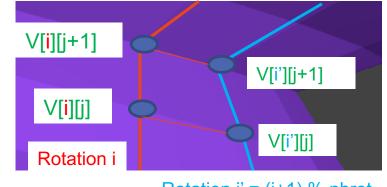
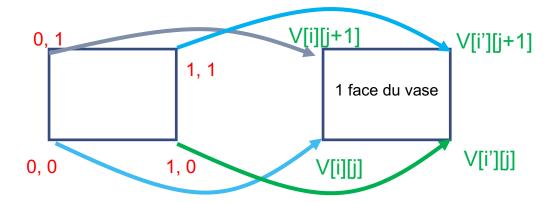

TD3 - Textures : vase, formes de base, terrain

Florence Zara (semestre automne)
LIRIS-ORIGAMI, Université Lyon 1


Exercice 1 - Texture sur le vase créé par révolution


Exercice : définir (u,v) pour chaque sommet

Ajout des textures sur le vase

1 texture par face carrée du vase

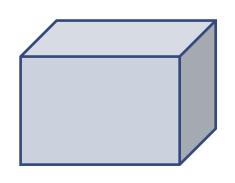
Rotation i' = (i+1) % nbrot

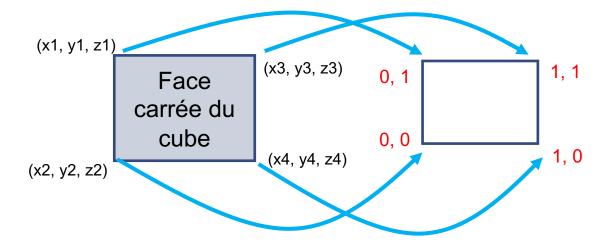
Ajout des textures sur le vase

```
V[i][i+1]
                                                                                                    V[i'][j+1]
void ViewerEtudiant::init vase()
                                                                      1, 1
                                                                                      1 face du vase
   m vase = Mesh(GL TRIANGLES);
   m vase.color(1.0, 1.0, 1.0);
                                                                                                     V[i'][j]
                                                                    1, 0
                                                    0, 0
    for(int i=0; i<vase NBROT; i++){</pre>
          // Attention boucle de 0 à vase NBPT-2 (car j+1)
        for(int j=0; j<vase NBPT-1; j++){</pre>
             // Premier triangle
            m_vase texcoord(0, 0);
            m vase.normal(vase vn[i][j]);
            m vase.vertex(vase v[i][j]);
            m_vase.texcoord(1, 1);
            m vase.normal(vase vn[(i+1) % vase NBROT][j+1]);
            m_vase.vertex(vase_v[(i+1) % vase_NBROT][j+1]);
            m vase.texcoord(1, 0);
            m vase.normal(vase vn[(i+1) % vase NBROT][j]);
            m vase.vertex(vase v[(i+1) % vase NBROT][i]);
```

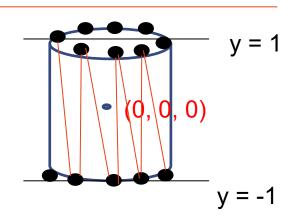
Ajout des textures sur le vase

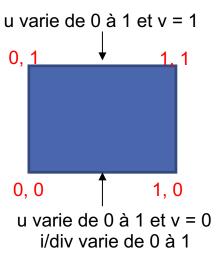
}//void


```
V[i][i+1]
                                                                                              V[i'][j+1]
                                                                1, 1
                                                                                1 face du vase
      // Second triangle
        m_vase.texcoord(0, 0);
                                                                                               V[i'][j]
                                              0, 0
                                                              1, 0
        m vase.normal(vase vn[i][j]);
        m vase.vertex(vase v[i][i]);
        m_vase.texcoord(0, 1);
        m_vase.normal(vase_vn[i][j+1]);
        m vase.vertex(vase v[i][j+1]);
        m vase.texcoord(1, 1);
        m_vase.normal(vase_vn[(i+1) % vase_NBROT][j+1]);
        m vase.vertex(vase v[(i+1) % vase NBROT][i+1]);
    }//for_j
}for_i
```


