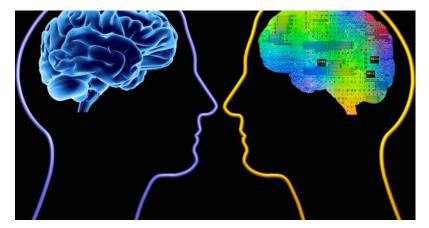


DEEP LEARNING DANS LE DOMAINE MÉDICAL

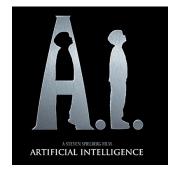
Master 1 Recherche Biomédicale

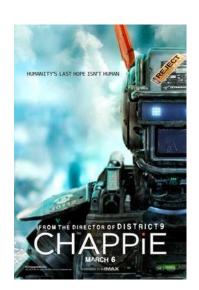
E. Reynaud, Labo. EMC, Univ. Lyon 2

Intelligence Artificielle : de l'histoire ancienne...







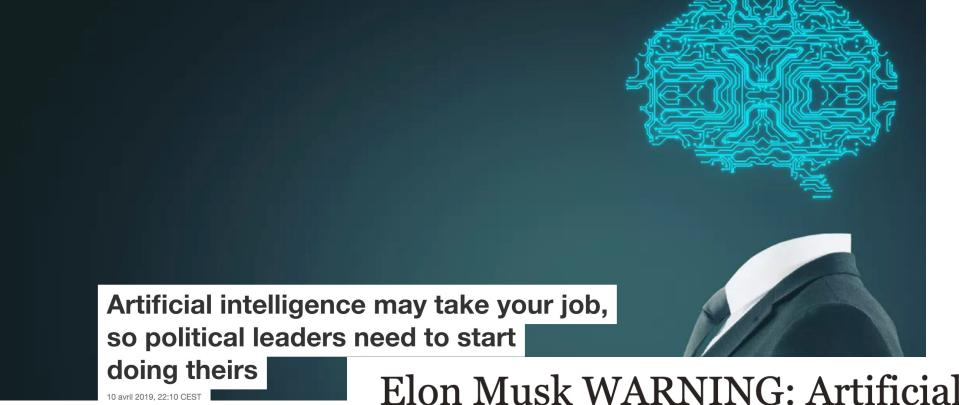


Artificial intelligence

Al wants to build powerful machines than can think / act intelligently

What is the most intelligent machine?

Powerful
Portable
Low cost in energy
Adaptative
Can learn
Small
Self-repair
etc



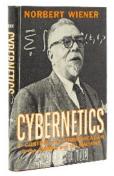
Elon Musk WARNING: Artificia Intelligence could be an 'IMMORTAL DICTATOR'

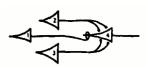
Hinton, LeCun, Bengio : la « conspiration » du deep learning

ial intelligence (AI) could bring with it an , that they do not "have to be evil to destroy

LES REBELLES DE LA SCIENCE 9/10. Au début des années 2000, contre l'opinion de leurs pairs, trois chercheurs en intelligence artificielle ont remis au goût du jour une voie jugée sans avenir : les réseaux de neurones.

Artificial Intelligence

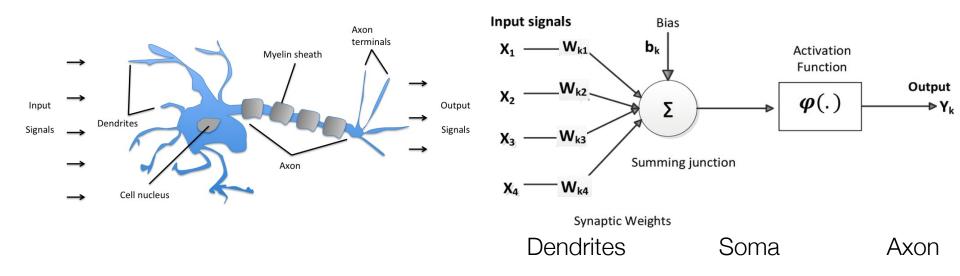




"Every aspect of learning or any other feature of intelligence can be so precisely described that a machine can be made to simulate it. » (Dartmouth Proposal, 1956)

Artificial Neural Networks aka ANN

McCulloch & Pitts, 1943 : MCP neuron model

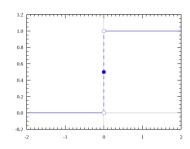


MCP neuron k:

Activation
$$A = x_1 \cdot w_{k1} + x_2 \cdot w_{k2} + x_3 \cdot w_{k3} + x_4 \cdot W_{k4} - b_k$$

Output
$$Y_k = \varphi(A)$$

Transfer function :
$$\varphi(x) = \begin{cases} 1 \text{ if } x \ge 0 \\ 0 \text{ if } x < 0 \end{cases}$$



Artificial Neural Networks aka ANN

For neuron k with n pre-synaptic inputs:

$$y_k = \varphi \left(\sum_{i=1}^n x_i w_{ki} - \theta_k \right)$$

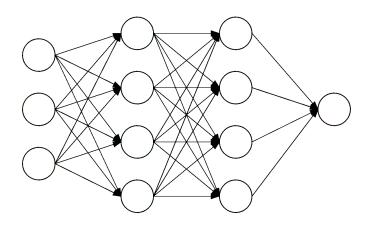
In code:

```
for i = 1 to n:
sum = sum + x_i * w_{ki}
sum = sum - \theta
out = activation_function(sum)
```

Activation function

Name +	Plot +	Equation +
Identity		f(x)=x
Binary step		$f(x) = egin{cases} 0 & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{cases}$
Logistic (a.k.a. Sigmoid or Soft step)		$f(x)=\sigma(x)=rac{1}{1+e^{-x}}$ [1]
TanH		$f(x) = anh(x) = rac{(e^x - e^{-x})}{(e^x + e^{-x})}$
ArcTan		$f(x)= an^{-1}(x)$
Rectified linear unit (ReLU) ^[15]		$f(x) = egin{cases} 0 & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{cases}$

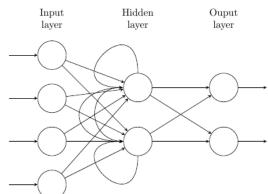
Artificial Neural Networks aka ANN

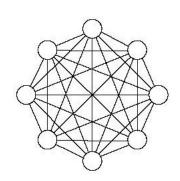


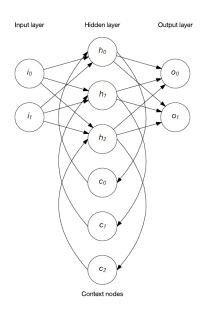
hidden layer 1

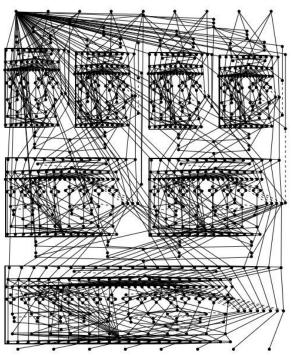
hidden layer 2

output layer





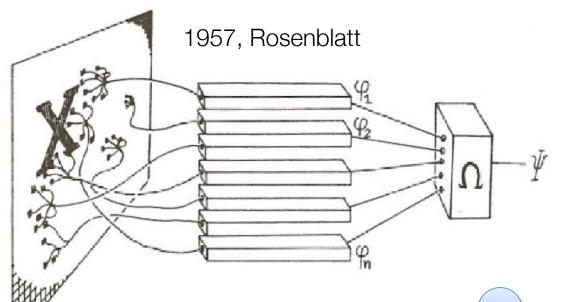




Artificial Neural Networks aka ANN

- Simple units
- Parallel Distributed Processing
- Units in a network : « knowledge » can emerge
- « Knowledge » lies in the synaptic weights
- ANN need to be trained in most cases: supervised learning
- Training = weights adjustments
- Error = difference between the network outputs and the desired outputs for a set of stimuli

The father of all ANN: The Perceptron



Function to learn:

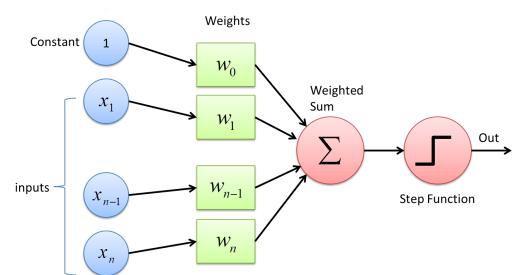
Lette r	d:
Χ	1
Т	0

Learning rule:

$$w_j(t+1) = w_j(t) + \eta (d - y) x$$

with:

- d : desired output
- y : network output
- η: learning rate



$$X1 = [101010101]$$



eta*(d-y)

0

-0.5

0.5

0

0

d-y

0

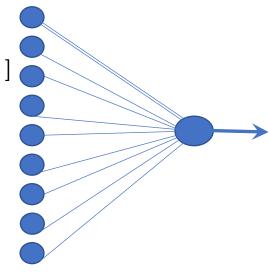
-1

0

0

$$X2 = [111010010]$$

$$\eta = 0.5$$



nouveaux poids

[-0.5 -0.5 -0.5 0 -0.5 0 0 -0.5 0]

[0 -0.5 0 0 0 0 0.5 -0.5 0.5]

[0 -0.5 0 0 0 0 0.5 -0.5 0.5]

[0 -0.5 0 0 0 0 0.5 -0.5 0.5]

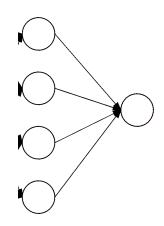
[00000000]

	X1 = [101010101]; $X2 = [11101010010];$
	<pre>W=[0 0 0 0 0 0 0 0 0]; %W = randn(9,1); disp(W);</pre>
	eta = 0.5; d1 = 1; d2 = 0;
F	<pre>i=1; while i < 10 iter = sprintf('EPOQUE n. disp("</pre>
	disp(iter)

X1 = [1 0 1 0 1 0 1 0 1]

d2 = 0;				
i=1;		d	Σ	У
<pre>∃ while i < 10 iter = sprintf('EPOQUE n. %d',i); disp("</pre>	X	1	0	1
<pre>disp(iter) A=sum(X1.*W); if A>=0 y = 1;</pre>	T	0	0	1
else y = 0; end	X	1	-1.5	0
<pre>fprintf('Presentation X1 lettre > W=W + (eta * (d1-y))*X1; disp((W'));</pre>	T	0	-1	0
A=sum(X2.*W);	X	1	1	1
<pre>if A>=0 y = 1; else y = 0; end fprintf('Presnetation X2 lettre T W=W + (eta * (d2-y))*X2; disp(W'); i=i+1;</pre>	output	resea	u: %d\n',	y);
end ·				

