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We propose studying the variations of volume of implicit objects during an animation
according to several points of view: choice of the function of density, variations of param-
eters such as the iso-value and the radius of influence for a given function, variations
of the parameters inherent in a particular function. Modification of parameters of the
function of density must be carried out with care. There are no rules concerning these
variations. To avoid the non-monotonous variations, it is necessary to choose a function
of density beforehand and study the intervals of variation of its parameters. A new dis-
cretization makes it possible to locate these variations for a later use in a process of
control of these variations.
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1. Introduction

Implicit surfaces appear i:: many applications such as medical imaging, computer-
aided design, and compu:cr graphic. Implicit surfaces have proved to be a well-
suited and efficient model for animating and morphing shapes of arbitrary topology.
We are interested here in a particular kind of implicit surfaces, which are equipo-
tential implicit surfaces® called blobs.!

A field function f(z,y, z) defines an implicit surface and assigns a scalar value
to each point in space. An implicit surface is then {(z,y, z)/f(z,y,2) = T} where
T is called the threshold. For instance Fig. 1 is representing a blob (a) and a density
function of a blob (b), where R is the radius of influence, which defines the part of

2An equipotential surface in 3D, defined with f(z,y, z) is such that the value of f(z,y,2) is a
constant.
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the space where f influences points of space; r is the effective radius defining the
visible part of the blob; T', the threshold that regulates the size of the blob.

If there are n blobs in space, they are merging to construct an object. This
object is then defined with F(M) = Y | o;fi(M) where f; is the function of
density of blob i,q; is a negative or positive factor and M a point in space. For
example, hereafter Fig. 2 is made up of blobs:

During an animation, volume of the implicit object composed with several blobs
is varying as seen Fig. 3. In this figure, two blobs are moving away. We have repre-
sented the curves of the implicit functions fi (for blob at left) and f2 (for blob at
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(a) Cup of a blob

(b) Function of density

Fig. 1.

(a) Three blobs: one of them with a negative factor

Fig. 2.

Fig. 3.

A blob.

A blob.

(b) Two blobs are merging

Three blobs on the left and two blobs on the right.
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right), and the curve of fi + fo (which represents the implicit object). We notice
that the curve of the sum is passing over the threshold if there is just one object
and under the threshold otherwise. Volume is an integration of this curve. Then,
we have to conclude that volume is varying along this animation.

We would like to compute volume variations of a 3D implicit object dur-
ing an animation, to detect pathology of the heart for instance in medical
imaging. Another application may be the modelization of objects with a high
deformable material such as clay for virtual sculpture? that implies control of these
variations.

The variation of volume may be 400% of the initial volume.® This variation is
dependent on the function of density, parameters of this function, value of threshold,
and value of radius of influence and so on. Unfortunately, just a few previous works
compute the volume of blobs. The most famous is a voxel-based method subdividing
space in small cubes. An other one is a method using territories based on seeds*®
and a third one proposes an analytical way to compute the volume.®

Some papers propose methods to control volume variations: for instance, Tong
et al.,” proposes a method to preserve volume during an animation to generate
water flow; or Desbrun et al.,* uses the seeds and territories method.

In this paper, we will speak on volume variations depending on iso-value and
radii of influence of the function of density, localization of these variations and
a new method to control the variations. We will study them using Murakami’s
function®® and we will extend then to many other implicit functions too. We will
also use simple examples with two blobs to help better understand the phenomenon
(the phenomenon develops if one increases the number of primitives).

Our algorithm may be employed for instance in Ref. 9, where an active surface
model, based on an implicit formulation in order to allow any topological changes
and fast inside/outside detection is introduced. It could be used in a reconstruction
process based on the implicit model, as in Ref. 10, to create an implicit surface model
that can deform in tandem with an explicit surface!! or perhaps in a construction
process using radial basis functions as in Ref. 12.

2. Total Behavior of ti:e Variation

We use two implicit primitives two blobs® defined thanks to the function of density
of Murakami. Volume is computed with the voxels method. This method consists
of arbitrarily subdividing space including the object in a great number of par-
allelepipeds, all of identical size called voxels. Hereafter, Fig. 4 accounts for two

bf(r) = { (1 —O(RLi)z>2 i 0<r<R

otherwise

°We will use the word “blob” instead of implicit primitives all over this paper.
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Fig. 4. Decomposition of space in voxels.
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Fig. 5. Volume variation with the density function of Murakami.

blobs plunged in a space discretized in voxels. The volume of the implicit objects
is calculated by summing all voxels contained in implicit volume.

