Master 1 Informatique
UE M1if37 - Animation en synthèse d'image
Partie - Simulation par modèles physiques
Cours 2 - Dynamique Newtonienne

Florence Zara

LIRIS - Université Lyon 1

http://liris.cnrs.fr/florence.zara E-mail: florence.zara@liris.cnrs.fr

Plan du cours

Dynamique Newtonienne

- Rappel de cinématique
- Lois de Newton
- Boucle de simulation
- Quelques exemples de forces

Moteur physique

Méthodes d'intégration numérique

Cinématique

Point matériel: morceau de matière suffisamment petit pour repérer sa position par ses coordonnées

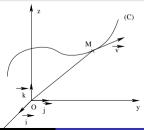
Corps solide : assimilé à un point matériel si son mouvement est limité à l'étude du mouvement de son centre de masse.

Objet déformable basé sur un système de particules : discrétisation de l'objet en un nombre fini de particules (p), particule i de masse m_i et de position x_i avec $0 \le i \le p$.

Cinématique du point matériel

Coordonnées cartésiennes en 3D

- Position : $\vec{OM} = x\vec{i} + y\vec{j} + z\vec{k}$
- **Trajectoire :** ensemble des positions successives de M lorsque ses coordonnées varient au cours du temps (courbe C)
- Equation horaire : $\vec{X}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}$ \hookrightarrow position du point M au cours du temps

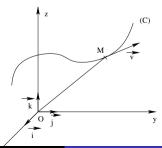


Cinématique du point matériel

Coordonnées cartésiennes en 3D

- Vitesse : $\vec{V}(t) = \dot{X}(t) = \dot{x}(t)\vec{i} + \dot{y}(t)\vec{j} + \dot{z}(t)\vec{k}$
- Accélération : $\vec{A}(t) = \dot{V}(t) = \ddot{X}(t) = \ddot{x}(t)\vec{i} + \ddot{y}(t)\vec{j} + \ddot{z}(t)\vec{k}$

Notation « point » = dérivée par rapport au temps t=d/dtVitesse de la particule au temps t= longueur du vecteur vitesse



Lois de Newton

Notions de masse et de force

- Mouvement d'un point caractérisé par sa position, vitesse et accélération
- Point également caractérisé par sa masse (en Kg) et par sa force (en N)
- Accélération de l'objet proportionnelle à l'intensité de la force
- Force d'un Newton = intensité de la force requise pour donner une accélération d'un mètre par seconde au carré à une masse d'un kilogramme

Lois de Newton

Première loi

- En l'absence de toute force externe, un objet au repos reste au repos.
- Si l'objet est en mouvement, et qu'aucune force extérieure ne lui est appliquée, sa vitesse reste constante
 - → mouvement d'un objet modifié que par l'intervention d'une force

Seconde loi = principe fondamentale de la dynamique

- Soit un objet de masse constante m, accélération \ddot{x} , force F.
- Equation du mouvement : $F = m\ddot{x}$

Boucle de simulation

Simulation basée sur l'équation du mouvement : $F = m\ddot{x}$ \Rightarrow accélération de l'objet définie par : $\ddot{x} = F/m$

Boucle de simulation basée sur la dynamique Newtonienne

- Calcul des forces F appliquées sur l'objet (dépend du modèle physique employé pour modéliser l'objet)
- **Q** Calcul de la nouvelle position x de l'objet Résolution système différentielle du second ordre $(\ddot{x} = F/m)$ pour obtenir le mouvement de l'objet (position x) ordre = degré de la plus haute dérivée

Dynamique Newtonienne

Etape 1 : Calcul des forces appliquées sur l'objet

Forces de gravitation

- Soient deux masses de 1 Kg distantes de 1 m ayant des interactions gravitationnelles
- Ces deux masses s'attirent avec une force d'intensité égale mais de directions opposées

$$G = 6.67 \times 10^{-11} N.(Kg^{-2}).(m^2)$$

• De manière générale, pour deux masses m et M distantes de r, la loi universelle de la gravitation de Newton donne :

$$F_{gravit\acute{e}} = \frac{GmM}{r^2}$$

Constante et force de gravité

- Terre représentée par son centre de masse M
- Constante de gravité :

$$g = \frac{GM}{r^2} = 9.81 \text{m.s}^{-2} = 9.81 \text{N}$$

• Force de gravité appliquée à un objet de masse $m : \vec{F} = -mg\vec{u}$ (force à utiliser pour faire tomber un objet)