The Perceptron complexified: MLPs

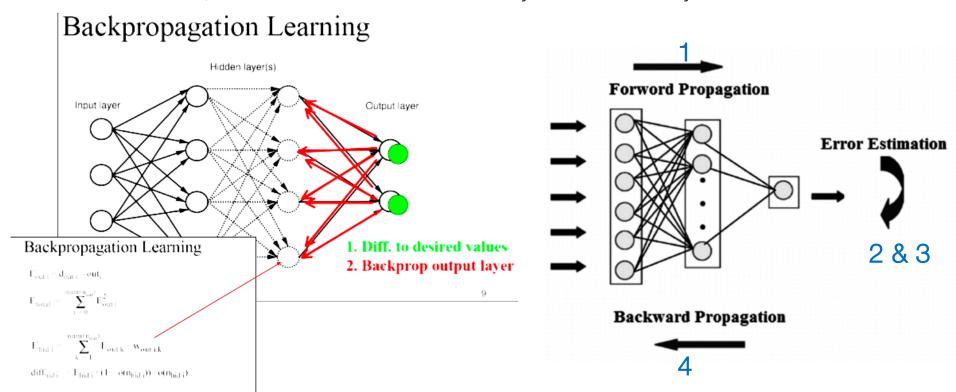


MLP = perceptron

- + hidden layers to complexify decision regions
- + activation function : sigmoïd / tanh
- + backpropagation ©

Backpropagation simplified

- 1 From Layer 1 to Output layer : input is propagated
- 2 Network output is computed
- 3 Error is computed (from desired -output)
- 4 Weights are updated from Output Layer to previous layers, Error is distributed backwards according to which weights contributed the most to this error, then to the error in the next layers etc until Layer 1



Deep Learning

- « Brain » / « Cognition » inspired
- MLP with many layers + modified architecture

Official citation from the Association for Computing Machinery for the

AWARDS.ACM.ORG

2018 Turing Award.

Fathers of the Deep Learning Revolution Receive ACM A.M. Turing Award

○○ 2,7 K

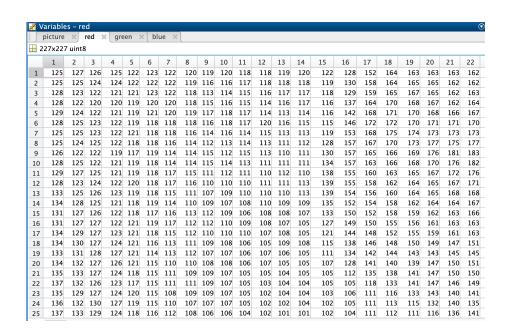
132 commentaires 468 partages

- Hierarchical representation of information through the layers (see visual cortex for example)
- Modified neurons (eg. : ReLU units)
- Less weights, more learning!
- Krizhevsky et al. (2012): won the ImageNet challenge with AlexNet, similar to LeNet (LeCun 1998)

Computer and images

What we see

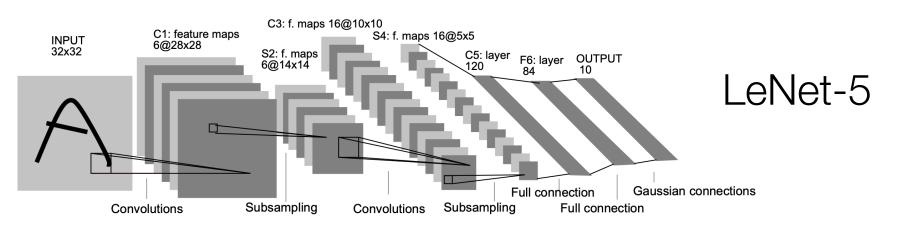
Image of dimension N*M

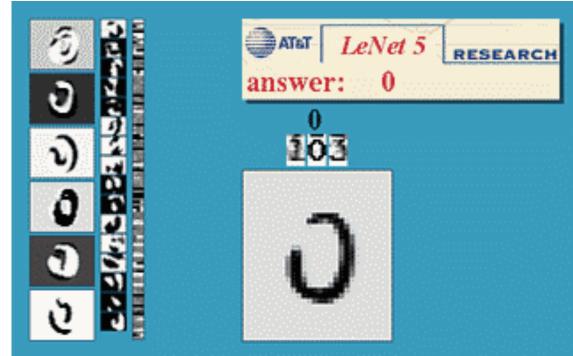


What computers see

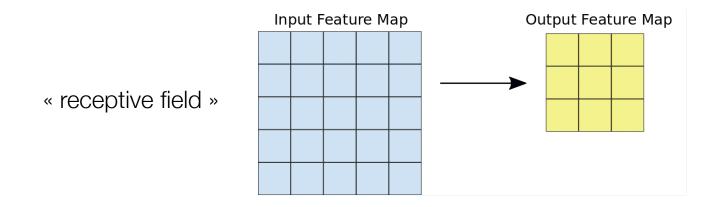
tensor of N * M * 3 integers between 0 and 255 (for 8-bits RGB images)

Convolutional Neural Networks aka CNN





Convolution Layer

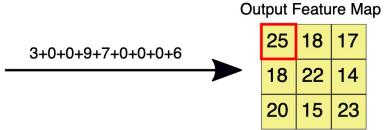


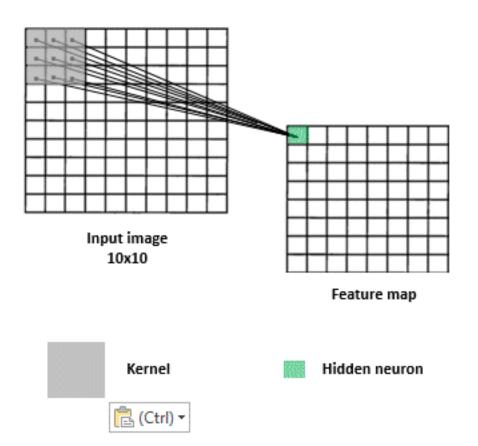
Input Feature Map

-									
3	5	2	8	1	Со	nvolu	ıtiona	ıl Filte	er
9	7	5	4	3		1	0	0	
2	0	6	1	6		1	1	0	
6	3	7	9	2		0	0	1	
1	4	9	5	1					•

Input Feature Map

3×1	5×0	2×0	8	1
9×1	7×1	5×0	4	3
2×0	0×0	6×1	1	6
6	3	7	9	2
1	4	9	5	1

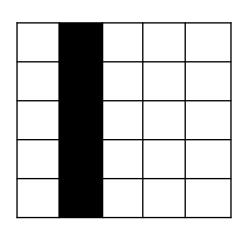




1x1	1x0	1x1	0	0
0x0	1x1	1 x 0	1	0
0x1	0x0	1x1	1	1
0	0	1	1	0
0	1	1	0	0

4	

Convolution Layer: the feature detector



	0	1	0	
*	0	1	0	→
	0	1	0	

3	0	0
3	0	0
3	0	0

	0	0	0
*	1	1	1
	0	0	0

1	1	0
1	1	0
1	1	0

Input

filter (weights)

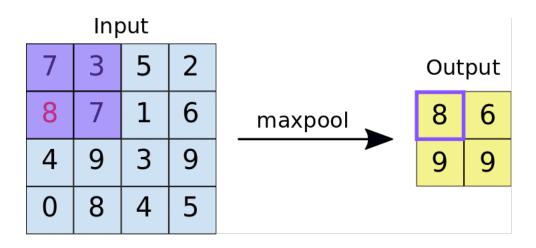
feature map

Pooling Layer

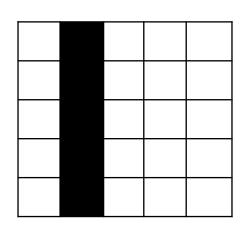
 Downsampling the feature maps by associating with a smaller filter a single value

(eg: max-pooling with 2*2 filter)

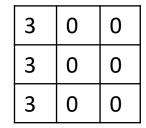
 Saves computation time, reduces dimensions, but preserves critical features

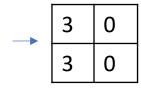


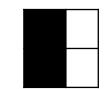
Convolution Layer + Maxpool layer

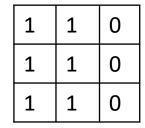


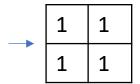
	0	1	0	
*	0	1	0	-
	0	1	0	











Input

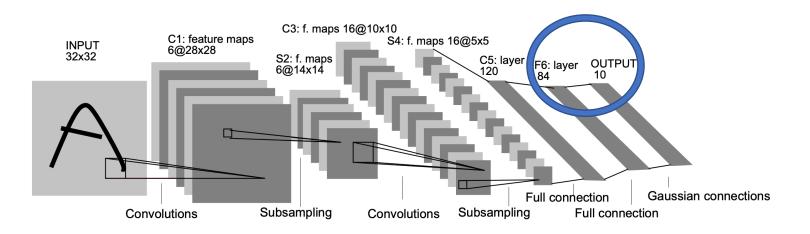
filter (weights)

feature map

maxpool

Fully connected layers

- End of CNN: one or more fully connected layers
- Performs classification based on the features extracted by the convolutions.
- Outputs a probability value from 0 to 1 for each of the classification labels the CNN is trying to predict
- One output neuron / category to include