We obtain the curve of Fig. 5 representing volume variations of the object
obtained with two blobs when they are moving away, the iso-value is T = 0.5
effective radii are 0.5 and the radii of influence are Ry = Ry = 1.

We note a significant variation of volume (the variations of volume are measured
compared to initial volume. The initial volume is the sum of volume of blobs without
deformation, as they are considered as spheres). Volume decreases initially and then
increases until a maximum. The curve then decreases to reach one minimum when
the blobs are not any more in influence.

In the borderline case of Fig. 6(a), we raise a reduction much more significant
of volume (22130% of the initial volume) when the iso-value T' = 0.99. Figure 6(b)
shows us that a third object is present between the swo implicit objects; the dis-
tance between their centers is 71 + ro. When the two blobs move away, this matter
contribution disappears, that implies the reduction in volume.

We will now study these variations more in detail in the following:

3. Variations of the Volume for the Function of Density of
Murakami

Murakami’s function® is very simple to compute and is defined over a finite sup-
port. Other functions like that of Tsingos'® or Blanc!* would oblige us to study
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Fig. 6. Appearance of matter between the two implicit objects.
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Fig. 7. Representation of two implicit objects for different values of distance d between centers.

the variations of parameters like thickness that would make this study even more
complex.

We observe the curve for an iso-value T' = 0.5 and the same radii of influence
(R1 = R2 = 1). At the beginning of the animation, the objects are placed on a
same center and they move away until they are not any more in influence (distance
between the centers is then equal to the sum of the radii of influence).

In Fig. 7, we have represented the separation of two blobs whose centers are
black. R1 = R2 = 1;7‘1 =T = 0.5.

The minimum of volume is obtained with a distance d = 0.48 (Fig. 7a.) From
the point of topological “iew, only one object is built with two blobs. From this
distance, volume increases to reach a maximum with d = 0.98. The increase in
the distance allows an increase of the volume. The primitives are not any more in
total mutual influence. The object is of ovoid type (Fig. 7b). The volume decreases
from this distance and becomes less and less significant. The ovoid shape of the
object disappears and we observe a more dug object (Fig. 7c), then two separated
objects (topologically) (Fig. 7d). Then the curve forms a step from d = 1.54 =
max(r; + Ra,72 + R1). The primitives are no more under influence. The volume
remains the same as the centers are moving away.

In the following, we will modify the parameters of the primitives to study their
influence on the curve.
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4. Variation of the Iso-Value and Radii of Influence
for the Function of Density of Murakami

The modification of the iso-value implies the variation of the size of implicit prim-
itives. The decrease in the iso-value implies an increase in volume? The curve of
the variation of volume as a function of distance (Fig. 5) is modified depending on
this iso-value. Figure 8 is representing three curves with three values of the thresh-
old T. We notice that volume is varying according to the distance between blobs.
The variation of volume is expressed as a percentage of the volume computed if the
blobs are considered as spheres.

If the iso-value is near 0, (T = 0.1 for instance), the increase in volume is
significant compared to the variation obtained when the iso-value is much higher
than 0.1. If the iso-value is close to 1 (T = 0.7 for example), the curve is decreasing
in a continuous way as the primitives move away.

Figure 9(a) represents the functions of density of the two implicit primitives as
well as the sum of these ones. Figure 9(b) represents an enlargement of a part of
the curve of the summation. If the iso-value (or threshold) T is close to 1 (here
T = 0.97), the line representing the iso-value divides the curve in three pieces.
That supposes the appearance of a third object between the two implicit primitives
(remember Fig. 4). The distance between the primitives is then d = 1.09. In fact,
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Fig. 8. Different values of the threshold.
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(a) d =0.48 (b) d =0.98 d=138 d=146

Fig. 10. The same scene composed with several blobs with different values of the threshold.
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Fig. 11. Various values of the radii of influence.

the curve of the sum represents the field along the segment joining the two skeleton
points (center of blobs).

We will find in Fig. 10 an illustration of variation of the threshold.

The variation of the radii of influence of the implicit primitives implies a varia-
tion of volume (see Fig. 11).