Force de gravité

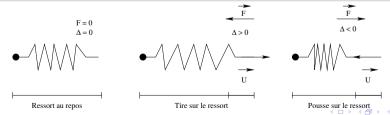
- La gravité est une force sans contact
- Elle s'applique de manière uniforme à un environnement
- Un environnement soumis à la gravité est un environnement qui est toujours soumis à une force constante dans le temps et dans l'espace

Force exercée par un ressort

- Un côté du ressort est fixé, l'autre est libre pour pouvoir pousser/tirer sur le ressort
- Force de rappel exercée par le ressort (loi de Hooke) :

$$\vec{F} = -k\Delta \vec{u}$$

- Force toujours opposée à la déformation
- ullet Δ le déplacement du ressort
- k la constante de raideur du ressort $(N.m^{-1})$



Forces de dispersion

- Force pour laquelle l'énergie du système décroît
- Exemple : forces de friction, amortissement

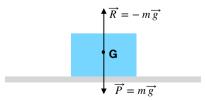
Forces de friction / frottement

• Force de frottement entre deux objets

Cas sans frottement entre les deux objets

- Soit un corps posé sur un support horizontal
- En l'absence de frottement, la réaction \vec{R} du support est toujours normal à la surface du support
- L'équilibre se traduit par :

$$\vec{P} + \vec{R} = \vec{0} \Rightarrow \vec{R} = -m\vec{g}$$

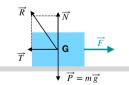


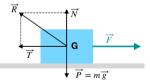
Cas avec frottement entre les deux objets

- ullet En présence de frottement, la réaction $ec{R}$ n'est plus normale à la surface
- ullet Pour traduire les frottements, deux coefficients de frottement μ se distinguent :
 - Coefficient de frottement statique : μ_s (objet à l'arrêt) Force de friction statique : force minimale à appliquer pour que le solide se déplace (s'oppose au déplacement - même à l'arrêt)
 - Coefficient de frottement dynamique : μ_d (objet en mouvement) Force de friction dynamique s'oppose au mouvement quand l'objet bouge

Coefficient de frottement statique μ_s - exemple 1

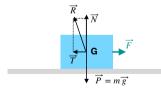
- ullet Le corps étant à l'équilibre, une force horizontale $ec{F}$ est appliquée
- La réaction \vec{R} a alors une composante horizontale \vec{T} qui s'oppose à \vec{F} : force tangente à la surface (force de frottement)
- Equilibre subsiste tant que \vec{F} n'atteint pas une certaine valeur \vec{F}_{max} donnée par $\|\vec{F}_{max}\| = \mu_s \|\vec{N}\|$ avec μ_s coefficient frottement statique (dépendant que des surfaces en contact)

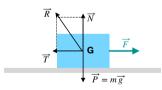


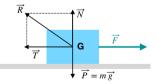


Coefficient de frottement statique μ_s - exemple 1

- Tant que \vec{F} augmente et que la masse reste à l'équilibre, \vec{T} augmente est reste égale et opposée à \vec{F}
- Condition d'équilibre : $\|\vec{T}\| \le \mu_s \|\vec{N}\| \Rightarrow \|\vec{F}\| \le \mu_s mg$



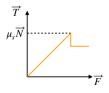




vidéo - Olivier Granier

Coefficient de frottement statique μ_s - exemple 1

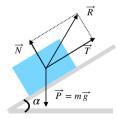
- Si l'intensité de \vec{F} augmente, l'intensité de la force de frottement \vec{T} augmente aussi jusqu'à une valeur maximale $\|\vec{T}\| = \mu_s \|\vec{N}\|$ correspondant au début du glissement du bloc.
- Dès que le bloc en mouvement, l'intensité de $\|\vec{\mathcal{T}}\|$ chute à une valeur inférieure.
- Cette force de frottement est appelée force de frottement cinétique et demeure approximativement constante.