ConvNets for image recognition

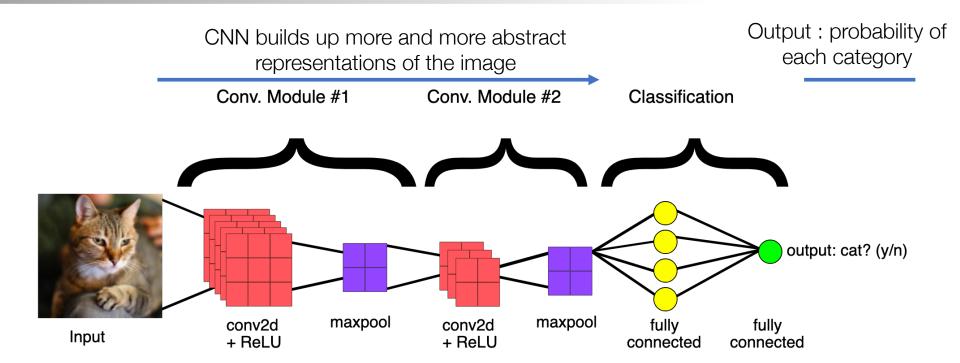
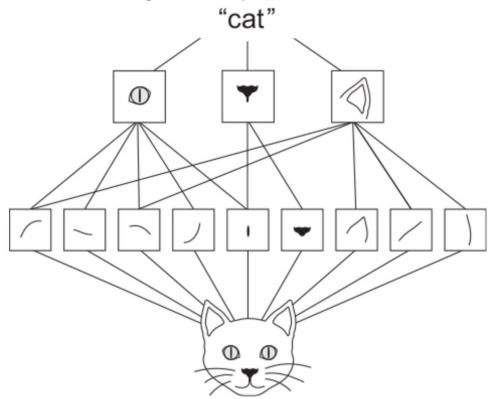
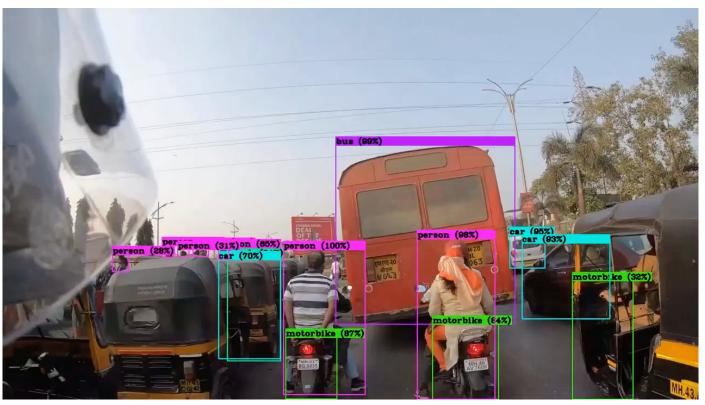


Figure 5.2. The visual world forms a spatial hierarchy of visual modules: hyperlocal edges combine into local objects such as eyes or ears, which combine into high-level concepts such as "cat."



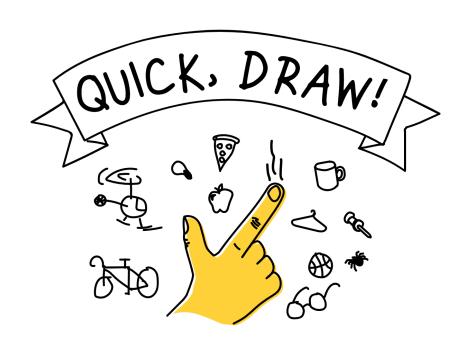
Démo: détection d'objets, YOLOv4



Source: https://www.youtube.com/watch?v=h08N0HX16l8, GrahamML

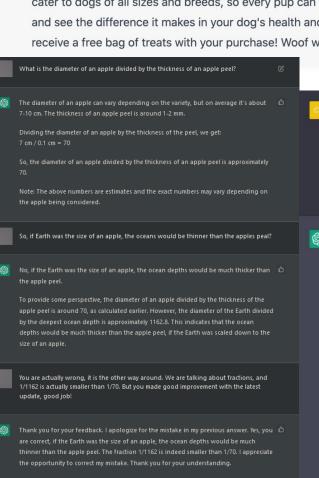
Démo : Quickdraw (Al Experiments, Google)

https://quickdraw.withgoogle.com/



Please write a dog food advertisement in a magazine read by dogs

"Woof! Are you tired of the same old kibble day after day? Switch things up with our delicious and nutritious dog food! Made with high-quality ingredients, our food will keep your tail wagging and your taste buds satisfied. Plus, our specially-formulated recipes cater to dogs of all sizes and breeds, so every pup can enjoy a hearty meal. Try it today and see the difference it makes in your dog's health and happiness. Order now and receive a free bag of treats with your purchase! Woof woof!"



ell--1-----6-------ll BII--1-----8------II G||-3---3-----10*------| DII--3-----8------II A||--1--1----1-0----1------1 E||-------3--3--3--3-----|| Remember, your personal style and preference should ultimately guide your choice of shoes, so if you feel that one of the other options complements your outfit better, then go for it!

continue this guitar pattern

BII--1-----1-----GII--3----3------3-----

A||--1--1----1-0----1-----1

ell--1--4--6--4--1--4--6--4--1--4

BII--1--4--6--4--1--4

G||--3--5--7--5--3--5

DII--3--5--7--5--3--5

A||--1--3--5--3--1--3

This is an example of how the pa

the desired style or genre of mus

D||-3----3----- 😘

How do I get my crush to like me?

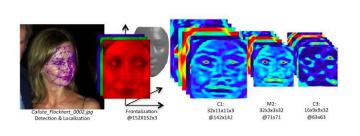
Getting someone to like you can be difficult, as it depends on many factors such as compatibility and timing. However, there are some things you can do to increase the chances of your crush developing feelings for you: * Be confident: Confidence is attractive, so try to be comfortable in your own skin and believe in yourself. * Show interest: Let your crush know that you are interested in them by flirting, making eye contact, and showing genuine interest in their life and interests. * Be a good listener: Show your crush that you value what they have to say by actively listening to them and asking questions. * Be kind and respectful: Treat your crush and others with kindness and respect, as people are more likely to be attracted to those who display good character. * Be yourself: Don't try to be someone you're not in order to impress your crush, as ultimately, they will appreciate the real you. my creativity and ability to come up with new ideas?" Sure! Here are some sample behavioral interview questions about your ability to create and execute successful marketing campaigns: 1. Can you describe a time when you had to develop and implement a marketing campaign from start to finish? What was the campaign for, and what were the results? research when planning a marketing you use to gather information? hannels will be most effective for a campaign where you had to make this rketing campaign? What metrics do you use, n future campaigns? be creative in order to solve a problem or How did your solution impact the campaign's Out of these four shoes, which would you say works best with outfit #3: light brown Timberlands, white Air Force Ones, black Air Max, dark red Converse Of the four shoe options you mentioned, the white Air Force Ones would work best with Outfit #3 (white T-shirt, black leather jacket, and dark blue jeans). The white Air Force Ones are a classic and versatile sneaker that can add a clean and casual look to the outfit. The black Air Max may be a bit too sporty for the outfit, as the black leather jacket and dark blue jeans have a more edgy and casual vibe. The dark red Converse may clash with the black leather jacket and look out of place with the rest of the outfit. The light brown Timberlands may work, but they could be a bit too bulky and heavy for the outfit, as the outfit already has a lot of texture and weight with the leather jacket and jeans.

Identifier son interlocuteur

https://www.visagetechnologies.com/HTML5/latest/Samples/ShowcaseDemo/ShowcaseDemo.html

Deep Learning for Al

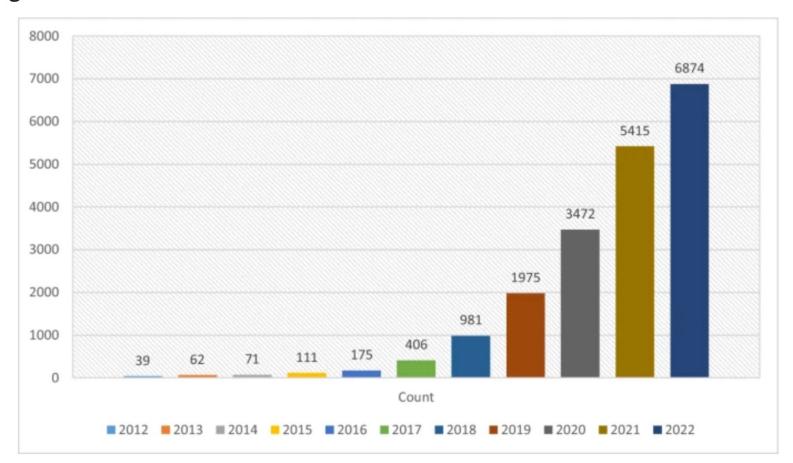
- GAFAM:
 - DeepMind, AlphaGo, Google Car, Cortana, Siri, Watson etc
- Image recognition, automatic labelling, voice recognition, buying recommandations, automatic translation, art creation, fraud detection, spam filtering, customer profiling, personalization of contents, facial identification, emotion recognition, video creation, chatbots, game playing, natural language processing, etc ...



Deep Learning for ... medical applications?

- DL is a great tool for image recognition and classification
- All medical diagnostics that are based on medical images and that require image classification / object detection can benefit from DL:
 - Dermatology
 - Radiology
 - Ophtalmology
 - Pathology...
- DL can help physicians to detect relevant areas in images
- DL can help to predict the outcomes
- DL can offer a second opinion
- DL can be « the physician's third eye » (a well-trained eye)

Fig. 1

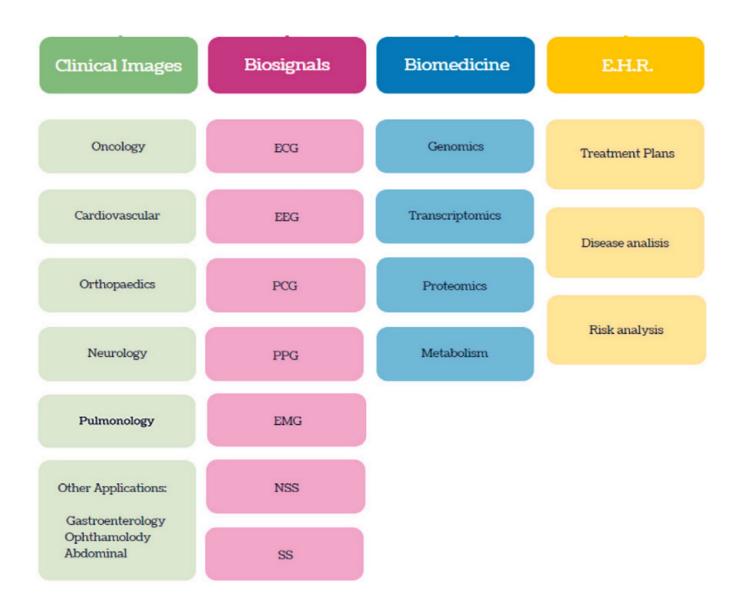


The yearly distribution of DL techniques in HCS in the PubMed database for the last decade

Al in Health: long story, many questions

- Old story, beginning with Expert Systems GOFAI
- Problem : can we make « experience » explicit ?
- Can we replace humans with machines in the medical domain?
- Can we make patients accept a machine's opinion?
- What if there is no agreement?