On Fig. 11, the reduction of the radii of influence induces a reduction in volume.
On this curve, the iso-value T is 0.5. We choose to vary the radius of influence of
one of the two blobs, the other one remaining constant. Volume decreases as the
radius of influence of an implicit object is decreasing. We note that the modification
of the radius influences the shape of the curve of variation of volume.

We have just shown that the variation of the iso-value or of the radius of influence
modifies the shape of the curve of variation of volume. Handling of these parameters
must be carried out with 1 -ecaution if one wants to avoid great variations of volume.

5. Extension to Other Functions

A lot of functions of density contains parameters such as the thickness or the
stiffness.’® The choice of the value of these parameters can also influence the vari-
ations of volume. We are interested in functions of Blinn,! Tsingos,'® Nishimura®
or Wyvill.16:17¢ On Fig. 12, we compare the curves of volumes obtained for these
various functions.

¢We will explain them in appendix.
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Fig. 13. Function of density of Nishimura.

The function of Blinn is not represented. Since its behavior is different, it will
be studied separately. The tendency of the curve of volume obtained for functions
of density of Murakami, Wyvill and Tsingos is rather similar. The curve of vol-
ume obtained with the function of density of Nishimura is monotonous decreasing
(Fig. 13a).

The difference in shape of the functions of density explains this change of ten-
dency compared to the curve of volume obtained with the function of Murakami.
The function of Nishimura decreases more quickly than Murakami’s when the
distance from the origin of the curve increases (Fig. 13b). The slope is then
softer, because the value of the tangent to the curve is closer to 0. One obtains
a monotonous reduction in volume more progressive. For the function of density of
Blinn, Fig. 14, we notice that for a lower or equal iso-value to 0.5, the volume is
always increasing when the implicit primitives move away. The primitives are always
in influence because the exponential functions, which govern them, act all over the
space. (The function is not defined on a finished support.) When the threshold T
becomes higher than 0.5, the behavior of the curve changes. We observe an increase
in volume, which can be followed by a reduction (Fig. 14b).
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Fig. 15. Variation of stiffness k for the function of Tsingos.

The function of density of Tsingos gives results very close to those obtained with
the functions of Murakami or Wyvill. The shapes of the curves representing volume
according to the distance between the centers are similar. This shape is modified
using the values of the parameters thickness e; and stiffness k; (Fig. 15b).

We use identical parameters for the two primitives (thickness e, stiffness & and
radius of influence R). We choose to vary the parameters thickness and stiffness.
The parameter thickness is used to modify the effective radius of the object. The
parameter of stiffness regulates the slope of the function (Fig. 15a). The modifica-
tion of this parameter is not easy when k becomes large (k > 3/c—r). The function
of density gives negative values, which brings to withdraw matter from the other
primitives in influence.

The use of negative values does not have an influence on the variations of volume.
The form of the function used when the distance to the center of the primitive is
lower than the thickness can be defined thanks to a parameter of linearity. The
variation of this part of the function of density does not influence the shape of the
curve of variation of volume since this part is over the top of the iso-value.

In the calculation of volume, we test if the influence is higher than the iso-value
(to determine if the point belongs to implicit volume). The value of the influence
thus does not have any importance for us.

We conclude that the variation of volume depends on the function of den-
sity. The slope is modified by variation of the parameters of the functions. The



560 D. Faudot & G. Gesquiere

variations of volume can thus be controlled by modifying these parameters during
an animation.!8

6. Localization of the Variation

We studied the variations of implicit volumes of objects according to the parameters
and the function of density, which is used. It is now interesting to locate these
variations on the surface of the implicit objects. We chose to implement the modified
method of the seeds.®!® With this method, we can compute the volume of the
implicit object very quickly and locate the variations. With the classical octree
method, the volume may be computed but variations not localized.

6.1. Seeds method

This method breaks up into two phases. The first one is initialization, which consists
of placing seeds (points of sampling) around the implicit ob ject. These seeds are
then moving towards the surface of the implicit object that allows a sampling of
the object. The seeds are placed on the border of an including box (including each
primitive). The side of the box is equal to twice the thickness of the object. On
Fig. 16, we represent a 2D primitive in blue surrounded with an including box,
sampled by seeds. The step of discretization is AS. One seed is migrating from its
initial position I to the center O of the primitive along a vector I0.

