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ABSTRACT 

This article considers the problem of reconstructing the 3D shape model of asteroids and cometary nuclei from images 
obtained with an imaging system on board a spacecraft. We present a photoclinometry method based on the minimization 
of the chi-square difference between observed and synthetic images of the object by deformations of its initial shape. The 
minimization is performed using the so-called “limited-memory Broyden-Fletcher-Golbfarb-Shanno” algorithm. The 
deformations can be applied: (i) by modifying the coefficients of a spherical harmonic expansion in order to extract the 
global shape of the object, and/or (ii) by moving the height of the vertices of a triangular mesh in order to increase the 
accuracy of the global shape model and/or to derive localized topographic maps of the surface. This method has been 
tested on images of the asteroids Steins and Lutetia observed by the imaging system on board the Rosetta spacecraft of 
the European Space Agency. 
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1. INTRODUCTION 

There are several ways to reconstruct a three-dimensional surface from the grey levels measured in the pixels 
of an image. The stereo technique allows to build a network of control points from remarkable features 
identified at the surface of the object [8]. Stereo-photogrammetry, an extension of the former, is a powerful 
technique widely used in the past to reconstruct digital terrain models, for instance that of planets [3] or that 
of the nuclei of comets [6]. More recently, stereophotoclinometry using several views of the same area of the 
surface under different viewing and/or illumination conditions has been successfully applied to several 
bodies of our solar system, among them the asteroid Itokawa observed by the Hayabusa spacecraft [2]. 

We present here a new photoclinometry method in which we apply deformations to a triangular mesh in a 
non-linear optimization loop until the synthetic images resulting from the mesh best match the observed 
ones. The article is organized as follows: we present our method in Section 2, its application to asteroids 
Steins and Lutetia in section 3 and we finally conclude in Section 4. 

2. 3D RECONSTRUCTION METHOD 

Our 3D reconstruction method needs an input model described as a mesh of triangular facets. This model can 
be a sphere or a more refined model obtained with another reconstruction method. 

2.1 Generation of synthetic images 



Synthetic images are generated using a tool called OASIS (Optimized Astrophysical Simulator for Imaging 
Systems) [5]. OASIS calculates the position and the orientation of the object in the camera frame. It then 
performs ray-casting to determine which facets of the shape model are illuminated and in view of the camera. 
For each such facet i and each image n, it calculates the bi-directional reflectance (BDR) r i

(n) following 
Hapke’s model [4]. The intersections Ωi

(p,q,n) between this facet and the pixel (p, q) are calculated in terms of 
solid angle. The signal Dpq

(n) received by each pixel (in DN) is then estimated by summing the contributions 
of all facets in the field-of-view of this pixel: 

 
where g is the gain of the electronics, Scoll is the collecting surface of the telescope, te

(n) is the exposure 
time of image n, Rh

(n) is the heliocentric distance of the object (in astronomical units), h is Planck’s constant, 
c is the light speed, ρi is a pre-calculated absolute calibration factor. Finally, the image is convolved by the 
point-spread-function of the instrument. 

2.2 Deformations of the shape model 

2.2.1 Deformation based on Spherical Harmonics 

Spherical parametrization of a triangular mesh shape model has been developed in the last three decades. The 
spherical harmonic transform [10] is used to decompose the input model in the frequency domain. The 
coordinates R'k of the vertices are described as: 

 
where (θk, φk) defines the vertices of a pre-defined triangular mesh in a spherical coordinates system and 

Rk is given by: 

 
Ylm(θ, φ) are the real form of the spherical harmonic functions. In this representation, the parameters Clm 

define the shape of the object. The number of coefficients depends on the degree lmax of the above expansion. 
Increasing its value allows us to get higher frequencies in the 3D representation of the object. 

2.2.2 Deformation based on vertex offsets 

In order to increase the accuracy of the spherical harmonic model or of the input model, we introduce another 
deformation scheme in which we directly modify the height of the vertices with respect to the initial mesh 
used as starting points in the optimization process. We calculate the vector Nk normal to the surface at the 
vertex k by averaging the normal vectors Ni of the Vk facets which share this vertex: 

 
where Si is the surface of the facet number i . 
The modification of the height Hk of the vertex k is applied in the direction Nk . The coordinates R' k of 

the vertex after this deformation become: 

 
The coefficients Hk are initially set to zero and their value is modified during the optimization. 

2.3 Optimization of the parameters 

(1) 

(2) 

(3) 

(4) 
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2.3.1 Shape model 

We want to minimize the reduced chi-square between the pixel values Fpq
(n) of the N observed images and 

those of the synthetic images given by Eq. (1): 

 
where Np is the total number of pixels used in the minimization process, and σpq

(n), the uncertainty on the 
observed pixel value, is given by: 

 
where σR is the readout noise. In Eq. (6), the free parameters (variables) Pk are the coefficients Clm when 

the shape model is defined as an expansion in spherical harmonics (section 2.2.1) and the heights Hk when 
we modify the coordinates of the vertices (section 2.2.2). 