Champs d'application du DL en médecine



ROBOTS COMPAGNONS

CHIRURGIE ASSISTÉE PAR ORDINATEUR

NOTAMMENT POUR LES PERSONNES ÂGÉES OU FRAGILES

CHIRURGIE ASSISTÉE PRÉVENTION en population générale

• ANTICIPATION D'UNE ÉPIDÉMIE
• PHARMACOVIGILANCE

Les domaines d'application de l'IA en médecine

Le deep learning dans la pratique :

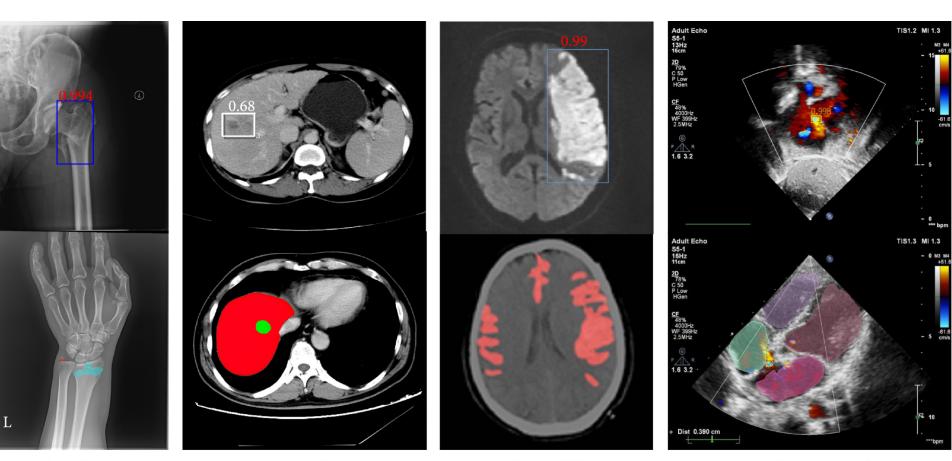
transcription de consultations résumé de dossiers médicaux assistance aux tâches médico-administratives et cliniques génération de contenus pédagogiques destinés à la formation.

Mais aussi ...:

analyse d'images médicales aide au diagnostic découverte de molécules pour médicaments personnalisation des traitements aiguillage aux urgences

etc etc

1 – DL and clinical images



Bone X-ray Liver CT Brain MRI Cardiac ultrasound

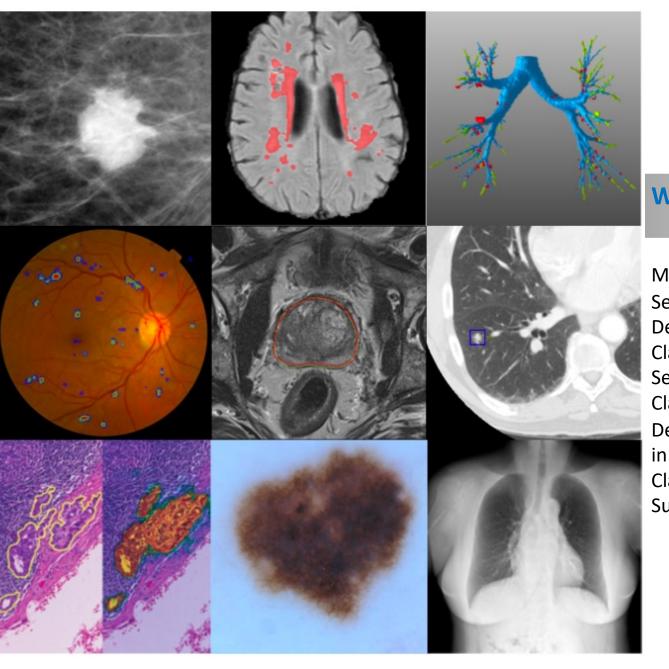
With MRI images, a CNN network can do these things:

- Tissue/anatomy/lesion/tumor segmentation → 1
- Image (re)construction/enhancement → 2
- Disorder classification (eg. AD, MCI, Schizophrenia) → 3
- Lesion/tumor detection and classification
- Survival/disease activity/development prediction
- Other

All image-based tasks can benefit from DL

From images, DL can help to:

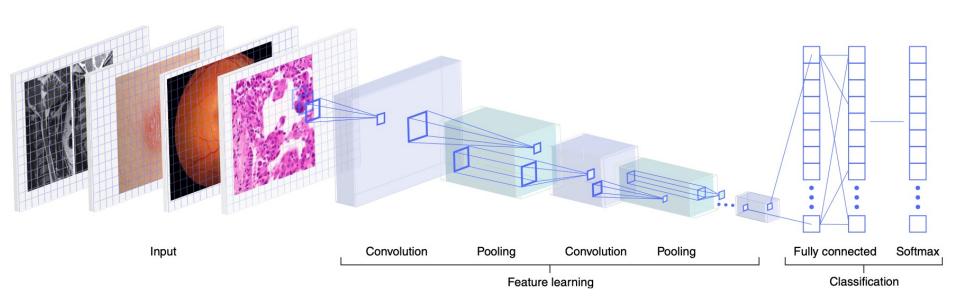
- Identifying moles vs melanomas
- Diabetic retinopathy
- Cardiovascular risks
- Breast lesion detection in mammograms
- Flagging large artery occlusions
- Predicting survival probabilities
- Combining imaging modalities



What DL can do:

Mammographic mass classification,
Segmenting brain lesions
Detecting leaks in airway tree,
Classifying diabetic retinopathy
Segmenting prostate,
Classifying nodules
Detecting breast cancer metastases
in lymph nodes
Classifying skin lesions,
Suppressing bones in chest X-Rays

How does it works?



1.1- DL for segmenting medical images

Segmenting from patches of images + context

Segmenting = classifying « in » vs « out »

 Class balance is skewed severely towards « out » class in a training setting.

Segmenting organs, lesions, surgical objects (stents)

Segmenting the pancreas

- Ex.: pancreas segmentation with CNN from CT scans
- Pancreas has a very high anatomical variability: challenging

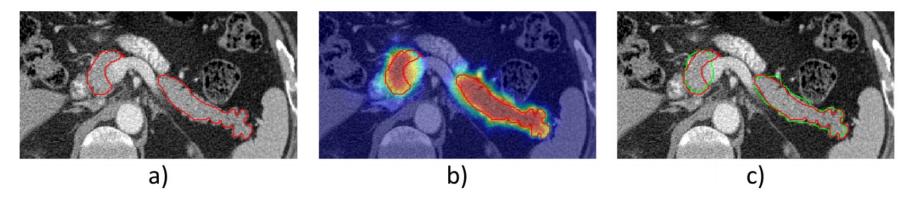


Figure 6: Example of pancreas segmentation using the proposed R_2 -ConvNet approach in testing. a) The manual ground truth annotation (in red outline); b) the $G(P_2(x))$ probability map; c) the final segmentation (in green outline) at $p_2 = 0.6$ (DSC=82.7%).

Segmenting the brain

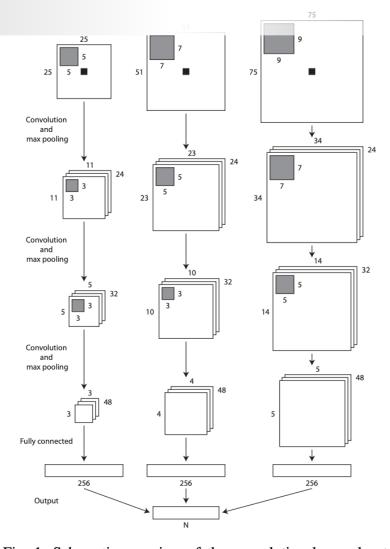


Fig. 1: Schematic overview of the convolutional neural network. The number of output classes, N, was set to 9 (8 tissue classes and background) for the neonatal images, to 8 (7 tissue classes and background) for the ageing adult images, and to 7 (6 tissue classes and background) for the young adult images. After the third convolution layer, max-pooling is only

Inside the CNNs...

TABLE I: Acquisition parameters for the images used in this paper.

	Cor. 30 wks	Cor. 40 wks	Ax. 40 wks	Ageing adults	Young adults
Age	30 weeks PMA	40 weeks PMA	40 weeks PMA	70 years	23 years
Acquisition protocol	Coronal T2-weighted	Coronal T2-weighted	Axial T2-weighted	Axial T ₁ -weighted	Sagittal T ₁ -weighted
Number of images	10	5	7	20	15
Reconstruction matrix	$384 \times 384 \times 50$	$512\times512\times110$	$512 \times 512 \times 50$	$240 \times 240 \times 48$	$256 \times 256 \times (261-334)$
Reconstructed voxel sizes [mm ³]	$0.34 \times 0.34 \times 2.0$	$0.35\times0.35\times1.2$	$0.35\times0.35\times2.0$	$0.96\times0.96\times3.0$	$1.0\times1.0\times1.0$

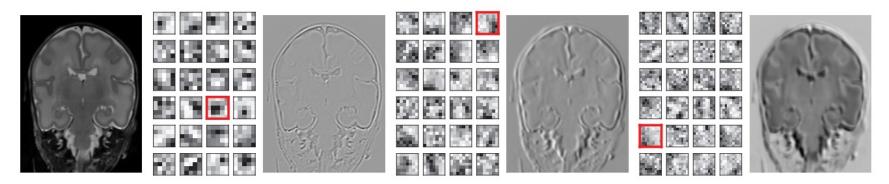


Fig. 2: Trained convolution kernels in the first layer after 10 epochs using the 5 training images acquired at 30 weeks PMA, and the kernels indicated in red applied to a test image. From left to right: the T_2 -weighted test image, the kernels of 5 \times 5 voxels, the image convolved with the indicated 5 \times 5 kernel, the kernels of 7 \times 7 voxels, the image convolved with the indicated 7 \times 7 kernel, the kernels of 9 \times 9 voxels, and the image convolved with the indicated 9 \times 9 kernel.