Each seed allows the positioning of a pyramid, whose apex is located at the
center of the primitive and height is the distance from the center of the implicit
object to the seed. The base of the pyramid is perpendicular to the height. The
dimension of the base is the same one for all seeds; it depends on the smoothness
of discretization chosen at the initialization of seeds. The volume of the object is
equal to the sum of volume of each pyramid.

6.2. A new discretization of the implicit objects

We have expressed the seeds in spherical co-ordinates. The origin of the spherical
frame of reference is the center of the primitive to which the seeds belong. A g;;

AS

Fig. 16. Initialization of seeds on the surface of each primitive.
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.seed

z

Fig. 17. Definition of a seed with spherical coordinates.

seed is defined by a radius r;; and two angles ¢ and j (as seen Fig. 17). As an
initialization r;; is fixed by approximating the effective radius of the blob regarded
as a sphere. ¢ and j are the angles calculated according to the number of seeds.
Space is divided into angular portions. Two seeds are close if |6; — 6| or |p; — ¢,
is less than an epsilon.

For the moment, it seems suitable for point skeleton only. But we expect a future
extension for other skeletons.

6.3. Localization

We seek to locate the places of variation using the pyramids. When the implicit
primitives are not in influence, all of the heights of pyramids have the same values. If
there is mutual influence, the heights of the pyramids in the zone of inter-influence
will increase on the axis of the centers, there is creation of matter on this axis.
The places of variations are in the zones of inter-influence. When the centers of the
primitives move away, volume decreases because the parts furthest away from the
primitives are not any more in influence. The volume of the pyramids located at
these places decreases. We can then compensate for the possible volume expansion
between the centers.

After a minimum, the reduction in volume on the external border (zone where
there is no more mutual influence) is less significant. That induces an increase in
total volume since the size of the pyramids located between the centers always
grows.

Volume grows until a distance d = 0.98 between the centers (Fig. 7). For lack of
mutual influence between the centers of the primitives, implicit volume grows hol-
low. The volume of the pyramids located perpendicular to the axis of the centers
decreases. The pyramids, which were in contact, separate to form two topologi-
cally distinct primitives. There is no more mutual influence as soon as the distance
becomes equal to max(r; + R, 72 + R1).

The volume then remains constant.

A 2D cut of the preceding animation enables us to better visualize the local-
ization of the variations of volume (Fig. 18). The pyramids are then triangles.
The localization of the variation of the surface of the triangles is easy. At a given
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(b)

(f)

Fig. 18. Places of variation (in 2D during the separation of two primitives). For the black parts,
the triangles of which volume increases; for the grey parts the triangles whose volume decreases.

moment, we calculate the total surface of the triangles composing the object. Each
triangle is related to a seed by its base. It is located by its height on the basis of
the center of the implicit object to which it belongs. The centers of the primitives
are moving away. The size of the triangles changes. Figure 18 shows the places of
the variations of the surface of the triangles. From Figures (a) to (f), the distance
between the centers increases. If the surface of the triangle decreases compared to
the preceding image in animation, the triangles are represented in light. If it is the
opposite, (the surface increases), the triangles are represented in dark. The triangles
whose surface is constant do not appear.

7. Control Volume Variation

The goal of the previous study is to control volume variation during an animation
or to represent non-compressible material or very deformable material like clay with
implicit surface.

A first method to control volume consists of decreasing the distance between
the center of a blob and points in space.'® The value of the density function is
modifying with the distance. This method may be seen as a local control of the
implicit surface. An other method” uses a space partition and a graph of influence
in which nodes represent blobs and an edge between two blobs means that there is
influence between both. This graph is transformed to isolate surfaces.

We have already proposed a new global volume control to preserve the volume
of the implicit surface.? We chose to modify the threshold using a proportional
derived controller. Modifications of the threshold follow the following equation:
Tt =Tt 1 + &t where T is the threshold at time ¢ and e variation. We establish

n

Vt — il ‘/it, Vt—l — Z V;t_l, VO — i;‘/io’
i= i=

i=1
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and

At_vt_vﬁ At__Vt—Vt—l

- vo - Vo ’
where V! is the volume of blob i at time ¢t. We chose to compute initial volume at
time t = 0 as the sum of volumes of blobs considered without influence. That is

to say

¢t = aA + BAY,

n
=3 %w(d (s, 2))°,
i=1
where d(s, P;) is the distance between point P; and the center s of the blob. (s may
be a seed on the skeleton if it is not any more a point but another geometrical figure
as segment.)