Coefficient de frottement statique μ_s - exemple 2

- Corps de masse m repose sur plan incliné
- ullet Plan fait un angle lpha avec horizontale
- Corps glisse si l'angle d'inclinaison atteint une certaine valeur

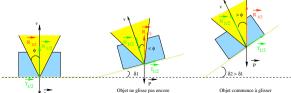
On veut savoir à partir de quel angle α l'équilibre cesse



Coefficient de frottement statique μ_s - exemple 2

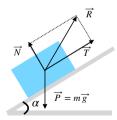
- Condition d'équilibre :

 - $\cos(\alpha) = \frac{\|\vec{N}\|}{\|\vec{P}\|}$, $\sin(\alpha) = \frac{\|\vec{T}\|}{\|\vec{P}\|}$, $\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} = \frac{\|\vec{T}\|}{\|\vec{N}\|}$
 - Équilibre frottement : $\|\vec{T}\| \le \mu_s \|\vec{N}\| \Rightarrow \frac{\|\vec{T}\|}{\|\vec{N}\|} = \tan(\alpha) \le \mu_s$
 - En jaune : cône de frottement d'adhérence
- Équilibre cesse quand : $\alpha > \alpha_{max} = \arctan(\mu_s)$



Coefficient de frottement dynamique μ_d

- Force pour rompre équilibre : $\mu_s \vec{N}$
- ullet $\mu_d ec{N}$: force pour conserver mouvement entre les deux objets
- \Rightarrow Force de frottement dynamique (opposée à la vitesse) : $\vec{F_d}$
- Équation du mouvement : $\vec{ma} = \vec{P} + \vec{N} + \vec{F_d}$



Force de frottement - récapitulatif

- Deux coefficients de frottement : statique et dynamique
- Par expérience, on a toujours :

$$\mu_{d} < \mu_{s} \Longrightarrow \mu_{d} \vec{N} < \mu_{s} \vec{N}$$

$$\Longrightarrow F_{friction_{dynamique}} < F_{friction_{statique}}$$

Amortissement

- Partie de l'énergie totale dispersée (souvent en chaleur) créant une force d'amortissement
- Force de direction opposée au déplacement de l'objet
- Coefficient d'amortissement : ν (> 0)
- Force : $\vec{F} = -\nu \vec{v}$

Beaucoup de forces au final

Etat d'équilibre

- Plusieurs forces sont appliquées sur un objet
- Objet est à l'équilibre si :
 - $\sum_{i=1}^{n} \vec{F}_{i} = 0$, avec \vec{F}_{i} forces extérieures appliquées à l'objet
- Simulation jusqu'à cet état d'équilibre (si pas de nouvelles forces dues par exemple à des interactions)

Dynamique Newtonienne

Etape 2 : Résolution système différentielle du second ordre $\ddot{x} = F/m$

Rappel du problème

Dynamique Newtonienne

- Objet de masse *m*
- Position x, vitesse x, accélération x
- Ensemble des forces exercées sur la particule : F
- Seconde loi de Newton : $m\ddot{\mathbf{x}} = \mathbf{F} \Rightarrow \ddot{\mathbf{x}} = F/m$
- \hookrightarrow Système d'équations différentielles du 2^e ordre
- à résoudre pour obtenir la nouvelle position (x)

Problème : méthodes d'intégration pour résoudre des systèmes du 1^{er} ordre

Reformulation du système différentielle

Passage du 2^e au 1^{er} ordre

- Système peut être reformulé en un système du 1^{er} ordre
- Considère la vitesse comme une variable du système avec $\mathbf{v} = \dot{\mathbf{x}}, \dot{\mathbf{v}} = \frac{\mathbf{F}}{m}$
- Système d'équations différentielles devient alors :

$$\frac{d\mathbf{S}}{dt} = \frac{d}{dt} \begin{bmatrix} \mathbf{x} \\ \mathbf{v} \end{bmatrix} = \begin{bmatrix} \dot{\mathbf{x}} \\ \dot{\mathbf{v}} \end{bmatrix} = \begin{bmatrix} \mathbf{v} \\ \frac{\mathbf{F}}{m} \end{bmatrix}$$

Dynamique Newtonienne

Définition du système

- Définition de la structure de l'objet : $\begin{bmatrix} x \\ v \\ F \end{bmatrix}$
- Position dans l'espace des phases : $\begin{bmatrix} x \\ v \end{bmatrix}$ Vitesse dans l'espace des phases : $\begin{bmatrix} \dot{x} \\ \dot{v} \end{bmatrix} = \begin{bmatrix} v \\ F/m \end{bmatrix}$

But de la simulation :

mettre à jour le vecteur $\mathbf{S}(t) = \left[\mathbf{x}\mathbf{v}\right]^{\mathcal{T}}$ au cours du temps

→ mettre à jour les vitesses et les positions (état de l'objet)