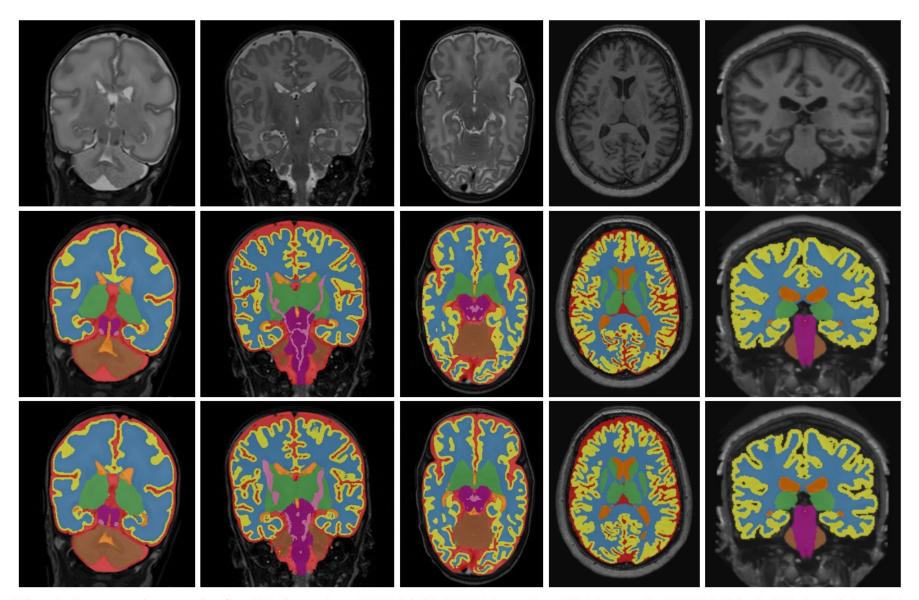


Fig. 4: Segmentation results for CB (brown), mWM (pink), BGT (green), vCSF (orange), (u)WM (blue), BS (purple), cGM (yellow), eCSF (red) in coronal images acquired at 30 weeks PMA (first column), coronal images acquired at 40 weeks PMA (second column), axial images acquired at 40 weeks PMA (third colum), axial images of ageing adults (fourth colum), and

Inside a sulcus of a 30 weeks PMA brain

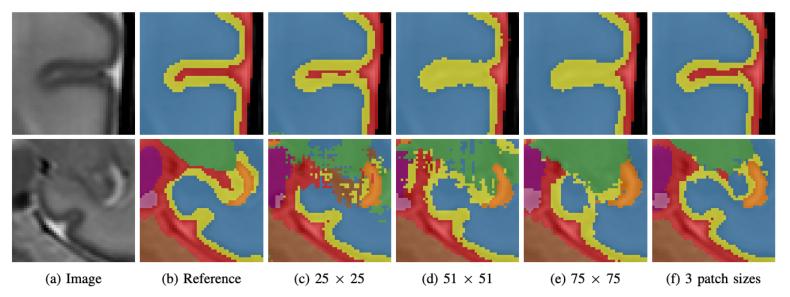


Fig. 5: Segmentation results in a T_2 -weighted image (left) acquired at 30 weeks PMA for the lateral sulcus (top) and the hippocampus (bottom) using (from left to right), manual segmentation, only a patch of 25×25 voxels, only a patch of 51×51 voxels, only a patch of 75×75 voxels, and these 3 patch sizes combined. The tissues are labelled as follows: CB in brown, mWM in pink, BGT in green, vCSF in orange, uWM in blue, BS in purple, cGM in yellow, and eCSF in red.

Left ventricle segmentation - cardiovascular diseases

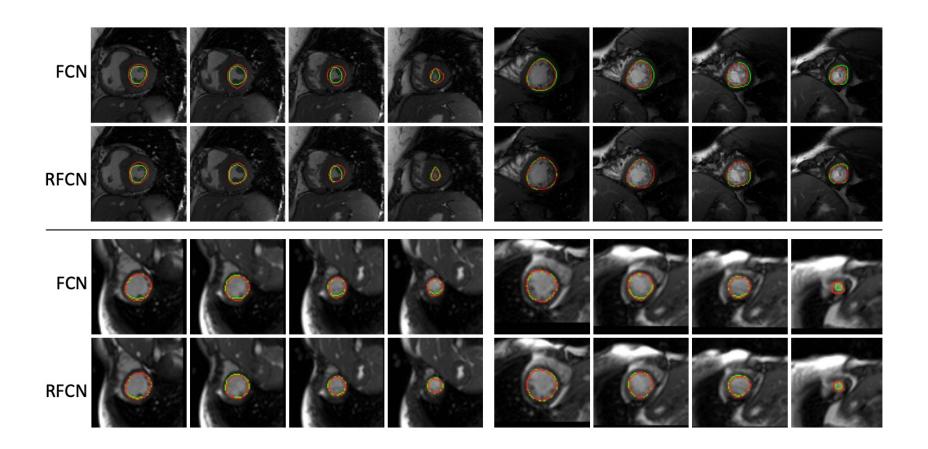
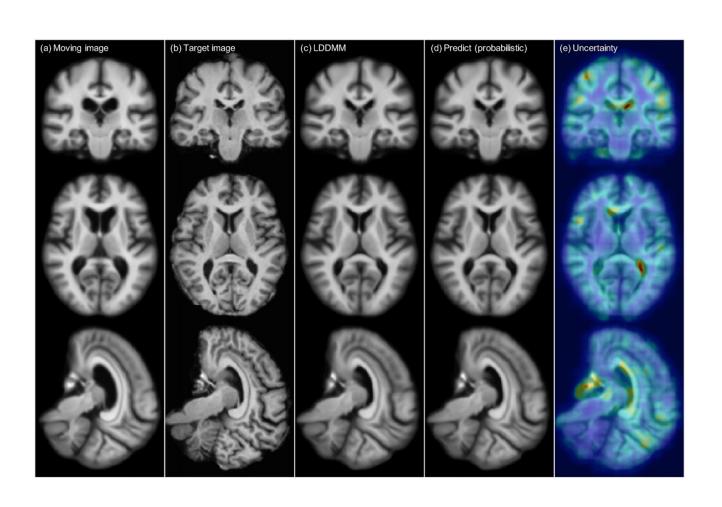


Fig. 3. Example of segmented left ventricle using RFCN and FCN architectures from MICCAI dataset (top two rows) [21] and PRETERM dataset (bottom two rows). Green contours represent the ground truth and red contours are the predicted contours. RFCN is often able to better delineate the left-ventricle contours with weaker boundaries

1.2- Image registration: example of fMRI



1.3 - DL for classifying medical images

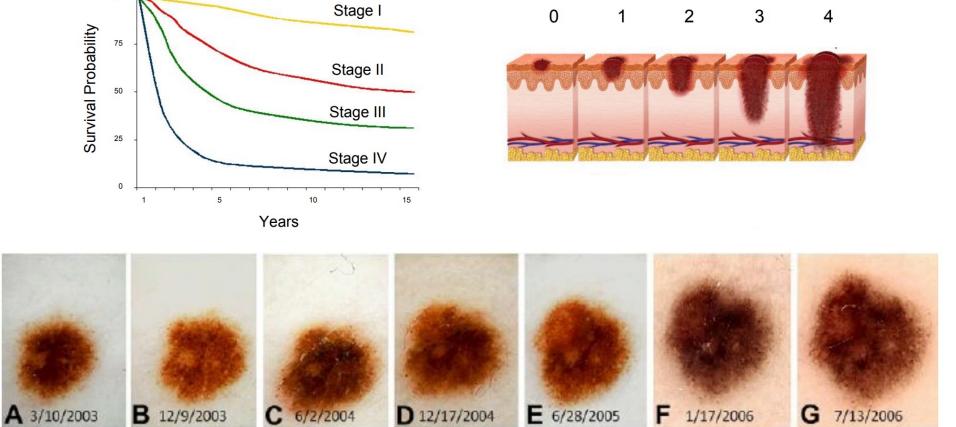
Predict the category of an image

Classify images (group similar images)

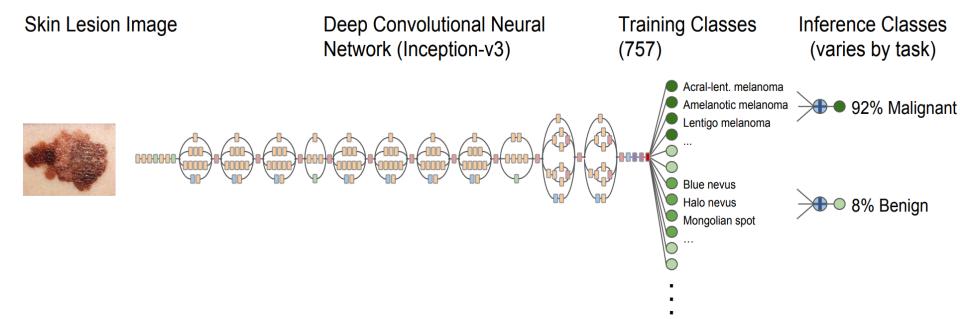
• Ex.: cancer, melanoma, AD, depression, schizophrenia etc

From images (anat and functional) + other data

Skin cancer



Epidermal Lesions Melanocytic Lesions Melanocytic Lesions (Dermoscopy) Benign Malignant



Transfer learning

- Application of a process suited for one specific task to a different problem
 - DL model trained to recognize every day color images, such as animals
 - Same model used to classify radiographs.
- All images share similar features such as edges and blobs
 - The model has learnt to « see »
 - Better than random initialization
 - Re-learning on small medical databases