Exercice 2 - Texture sur les formes de base

Rajouter les coordonnées de texture aux formes de base


- Cube : 1 texture par face carrée
- Cylindre : 1 texture (sans considérer le dessus/dessous)
- Cône : 1 texture (sans considérer le dessous)
- Sphère : 1 texture


Forme de base : cube

Forme de base : cylindre

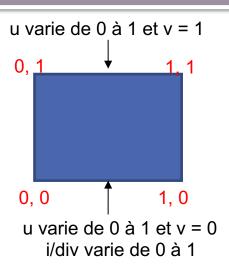
Boucle sur i pour faire varier l'angle de 0 à 2π avec div le nombre de divisions

i/div varie de 0 à 1 \rightarrow permet d'avoir une variation entre 0 et 1

Sommets du haut

Coordonnées de texture : u = i/div, v = 1

Coordonnées 3D : $x = \cos \alpha$, y = 1, $z = \sin \alpha$


Sommets du bas

Coordonnées de texture : u = i/div, v = 0

Coordonnées 3D : $x = \cos \alpha$, y = -1, $z = \sin \alpha$

Forme de base : cône

$$y = 1$$
 $(0, 1, 0)$ $(0, 0, 0)$ $y = 0$

Boucle sur i pour faire varier l'angle de 0 à 2π avec div le nombre de divisions i/div varie de 0 à 1 \rightarrow permet d'avoir une variation entre 0 et 1

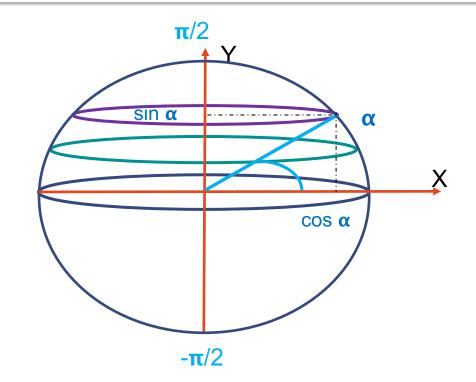
Sommet du haut

Coordonnées de texture : u = i/div, v = 1

Coordonnées 3D : x = 0, y = 1, z = 0

Sommets du cercle de coordonnées

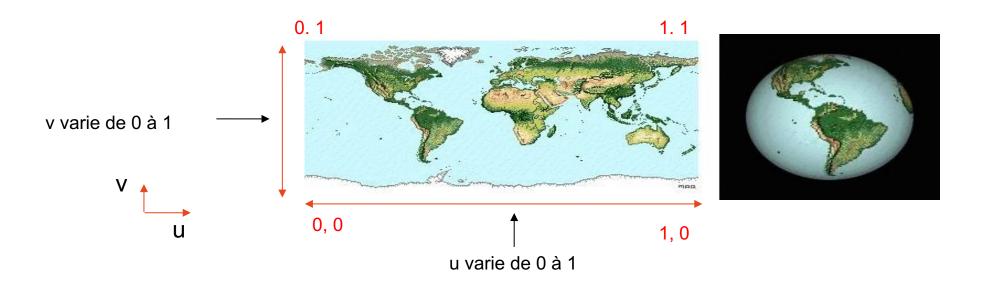
Coordonnées de texture : u = i/div, v = 0


Coordonnées 3D : $x = \cos \alpha$, y = 0, $z = \sin \alpha$

Forme de base : sphère

Sphère = superposition de cercles

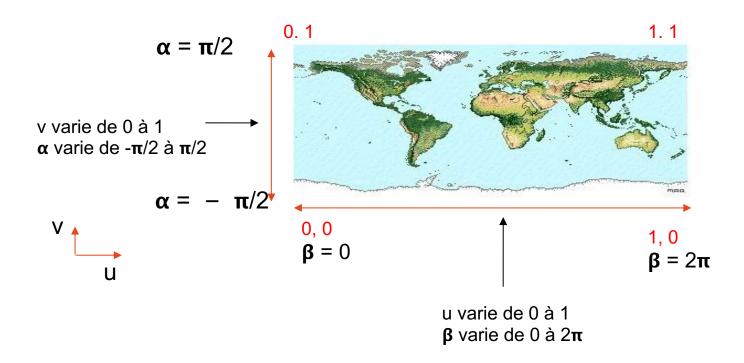
Variation de l'angle α de $-\pi/2$ à $\pi/2$