Dynamique Newtonienne

Cas d'un objet discrétisé en n particules

- Définition d'une particule $i : \begin{bmatrix} x_i \\ v_i \\ F_i \\ m \end{bmatrix}$
- Applique la loi de Newton aux n particules

$$\frac{d\mathbf{S}}{dt} = \frac{d}{dt} \begin{bmatrix} x_1 \\ v_1 \\ \vdots \\ x_n \\ v_n \end{bmatrix} = \begin{bmatrix} \dot{x_1} \\ \dot{v_1} \\ \vdots \\ \dot{x_n} \\ \dot{v_n} \end{bmatrix} = \begin{bmatrix} v_1 \\ \frac{F_1}{m_1} \\ \vdots \\ v_n \\ \frac{F_1}{m_n} \end{bmatrix}$$

Dynamique Newtonienne - Point de vue animation 3D

Données de départ au temps t_0

- Masse de la particule : m
- Position initiale de la particule : $\mathbf{x}(t_0)$
- Vitesse initiale de la particule : $\mathbf{v}(t_0)$
- Pas de temps de la simulation : h

Boucle de l'animation au cours du temps

- Affichage de la particule : position au temps t_0
- **②** Calcul des forces exercées sur la particule au temps $t_0 : \mathbf{F}(t_0)$
- **3** Calcul de l'accélération au temps $t_0: \mathbf{a}(t_0) = \mathbf{F}(t_0)/m$
- **1** Intégration de $\mathbf{a}(t_0)$ pour obtenir $\mathbf{v}(t_0 + h)$
- **1** Intégration de $\mathbf{v}(t_0)$ pour obtenir $\mathbf{x}(t_0 + h)$
- o et on boucle...

Suite du cours - Comment on intègre?

Moteur Physique

- Différentes méthodes d'intégration numérique
 - Méthode d'Euler
 - Taylor
 - Runge-Kutta
 - Verlet
- Critère pour choisir : la stabilité des méthodes d'intégration

Etude des méthodes d'intégration numérique

Formulation abstraite du système EDO du 1er ordre

$$\begin{cases} \dot{x}(t) = f(t, x(t)), t \geqslant t_0 \\ x(t_0) = x_0 \end{cases}$$

avec $\dot{x}(t)$ dérivée de x(t) par rapport à t

Connaissant $\dot{x}(t)$ pour tout t, on cherche x(t)

- Intégration de la vitesse $\dot{x}(t)$ pour obtenir la position x(t)
- $x(t) = \int \dot{x}(t)dt = \int f(t,x(t)) dt$
- Etude des méthodes sur cette formulation abstraite

Méthodes d'intégration numérique

Choix de la méthode d'intégration

- Il existe de nombreuses méthodes d'intégration
- Compromis entre le temps de calcul et la précision / stabilité
- Deux grandes classes :
 - méthodes explicites
 - méthodes implicites

Théorème de Taylor

■ Si x(t) et ses dérivées $x^{(k)}(t)$, pour $1 \le k \le n$ sont continues sur l'intervalle fermé $[t_0, t_1]$ avec $x^{(n)}(t)$ dérivable sur l'intervalle ouvert (t_0, t_1) , alors il existe un $\tau \in [t_0, t_1]$ tel que :

$$\begin{array}{lll} x(t_1) & = & x(t_0) + \frac{\dot{x}(t_0)}{1!}(t_1 - t_0) + \frac{\ddot{x}(t_0)}{2!}(t_1 - t_0)^2 + \ldots + \frac{\dot{x}^{(n)}(t_0)}{n!}(t_1 - t_0)^n + R(t_1) \\ & = & \sum_{k=0}^{n} \frac{\dot{x}^{(k)}(t_0)}{k!}(t_1 - t_0)^k + R(t_1) \end{array}$$

avec
$$R(t_1) = \frac{x^{(n+1)}(\tau)}{(n+1)!} (t_1 - t_0)^{n+1}$$
 (erreur généralement bornée) et $\sum_{k=0}^{n} \frac{x^{(k)}(t_0)}{t_1!} (t_1 - t_0)^k$ polynôme de Taylor de degré n.