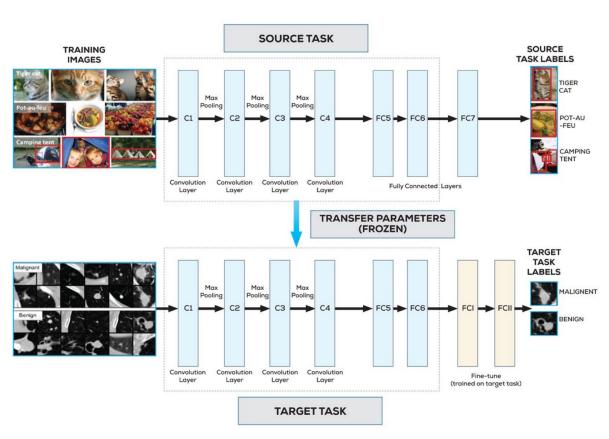
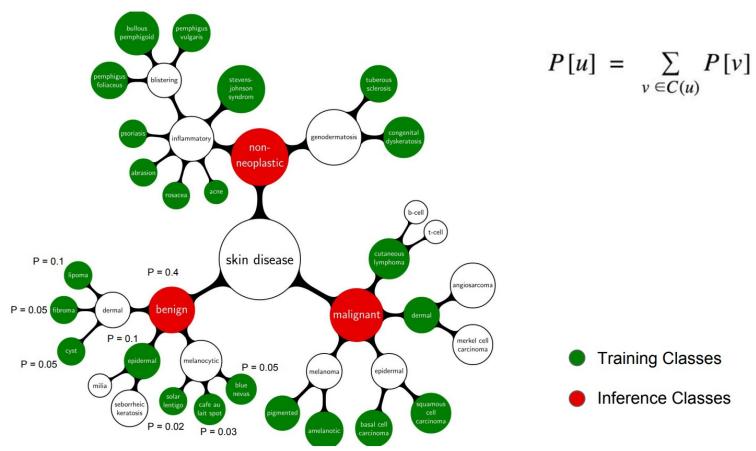


Figure 3. Schematic representation of convolutional neural network (CNN) architecture and the concept of "transfer learning." Because images from multiple sources have common salient features (borders, shapes, etc.), the core of a CNN trained for 1 task (*Top row*: eg, cat from pot-au-feu from camping tent) can be "transferred" (ie, used without modification) for a second task (*Bottom row*: benign from malignant tumors in computed tomography images). Because only the distal layers (fully connected [FC] I and FCII) remain to be trained, much less training data are required for the second task. Max indicates maximum.

Skin Cancer Classification



Dermatologist-level Classification of Skin Cancer with Deep Neural Networks

Andre Esteva*, Brett Kuprel*, Rob Novoa, Justin Ko, Susan Swetter, Helen Blau, Sebastian Thrun Nature, 2017 (Equal contribution authors*)

Classifier	Three-way accuracy	
Dermatologist 1	65.6%	
Dermatologist 2	66.0%	
CNN	69.5%	
CNN - PA	72.0%	

Disease classes: three-way classification

- 0. Benign single lesions
- 1. Malignant single lesions
- 2. Non-neoplastic lesions

Classifier	Nine-way accuracy	
Dermatologist 1	53.3%	
Dermatologist 2	55.0%	
CNN	48.9%	
CNN - PA	55.3%	

Disease classes: nine-way classification

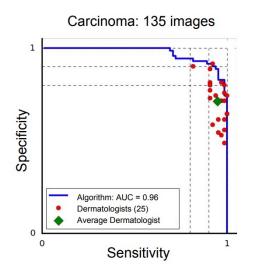
- 0. Cutaneous lymphoma and lymphoid infiltrates
- 1. Benign dermal tumors, cysts, sinuses
- 2. Malignant dermal tumor
- 3. Benign epidermal tumors, hamartomas, milia, and growths
- 4. Malignant and premalignant epidermal tumors
- 5. Genodermatoses and supernumerary growths
- 6. Inflammatory conditions
- 7. Benign melanocytic lesions
- 8. Malignant Melanoma

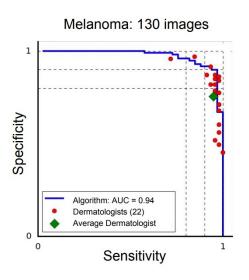
Signal Detection Theory

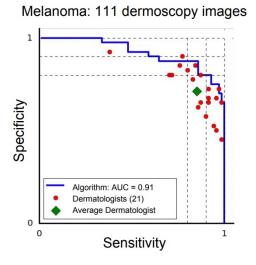
- Accuracy (ACC) = (TP + TN)/(TP + TN + FP + FN)
- Sensitivity (SEN) = TP/(TP + FN)
- Specificity (SPEC) = TN/(TN + FP)

	H ₁ : signal present	H ₀ : signal absent	
Detection	True Positive	False Positive type I error	
Null result	False Negative type II error	True Negative	

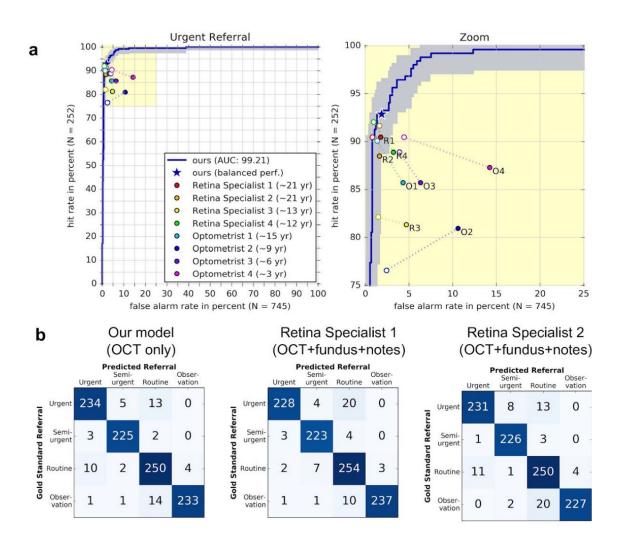
ROC Curves: sensitivity / specificity



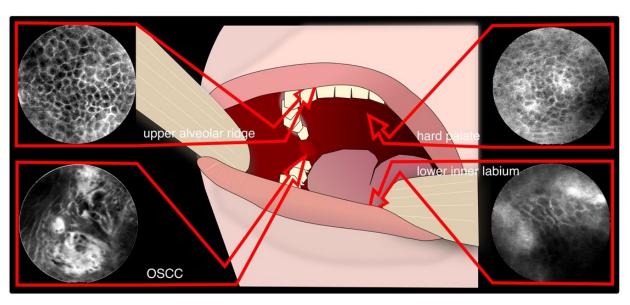


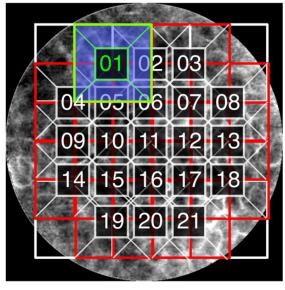


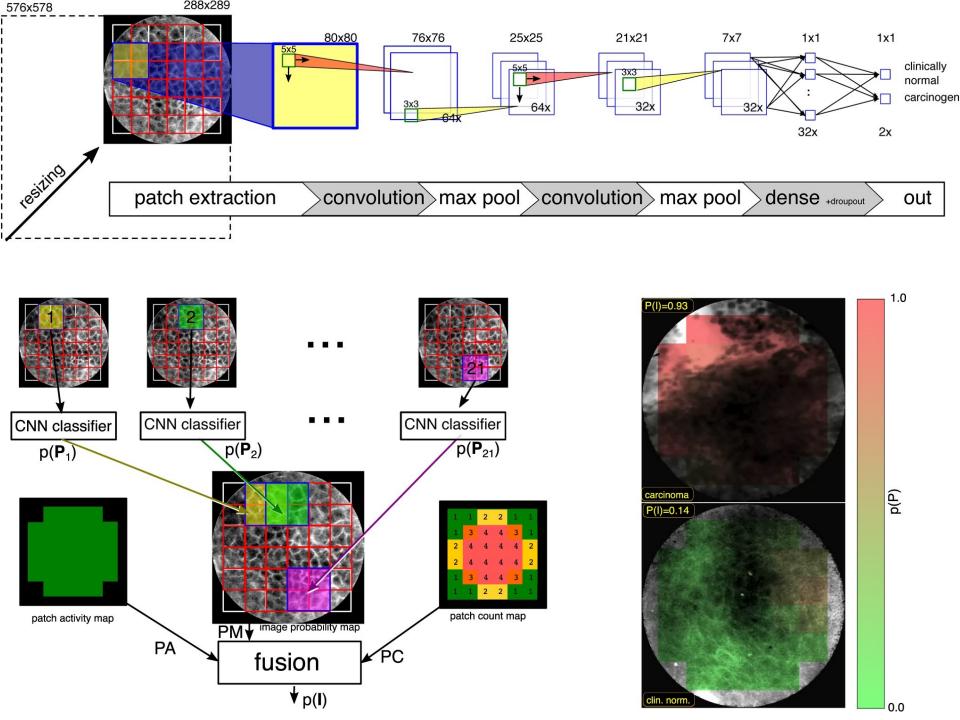
Retina



Classifying laserendomicroscopy images of the oral cavity for cancer (Oral Squamous Cell Carcinoma (OSCC)

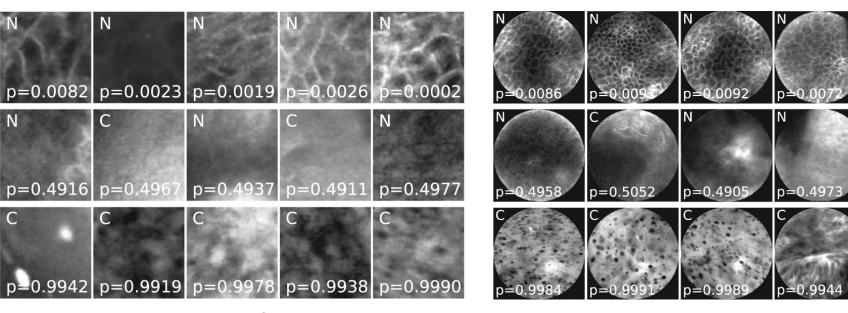






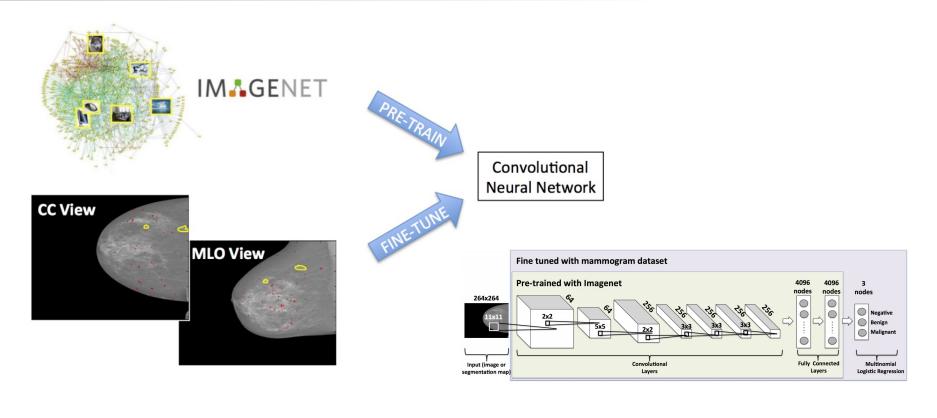
Patches

images



• N = normal, C = cancer

Classifying Mammogram Exams Containing Unregistered Multi-view Images and Segmentation Maps of Lesions



AD / MCI classification

- When and which MCI patients will develop AD?
- Identify different progression stages of AD patients based on MRI and PET scans.
- MRI scans of 2146 subjects (803 for training and 1343 for validation) to predict MCI subjects' progression to AD dementia
- Databases :
 - ADNI (http://adni.loni.usc.edu): MRI scans of 1711 subjects
 - AIBL (www.aibl.csiro.au): 435 subjects.

