants à 90 ° 

 

Position Déformation maximum(%) 

Avachie 57.1 

Assise 70.4 
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Buttocks and ulcers 



• Influence de la diminution de l’épaisseur  

du muscle 
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Buttocks and ulcers 



• Influence de la diminution de l’épaisseur  du muscle 

 

 

 

 

 

 

 

 
 

• Donc une personne qui a très peu de muscles et beaucoup de graisse a plus de 
chances de développer des escarres qu'une personne plus musclée. 

Epaisseur du muscle Déformation max (%) 

Initiale 57.1 

Moyenne 108.9 

Fine 140.9 

34 

Buttocks and ulcers 



Etude de la taille du capteur 
résolution d’un capteur 0.8 cm² 

35 

1 capteur sous chaque côté 9 capteurs sous chaque côté 

25 capteurs sous chaque côté 49 capteurs sous chaque côté 
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Nombre de capteurs 

Evolution de la déformation en fonction du nombre de 
capteur 

% déformation

25 capteurs 

suffisent pour 

appliquer les 

pressions 

 

Il suffirait d’avoir 

un capteur sous 

chaque ischion 

de 20 cm² 

 

Problème : placer 

les capteurs 

exactement sous 

les ischions 
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Etude de la taille du capteur 
 