Initial value of threshold is initialized to 0.5. The dark gray curve in Fig. 19(a)
represents volume variation without control and the other one represents volume
variation with our global control Volume computation is always fewer than 5%
of the total volume when the distance between blobs is increasing. Figure 19b
represents variation of the threshold to control the volume variation of the previous
figure.

8. Use of Other Blending Functions

In the preceding paragraphs, we chose to use a traditional operation of blending.
We can use other operations. For example, in Fig. 20 we compare the variations
of volumes obtained with an addition and an union of blobs.?® The shape of the
curves is different.

If the operation of union is used, volume grows in a monotonous way when the
primitives move away. The computation of the density on a point of space, for this
operation, does not consider anymore the sum of the influences but corresponds to
the maximum value of the densities of the primitives. When the implicit objects
have the same centers, volume is minimal. The height of the pyramids and then the
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Fig. 19. (a) Comparison between volumes computed with and without global control. (b) Thresh-
old’s variation with distance between blobs.
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volume are increasing as the implicit objects are moving away. This increase in the
volume of the pyramids perpendicular to the axis of the centers is not compensated
by a reduction in volume. When the two objects are not anymore in influence, the
volume is at its maximum (the heights of the pyramids are maximum).

It is noticed that the variations of volume are minimal, close to zero, throughout
animation. This is due to the fact that the volume of the object is equal to the sum
of volumes of the primitives, which are not deformed.

9. Conclusion and Future Works

We studied, in this paper, the variations of volume of blobs during an animation.
We noticed that these variations are due to the choice of the function of density,
of the value of the threshold, the radii of influence and the value of the parameters
inherent in many functions. The choice of the value of the parameters is significant.
It can imply great variations of volume. The modification of the iso-value must
be made with precaution. If control volume during an animation is required, it is
necessary to take into account this last remark.

We also located the variations of volume on the surface of the primitives thanks
to the use of pyramids. The increase in volume is done between the primitives, but
also on their external parts when the mutual influence is total.

This study has several possible applications. The first one is the control of
variations of volume of the primitives during an animation, as seen in Sec. 7. Indeed,
these variations can be very significant what involves a very disturbed animation,
and even the spontaneous appearance of non-desired primitives.

Another application is the modeling of soft objects like clay for virtual sculpture.
We have tested our control of volume variation on the sequence below composed
with 6 blobs (Fig. 21). We remark that volume is constant as T is varying and blobs
are moving away.

An extension of this study is of course the use of other skeletons rather
than points. For instance we would like to compute volume and control volume
variations on implicit objects composed with primitives defined with anisotropic
functions.?1:22
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(d) T = 0.453

(a) T=0491  (b) T =0.446 (c) T = 0.464
< V = 39.25 V = 39.25 V = 39.25 V =39.25
Fig. 21. Modification of a block of clay.
Appendix A. Appendices
Function of Nishimura: .
ﬁa&(
2 as
dl(1—3(#)) fo<r<i
d(P) = < 3d; 2 Ry L) *
(P) —Za(1—RLi) it B<r<pr ,
0 else 83 %
r is the distance of a point P to the center of ) -
. L
a blob i, d; a factor, b; the radius of the blob. ’ = ’
Function of Murakami: .
e
2\ 2 :
P . i
-{(-(&)") osr<m
0 else %4 i
Ofr}"v
r is the distance of a point P to the center of y ; .
a blob 4,d; a factor, b; the radius of the blob. ¥ i "' Lo i
Function of Wyvill:
i if0<r<R; £ o
| Ca(r N1\t _22 () 1 7
| f(r) = s\m) T3\ \®m) S\ &)t .
else %
é 0 4 4
: ¢ e
i r is the distance of a point P to the center of a y
blob 4, d; a factor, b; the radius of the blob. % i o B g
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Fig. 22. Function of Tsingos: k varies from 0.1 to 1 and 7o remains constant.
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Fig. 23. Function of Tsingos: k remains constant and r¢ is varying from 0 to 1.
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References

1. J. F. Blinn, “A generalization of algebraic surface drawing,” ACM Transactions on
Graphics 1(3), 235256 (1982).

2. G. Gesquigre, D. Faudot and D. Rigaudiére, “Volume control of equipotential implicit
surfaces,” Implicit Surfaces’99, 1999. Bordeaux, France, pp. 43-49.