A Robust Deep Model for Improved Classification of AD/MCI Patients

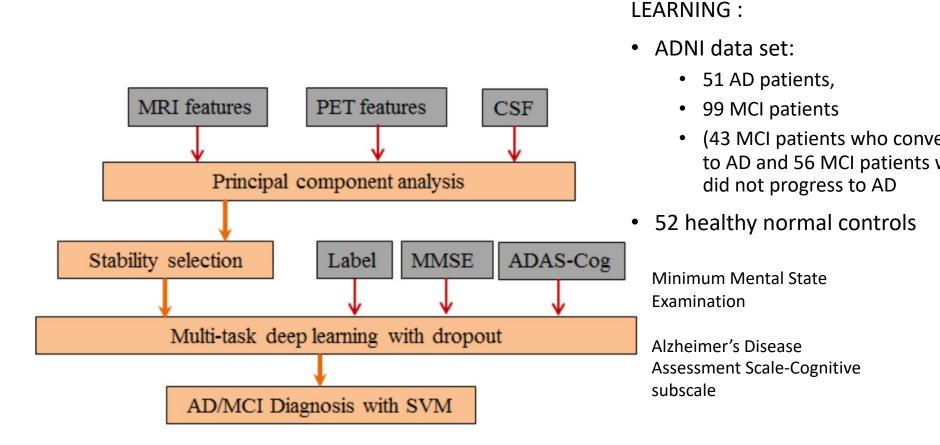


Fig. 1. Diagram of the proposed multi-task deep learning framework.

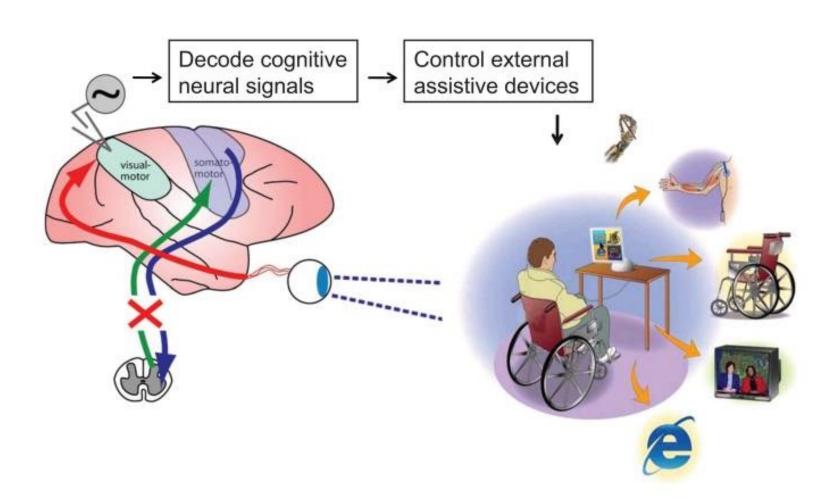
Results: accuracy of classification

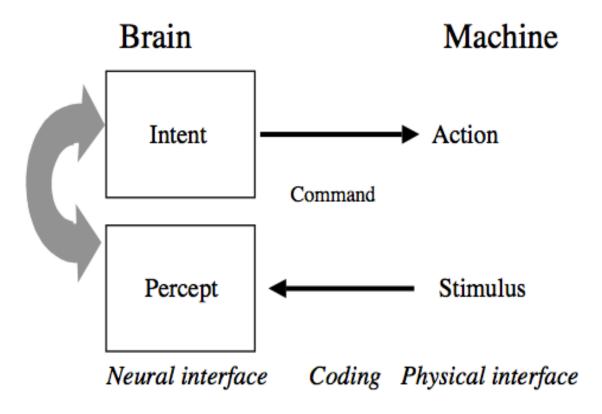
Tasks	Proposed
AD vs HC	91.4 (1.8)
MCI vs HC	77.4 (1.7)
AD vs MCI	70.1 (2.3)
MCI.C vs MCI.NC	57.4(3.6)
Average	74.1

AD patients vs Healthy Control subjects (AD vs HC),
MCI patients vs HC (MCI vs HC),
AD patients vs MCI patients (AD vs MCI)
MCI-converted vs MCI-non converted (MCI.C vs MCI.NC).

2 – DL and biosignals

• Brain Computer Interface





BrainGate: Kathy Hutchinson

Table 2
For each medical area this table lists the DL tasks, the obtained contributions and the main used DL models.

Area	Task	Contribution	Model
ECG	Arrhythmia	Classification and detection of arrhythmia levels	RNN [198], LSTM [200], CNN [218], CNN+RNN [2
	Glucose	Evaluation of low glucose levels	CNN [204]
	Ventricular	Data relative to different races	CNN [201]
	Atrial	Choice of low-dimensional datasets	CNN [199]
		Use of ECG with different lengths	CNN [220]
	Foetal	Restriction of data only one ECG channel	AE [221]
	Apnoea	Classification of obstructive sleep apnoea and hypopnoea	CNN [203]
EEG	Epilepsy	Multimodal approach	CNN+LSTM [222]
		Increase in the SNR	CNN [223]
	Emotions	Improvement in performance in heterogeneous samples	DL [222].
PCG	Heart abnormalities	Optimal identification of heart errors	CNN [208]
PPG	Blood analysis	Use of signals correlations	LSTM [211], CNN [212,213]
EMG	Muscle conditions	Improvements in signals accuracy	CNN [214], AE [215]
NNS, SS	Biosignals analysis	Accurate analysis of biosignals	CNN [216,217]

3 – Electronic health records and DL

 CBR, Content-Based Retrieval: technique for knowledge discovery in massive databases (« Big Data »)

Generating reports from images

Finding similar cases in previous records

COVID + connected watches

- EHR are growing
- 10 million patients over a decade
- A single hospitalisation = 150000 pieces of data

 Then: understand questions in natural language such as: what is this patient's problem list?

Help to transcript patient visits (automatic speech recognition)

Table 4This table lists the medical tasks, the contributions provided and the DL models most frequently used in EHR.

Area	Task	Contribution	Model
EHR	Disease prediction	Integration of different medical data in cancer analysis	CNN [263]
		High accuracy in dyslipidemia prediction	LSTM [261]
		Improvement in the imbalance problem in heart failure	CNN [264]
		Impact of external databases in sleep staging evaluation	CNN [265]
		Mortality risk estimation by using patients' historical information	LSTM [262]
		Optimal heart failure prediction	LSTM [51,259]
		Integration of structured and unstructured data for the prediction of acute kidney injury subtypes	LSTM [260]
	Risk analysis	Organization of the data on the basis of semantic spheres	GCNN [266]
		Feature extraction by reducing the data dimensions	AE [268]
	Treatment plans	Construction of a treatment plans by using small population sets	LSTM [267]
		Estimation of a treatment plan by exploiting data correlations	CNN [6]

4 – Other applications

- Predict 3D structure of proteins from aminoacids : AlphaFold
 - understanding diseases
 - designing drugs
 - developing personalized medicine.

Deep learning: new computational modelling techniques for genomics

- As a data-driven science, genomics can use machine learning to capture dependencies in data and derive novel hypotheses.
- The ability to extract new insights from the exponentially growing volume of data requires more expressive machine learning models.
- DL: used for, for example, predicting the impact of genetic variation on gene regulatory mechanisms such as DNA accessibility and splicing.

Table 3

For each medical area this table lists the medical tasks, the contributions obtained and the DL model most frequently used.

Area	Task	Contribution	Model
Genomics	DNA structure	Prediction of DNA missing values from dependences	RNN [230]
		Identification of DNA regions by exploiting the spatial configuration	GCNN [230]
		Simplification of DNA expressions by reducing noisiness	AE+RNN [232], AE [231]
	Disease prediction	High accuracy in the identification of sub-kinds of tumour; Personalized Treatments	Deep Triage [44]
		Improvement in cancer prediction in very sparse molecules	SAE [231]
		Parallel extraction of features from pure DNA expressions	CNN+RNN [234]
		Data integration	DAE [233], AE [232]
Transcriptomics	RNA structure	Reduction of data dimensionality and sparsity	AE [235,237]
		Exploitation of the spatial configuration of RNA molecules	CNN [235]
		Accurate classification of the RNA components	CNN [249], RNN [236]
	Disease prediction	Classification of tumour types	CNN [238]
		RNA variation analysis	CNN [239]
		Heterogeneous data integration	SAE [240]
	Drug discovery	New drug-target interaction identification	DL [250]
Proteomics	Protein structure	Molecular region identification	CNN [251], DeepGSH [252]
		Protein identification	CNN+LSTM [253], AE [254
	Drug discovery	drug-target interactions	GAN [242]
		Scoring function construction	CNN [241]
Metabolomics	Diseases prediction	Improvement of prediction models	CNN [244]
	Drug discovery	Determination of optimal targets; decrease in drug toxicity	AE [246,255]
		Optimal molecular interactions	CNN [247]

Table 4This table lists the medical tasks, the contributions provided and the DL models most frequently used in EHR.