Méthode d'Euler explicite

Présentation de la méthode pour $\dot{x}(t_i) = f(t_i, x(t_i))$

• Méthode d'Euler utilise le théorème de Taylor avec n=1 sur l'intervalle $[t_i,t_{i+1}]$, avec $h=t_{i+1}-t_i>0$ et $\tau\in[t_i,t_{i+1}]$:

$$x(t_{i+1}) = x(t_i) + \dot{x}(t_i)h + \ddot{x}(\tau)\frac{h^2}{2}$$

= $x(t_i) + h f(t_i, x(t_i)) + \ddot{x}(\tau)\frac{h^2}{2}$

Méthode d'Euler explicite

Reformulation

- Soit $x_i = x(t_i)$ pour tout i avec x_i valeur exacte de la solution de l'équation différentielle au temps t_i
- Soit y_i l'approximation de x_i
- Ne tient pas compte du terme de l'erreur
- La méthode d'Euler explicite s'écrit sous la forme :

$$y_{i+1} = y_i + h f(t_i, y_i), i \ge 0, y_0 = x_0$$

Méthode d'Euler explicite

Concrétement

- Au temps t_0 , x_0 connu
 - $y_0 = x_0$
- Au temps t_1 , première approximation :
 - $y_1 = y_0 + h f(t_0, y_0)$
- Au temps t_2 , on continue à partir de cette approximation :
 - $y_2 = y_1 + h f(t_1, y_1)$
- etc.

Méthode d'Euler explicite

Autre manière de l'appréhender

- Temps est décomposé en intervalles de longueur h
- Solution au temps t va fournir la solution au temps (t + h)
- Dérivée y'(t) remplacée par son approximation mathématique

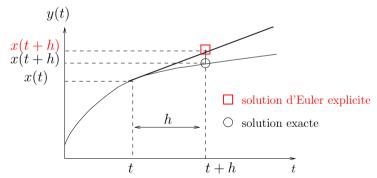
$$\frac{y(t+h)-y(t)}{h}\approx y'(t)=f(t,y(t))$$

Formulation du schéma pour un avancement h dans le temps

$$y(t+h) = y(t) + h f(t, y(t))$$

Méthode d'Euler explicite - Interprétation géométrique

- Revient à calculer la tangente à la solution au temps t pour obtenir la solution au temps t+h
- Séquence d'approximations $Y_n \approx y(t_n) = y(t_0 + nh)$



Méthode d'Euler explicite - Point de vue animation 3D

Données

```
Forces au temps t: f(t, x(t), v(t))
```

Vitesse au temps t : v(t)

Position au temps t : x(t)

Schéma d'intégration numérique

Accélération au temps t: $\dot{v}(t) = M^{-1}f(t,x(t),v(t))$ Vitesse au temps t+h: $v(t+h) = v(t)+h\,\dot{v}(t)$

Position au temps t + h: x(t + h) = x(t) + h v(t)

Bilan

- Méthode très simple et beaucoup utilisée
- Mais méthode instable et peu précise

Méthode d'Euler semi-implicite - Point de vue animation 3D

En pratique, utilise schéma d'Euler semi-implicite :

- Encore plus facile à mettre en oeuvre
- Plus stable

Données

```
Forces au temps t: f(t, x(t), v(t))
```

Vitesse au temps t : v(t)Position au temps t : x(t)

Schéma d'intégration numérique

```
Accélération au temps t: \dot{v}(t) = M^{-1}f(t,x(t),v(t))
```

Vitesse au temps t + h: $v(t + h) = v(t) + h \dot{v}(t)$

Position au temps t + h: x(t + h) = x(t) + h v(t + h)

Méthode avec une formulation intégrale

Formulation initial

- Problème initial : $\dot{x} = f(t, x), t \geqslant t_0, x(t_0) = x_0$
- On cherche : $x(t) = \int f(t, x) dt$
- Sur intervalle $[t_i, t_{i+1}]$, $x(t) = \int_{t_i}^{t_{i+1}} f(t, x) dt = [F(t, x)]_{t_i}^{t_{i+1}} = F(t_{i+1}) F(t_i)$ avec F(t, x) = x(t) la primitive de $\dot{x}(t)$
- On a donc : $\int_{t_i}^{t_{i+1}} f(t, x) dt = x(t_{i+1}) x(t_i)$ $\Rightarrow x(t_{i+1}) = x(t_i) + \int_{t_i}^{t_{i+1}} f(t, x(t)) dt$

Reformulation

- Soit $\phi(t) = f(t, x(t)), \ \phi(t) > 0$ $\Rightarrow x(t_{i+1}) = x(t_i) + \int_{t_i}^{t_{i+1}} \phi(t)$
- Intégrale = surface bornée par courbe de $\phi(t)$, axe t, et lignes verticales $t=t_i$ et $t=t_{i+1}$