Variation de l'angle β de 0 à 2π

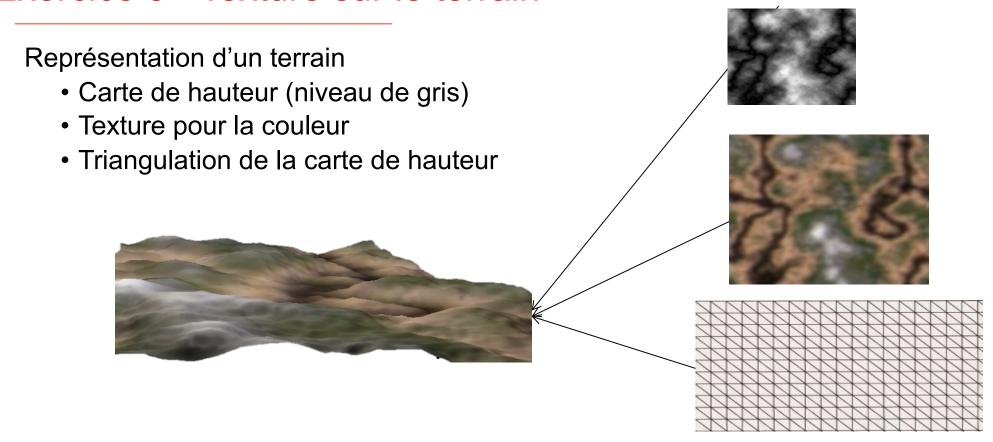
Sommets de la sphère de coordonnées :

$$x = \cos \alpha * \cos \beta$$

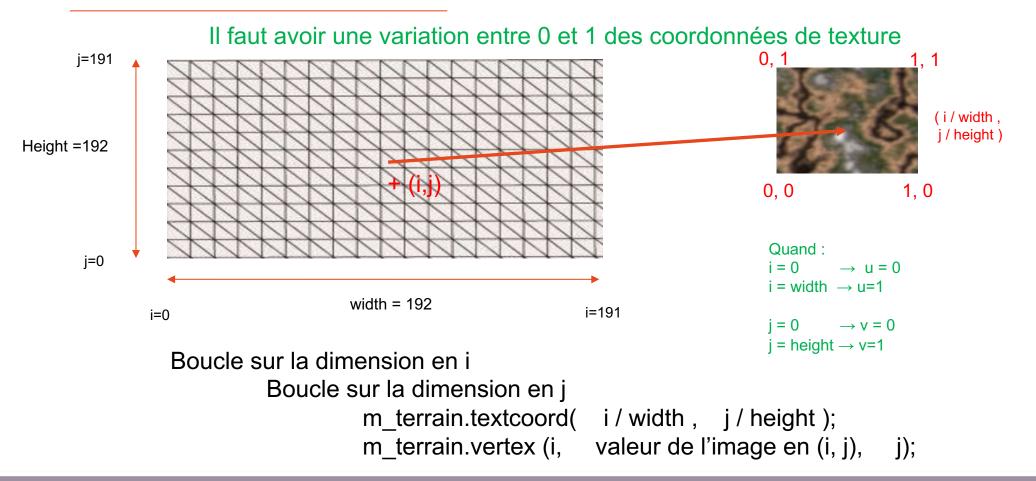
 $y = \sin \alpha$
 $z = \cos \alpha * \sin \beta$


Forme de base : sphère

Coordonnées de textures (u,v) doivent varier de 0 à 1


Correspondance à faire entre la variation des angles (β , α), et la variation de (u,v)

Forme de base : sphère


Coordonnées de texture : $u = \beta/2\pi$, $v = 0.5 + \alpha/\pi$ Coordonnées 3D : $x = \cos \alpha * \cos \beta$, $y = \sin \alpha$, $z = \cos \alpha * \sin \beta$

Exercice 3 - Texture sur le terrain

Exercice : définir (u,v) pour chaque sommet du terrain

Ajout de la texture sur le terrain

En conclusion...

Vous avez tout pour rajouter des textures sur tous les maillages

Vous devez avoir compris le code : posez des questions si ce n'est pas le cas

Vous ne devez pas apprendre le code par cœur, mais il faut savoir le refaire