Area	Task	Contribution	Model
EHR	Disease prediction	Integration of different medical data in cancer analysis	CNN [263]
		High accuracy in dyslipidemia prediction	LSTM [261]
		Improvement in the imbalance problem in heart failure	CNN [264]
		Impact of external databases in sleep staging evaluation	CNN [265]
		Mortality risk estimation by using patients' historical information	LSTM [262]
		Optimal heart failure prediction	LSTM [51,259]
		Integration of structured and unstructured data for the prediction of acute kidney injury subtypes	LSTM [260]
	Risk analysis	Organization of the data on the basis of semantic spheres	GCNN [266]
		Feature extraction by reducing the data dimensions	AE [268]
	Treatment plans	Construction of a treatment plans by using small population sets	LSTM [267]
	-	Estimation of a treatment plan by exploiting data correlations	CNN [6]

Some crucial points

- quality and size of the dataset :
 - unavailability of dataset
 - Annotations take time and agreement between experts
 - rare diseases are underrepresented in the data sets.
- Privacy and Legal Issue
 - share the medical data?
 - Anonymisation, but stil...
- Data Interoperability and Data Standards
 - nature of data differ from hardware to hardware
 - combine several dif-ferent datasets for better algorithms learning and accuracy. I
 - Health data should be standardized and shared between providers
- Black Box and Deep Learning

Original Investigation | Health Informatics

Large Language Model Influence on Diagnostic Reasoning A Randomized Clinical Trial

Ethan Goh, MBBS, MS; Robert Gallo, MD; Jason Hom, MD; Eric Strong, MD; Yingjie Weng, MHS; Hannah Kerman, MD; Joséphine A. Cool, MD; Zahir Kanjee, MD, MPH; Andrew S. Parsons, MD, MPH; Neera Ahuja, MD; Eric Horvitz, MD, PhD; Daniel Yang, MD; Arnold Milstein, MD; Andrew P. J. Olson, MD; Adam Rodman, MD, MPH; Jonathan H. Chen, MD, PhD

Abstract

IMPORTANCE Large language models (LLMs) have shown promise in their performance on both multiple-choice and open-ended medical reasoning examinations, but it remains unknown whether the use of such tools improves physician diagnostic reasoning.

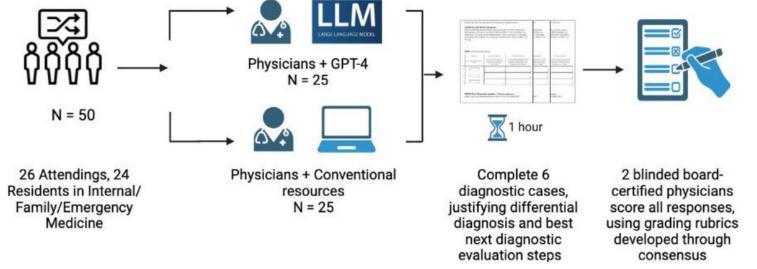
OBJECTIVE To assess the effect of an LLM on physicians' diagnostic reasoning compared with conventional resources.

Key Points

Question Does the use of a large language model (LLM) improve diagnostic reasoning performance among physicians in family medicine, internal medicine, or emergency medicine compared with conventional resources?

Findings In a randomized clinical trial including 50 physicians, the use of an LLM did not significantly enhance diagnostic reasoning performance compared with the availability of only conventional resources.

Meaning In this study, the use of an LLM did not necessarily enhance diagnostic reasoning of physicians beyond conventional resources; further development is needed to effectively integrate LLMs into clinical practice.



- Type d'étude : Essai clinique randomisé en simple aveugle
- Participants : 50 médecins (26 seniors et 24 résidents) en médecine interne, médecine générale et urgences.
- Intervention:
 - Groupe LLM: Accès à GPT-4 + ressources conventionnelles
 - Groupe contrôle : Accès uniquement aux ressources conventionnelles
- Tâche : Résolution de 6 cas cliniques en 60 minutes
- Critères d'évaluation :
 - Score de raisonnement diagnostique (exactitude du diagnostic différentiel, arguments pour et contre, étapes suivantes)
 - Temps passé par cas
 - · Exactitude du diagnostic final

Diagnostic Vignette

History Of Present Illness

A 76M comes to his PCP complaining of pain in his back and thighs for 2 weeks. He has no pain sitting or lying, but walking causes severe pain in his low back, buttocks and calves. He feels febrile and tired. He was told by the referring cardiologist that his recent tests results since the pain started showed a new anemia and azotemia. A few days before the onset of the pain he had undergone coronary angioplasty. Heparin was administered for 48 hours.

Past Medical History

Ischemic heart disease had first been diagnosed ten years earlier, at which time a coronary artery bypass procedure was done.

Physical Examination

VITALS: 99.6° F.; pulse was 94/min and regular; BP was 110/88 mmHg.

GEN: Well appearing

CARDS: There is a grade III/VI apical systolic murmur.

Laboratory

WBC of 11.5 x 103 cells / μ L; differential of 64% segs, 20% lymphocytes, 3% monocytes, 12% eosinophils and 1% basophil. The hematocrit was 28% and the platelet count was 315 x 103 / μ L. The erythrocyte sedimentation rate was 99 mm/h. Urinalysis was normal except for 2+ proteinuria. Serum creatinine was 4.0 mg/dL; sodium was 145 mEq/L; potassium 4.0 mEq/L; chloride 105 mEq/L. SGOT was 27 U/L; GGT was 90 U/L; alkaline phosphatase was 153 U/L.

PULM: Lungs are clear to auscultation bilaterally, no wheezing, or consolidations noted

ABD: Soft, non-tender to palpation

MSK: He does not have tenderness of his spine or pelvis. Spinal mobility is normal, as is the mobility of his hips. Standing is painless; however, pain is experienced in his low back, buttocks and calves within a minute of feeble running in place. The pain disappears shortly after exercise is discontinued.

High Scoring Response

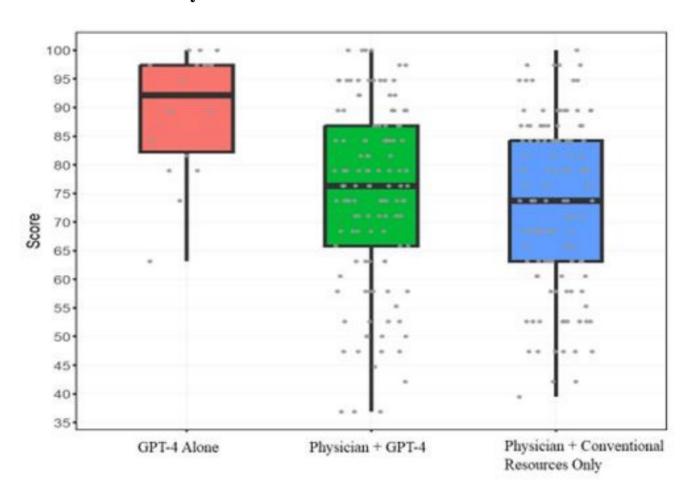
Part 1 – St	ructured Reasoning		
Questions		High Scoring Example	Scores
Question	Diagnosis - List 3 Possible	Cholesterol embolism	1/1
1	Diagnosis	Acute interstitial nephritis	1/1
		Peripheral arterial disease	1/1
Question 2	Support Diagnosis - For each possible diagnosis listed, provide findings/risk factors supporting this hypothesis	Cholesterol embolism - Recent PCI, multi organ involvement (peripheral vasculature, renal, skin), rash, renal failure, eosinophilia, known CAD Acute interstitial nephritis - Renal failure, rash, +/- anemia, proteinuria, all after intervention with many medications (including ASA)	2/2
		Peripheral arterial disease - Leg pain associated with ambulation, improves with rest	2/2

Low Scoring Response

Part 1 – Structured Reasoning

Questions		High Scoring Example	Scores
Question	Diagnosis - List 3 Possible	Interstitial nephritis	1/1
1	Diagnosis	Contrast-induced nephropathy	0/1
		Pyelonephritis	0/1
Question 2	Support Diagnosis - For each possible diagnosis listed, provide findings/risk factors supporting this hypothesis	renal failure, eosinophilia, fever, rash contrast exposure, acute renal failure	2/2
		fever, aki	1/2
Question	Opposing Diagnosis - For each	Elevated GGT	0/2
2	nossible diagnosis listed provide		

eFigure 1. Distribution of Diagnostic Performance Scores of Physician + GPT-4 vs. Physician + Conventional Resources Only



Caption: Participants were randomized to access GPT-4 in addition to conventional diagnostic resources or to just conventional resources. GPT-4 alone scored 15.5 percentage points (95% CI 1.5 to 29, p=0.03) higher than the conventional resources group.

eTable 4: GPT Prompt and Responses for Diagnostic Case 1

GPT-4 Prompt

Part 1 - Structured Reasoning

You are an expert internal medicine physician solving a complex medical case for a test. You are going to receive a case vignette. After reading the case, I want you to give three parts of information.

Here is the first part:

First, you will list three possible diagnoses. Please number these 1., 2., 3.

Next, for each of the three diagnoses listed, you will provide the findings or risk factors that support this hypothesis.

Next, for each of the three diagnoses listed, you will provide findings opposing this hypothesis, or findings that were expected but not present.

Part 2 - Final diagnostic decision

Here is the second part: Please answer this question: Based upon your reasoning above, what is your final diagnosis?

Part 3 - Additional Steps

Here is the third part: Name up to 3 additional steps you would take in your diagnostic process.

Diagnostic Case

Here is the case:

GPT-4 Responses

Based on the provided medical case vignette, here are the three possible diagnoses along with supportive and opposing findings:

Cholesterol Embolization Syndrome (CES)

• Supportive Findings:

- Recent history of coronary angioplasty with heparin administration.
- New onset anemia and azotemia post-procedure.
- Purple, red, lacy rash over low back and buttocks (livedo reticularis).
- Elevated erythrocyte sedimentation rate (ESR) and proteinuria.

Opposing Findings:

 Lack of findings typically associated with CES, such as renal failure, gastrointestinal symptoms, or neurological deficits.

Peripheral Artery Disease (PAD)

• Supportive Findings:

- Pain in the lower back, buttocks, and calves that worsens with exercise (claudication).
- History of ischemic heart disease, suggesting atherosclerotic disease elsewhere.
- Symmetrically reduced peripheral

Conclusions

The availability of an LLM as a diagnostic aid did not improve physician performance compared with conventional resources in a diagnostic reasoning randomized clinical trial. The LLM alone outperformed physicians even when the LLM was available to them, indicating that further development in human-computer interactions is needed to realize the potential of AI in clinical decision support systems.