Méthode avec une formulation intégrale

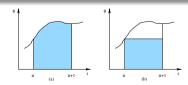
Approximation de l'intégrale par un rectangle

• Figure (b) : approximation de l'intégrale par un rectangle

$$\int_{t_i}^{t_{i+1}} f(t,x(t))dt = \int_{t_i}^{t_{i+1}} \phi(t)dt \doteq (t_{i+1}-t_i)\phi(t_i) = (t_{i+1}-t_i)f(t_i,x_i)$$

$$\Rightarrow x(t_{i+1}) = x(t_i) + (t_{i+1} - t_i)f(t_i, x_i)$$

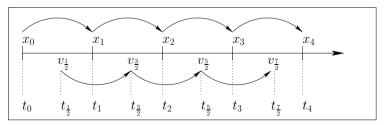
• Soient : $x(t_i) = x_i$, y_i approximation de x_i et $h = t_{i+1} - t_i$ \Rightarrow **méthode d'Euler explicite** : $y_{i+1} = y_i + hf(t_i, y_i)$



Méthode de Stormer-Verlet / leapfrog

ldée

- Schéma non applicable sur système du premier ordre
- Considère système du second ordre $\ddot{x}(t) = M^{-1}f(t,x(t))$
- Approxime la vitesse v au temps $t + \frac{h}{2}$
- Approxime la position x au temps t + h



Méthode de Stormer-Verlet / leapfrog

Calcul de la vitesse au milieu de l'intervalle :

Utilise le théorème de Taylor :

Othise le theoreme de Taylor:
$$\dot{x}(t+h) = \dot{x}(t) + h \, \ddot{x}(t) + \frac{h^2}{2} x^{(3)}(t) + \frac{h^3}{6} x^{(4)}(t) + \frac{h^4}{24} x^{(5)}(t) + O(h^5)$$

$$\dot{x}(t-h) = \dot{x}(t) - h \, \ddot{x}(t) + \frac{h^2}{2} x^{(3)}(t) - \frac{h^3}{6} x^{(4)}(t) + \frac{h^4}{24} x^{(5)}(t) + O(h^5)$$

$$\Rightarrow \dot{x}(t+h) - \dot{x}(t-h) = 2h \, \ddot{x}(t) + \frac{h^3}{3} x^{(4)}(t) + O(h^5)$$

$$\Rightarrow \dot{x}(t+h) = \dot{x}(t-h) + 2h \, \ddot{x}(t) + O(h^3)$$

$$\Rightarrow \dot{x}(t+\frac{h}{2}) = \dot{x}(t-\frac{h}{2}) + h \, \ddot{x}(t) + O(h^3)$$

$$\Rightarrow v(t+\frac{h}{2}) = v(t-\frac{h}{2}) + h \, a(t)$$

Méthode de Stormer-Verlet / leapfrog

Calcul de la position :

Position calculée sur l'intervalle [t, t+h] en utilisant l'approximation de la vitesse au milieu de l'intervalle ($midpoint\ method$) :

$$\frac{x(t+h)-x(t)}{h}=v(t+\frac{h}{2})$$

$$\Rightarrow x(t+h) = x(t) + h v(t + \frac{h}{2})$$

Méthode de leapfrog - Point de vue animation 3D

Données de départ

```
Position au temps t_0: x(t_0)
Vitesse au temps t_0: v(t_0)
Accélération au temps t_0: M^{-1}f(t_0, x(t_0), v(t_0))
```

Vitesse au temps
$$t_0 + h/2 : v(t_{1/2}) = v(t_0) + h/2 \dot{v}(t_0)$$

Vitesse au temps $t_0 + h : v(t_1) = v(t_0) + h \dot{v}(t_0)$

Position au temps $t_0 + h : x(t_1) = x(t_0) + h v(t_{1/2})$

Schéma d'intégration numérique

```
Accélération au temps t: \dot{v}(t) = M^{-1}f(t,x(t),v(t))

Vitesse au temps t+\frac{h}{2}: v(t+\frac{h}{2}) = v(t-\frac{h}{2})+h\,\dot{v}(t)

Vitesse au temps t+h: v(t+h) = v(t+\frac{h}{2})+h/2\,\dot{v}(t)

Position au temps t+h: x(t+h) = x(t)+h\,v(t+\frac{h}{2})
```