3. J. Bloomenthal, “Introduction to implicit surfaces,” (1997).




10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Study of Volume Variation of Implicit Objects 567

. M. Desbrun, N. Tsingos and M. P. Cani-Gascuel, “Adaptive sampling of implicit

surfaces for interactive modeling and animation,” Computer Graphics Forum 15(5),
319-325 (1996).

M. P. Cani-Gascuel and M. Desbrun, “Animation of deformable models using implicit
surfaces,” IEEE Transactions on Visualization and Computer Graphics 3(1), 39-50
(1997).

D. Faudot, G. Gesquiére and L. Garnier, “An introduction to an analytical way to
compute the volume of blobs,” International Journal of Pure and Applied Mathematics
(2003).

R. Tong, K. Kaneda and H. Yamashita, “A volume preserving approach for modeling
water flows generated by metaballs,” The Visual Computer 18, 469-480 (2002).

T. Nishita and E. Nakamae, “A method for displaying metaballs by Bzier clipping,”
Computer Graphics Forum 13(3), C/271-C/280 (1994).

M. Desbrun and M. P. Cani, “Active implicit surface for animation,” Graphics Inter-
face, pp. 143-150 (June 1998).

J. L. Mari and J. Sequeira, “Using implicit surfaces to characterize shapes within dig-
ital volumes,” RECPAD 2000 Proceedings, pp. 285289, Porto, Portugal, Mai (2000).
I. Slobodan and P. Fua, “Implicit meshes for modeling and reconstruction,” CVPR
2, 483-492 (2003).

H. Q. Dinh, G. Turk and G. Slabaugh, “Reconstructing surfaces by volumetric regu-
larization using radial basis functions,” IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI) 24(10), 1358-1371 (2002).

N. Tsingos and M. P. Gascuel, “Un modeleur intercatif d’objets dfinis par des surfaces
implicites,” Revue Internationale de CFAO et d’Informatique Graphique 10, 355-366
(1995).

C. Blanc and C. Schlick, “Extended field functions for soft objects,” Implicit Surface,
pp. 21-32 (1995).

N. Tsingos, E. Bittar and M. P. Gascuel, “Implicit surfaces for semi-automatic medical
organs reconstruction,” Computer Graphics International ’95. pp. 3-15 (1995).

G. Wyvill, C. McPheeters and B. Wyvill, “Data structure for soft objects,” The Visual
Computer 2(4), 227-334 (1986).

B. Wyvill and G. Wyvill, “Field functions for implicit surfaces,” The Visual Computer
5, 75-82 (1989).

M. Desbrun and M. P. Gascuel, “Animating soft substances with implicit surfaces,”
Siggraph’95, pp. 287-290 (1995).

M. Desbrun, N. Tsingos and M. P. Gascuel, “Adaptive sampling of implicit surfaces
for interactive modelling and animation,” Computer Graphics Forum 15(5), 319-325
(1996).

A. A. Pasko and V. V. Savchenko, “Blending operations for the functionally based
constructive geometry,” CSG ’94 Set-Theoretic Solid Modeling: Techniques and Appli-
cations, pp. 151-161 (1994).

B. Crespin, “Implicit free-form deformations,” Proceedings of Implicit Surfaces ’99,
Bordeaux, France, pp. 17-23 (1999).

D. Rigaudiere and D. Faudot, “Shape modeling with skeleton based implicit primi-
tives,” Graphicon 2000, pp. 174-178 (2000).




568 D. Faudot & G. Gesquiere

Dominique Faudot is currently a professor at the Labora-
tory LE2I, Burgundy’s University, France. Her research interests
include geometric modelization, 3D visualization and deforma-
tion, Voronoi diagrams. She studied volume variation of equipo-
tential implicit surfaces. She is working now on a new algorithm
to compute 3D medial axis of a set of points and on a new
method to compute the volume of an object described with a
set of unorganized points without medial axis but with implicit
functions. Dr. Dominique Faudot is a member of Eurographics
and Afig.

Gilles Gesquiére is currently an assistant professor at the Lab-
oratory LSIS , Aix- Marseilles University, France. He teaches at
the University of Provence. He obtained his PhD in computer
science at the University of Burgundy in 2000.

His PhD studies focused on the volume control of equipo-
tential implicit surfaces. His research interests include geometric
modelization, 3D visualization and deformation.