In order to minimize the chi-square function (6), we use a non-linear optimization algorithm called 
“limited memory Broyden-Fletcher-Golbfarb-Shanno” (L-BFGS), a quasi-Newton optimization method [1]. 
It is well suited to large scale optimization problems and requires a limited amount of memory. A typical 
number of ~ 50 - 100 iterations of the algorithm is required before it converges to a stable value Pk of the free 
parameters. When the final parameters are reached, the coordinates R' k of the vertices form the final shape 
model. 

The L-BFGS method requires the calculation of the partial derivatives at each iteration. These derivatives 
are calculated with the finite difference method, in which two chi-squares are calculated with the Eq. (6) for 
each partial derivative:  

 
where the index k' = 1, ..., l-1, l+1, ..., Nv , where Nv is the number of vertices. 
We emphasize that a major part of the CPU time is used for the calculation of these derivatives. We will 

see in section 2.4 how these partial derivatives can be calculated much faster, thus allowing us to speed up 
considerably the optimization process. 

2.3.2 Local error calculation 

For each pixel (p, q) of the image number n, we calculate the residual value in units of the instrumental noise 
at the end of the optimization using the notation of section 2.3.1: 

 
We “project” the value of the residuals from the pixels to the facets using the pixel–facets intersecting 

solid angles Ωi
(p,q,n) calculated earlier in section 2.1: 

 
where ΩP is the total pixel solid angle, and the second sum runs over the pixels (p, q) intersecting the 

facet number i. We then calculate the effect of a variation of the slope of each facet on the measured signal, 
normalized to its associated instrumental noise. The derivative dDi/dε (in DN/°) of the signal with respect to a 
change of slope is obtained numerically by calculating the mean variation of the signal Di

(n) from Eq. (1) 
when the vector normal to each facet remains on a cone of axis Ni - the normal to the surface of the facet – 
and of half cone aperture ε. The error ξi on the slope of each facet is deduced from µi , dDi/dε, and from the 
instrumental noise σi associated to the signal Di (Eq. 7): 

(6) 

(7) 

(8) 

(9) 

(10) 



 
We take a typical value of ε ~ 1° to estimate the value of the derivative dDi/dε. Knowing the error on the 

slope, the error on the heights (parameters Hk) can be easily deduced. The parameter ξi forms what we call 
the “slope error map”. 

2.3.3 Additional parameters 

Additional parameters can be optimized in the same way if they have an impact on the synthetic images, for 
instance: 

−  the parameters which describe the BDR of the surface, 
−  the three angles describing the pointing direction and roll angle of the camera for each individual 

image, 
−  the three Euler angles describing the orientation of the object in space. 
The accuracy in the reconstruction of these parameters by the space agencies is usually not sufficient to 

successfully achieve the optimization process. Therefore, we always need to perform iterative optimizations 
of the shape, of the pointing direction and roll angle of the camera. 

2.4 Faster calculation of the partial derivatives 

2.4.1 General principle of the method 

As explained in section 2.3.1, most of the CPU time during the optimization process is used to calculate the 
partial derivatives of Eq. (8). In this section, we describe a method that allows to calculate them faster, 
accelerating considerably the whole reconstruction process. The relationship (8) implies the calculation of 
two chi-squares, i.e. the calculation of 2N synthetic images for each partial derivative. We briefly describe in 
this section how we can perform the same task recalculating only the pixel values of the images which are 
modified when we move the height of a vertex from Hl to Hl ± ɛH (section 2.4.2) and to extract from these 
values the final partial derivative of the chi-square (section 2.4.3). 

2.4.2 Calculation of updated pixel values 

The calculation of the pixel values modified by a change of the height of the vertex number l from its original 
value Hl to Hl ± ɛH is performed in the following steps.  

1) We identify the facets Fl
(n)

 using the vertex number l. We determine the nominal set of pixels Sl
(n)

 

intersected by the facets. We then determine a new set of pixels Sl,±
(n)

 intersected by the facets after the height 
of the vertex number l has been modified. The set of pixels potentially modified by a displacement of this 

vertex is the union of both samples: Pl
(n)

 = Sl 
(n) U Sl,±

(n)
 . 

2) We re-determine if the facets intersected by the pixels Pl
(n) are illuminated and visible from the 

observer taking into account the displacement of the vertex. 

3) For all the facets Fl
(n) which are both illuminated and in view from the observer, we re-calculate the 

BDR r l
(n) taking into account the new geometry.  

4) The updated values D'pq
(n)(Hk) of the pixels Pl

(n) are then calculated using the relationship (1). 
We repeat this operation for all images (n = 1..N). 

2.4.3 Chi-square partial derivatives calculation 

Let us introduce the contribution of the image number n to the global chi-square of Eq. (6): 

 

where: 

(11) 

(12) 



  

The value of the function 
'pq
(n) corresponding to the updated pixel values D'pq

(n)(Hk) calculated in section 
2.4.2 is calculated in the same way: 

 

for pq ϵ Pl . We now call A(n) the set of all pixels of image number n. After modification of the height of a 

vertex, the pixels which remain unchanged belong to Cl
(n). Using these notations, we have A(n) = Cl

(n) U Pl
(n). 

With these notations, the modified chi-square can be written as: 

 

which can be rewritten: 

 

This relationship gives us the expression of the chi-square as a function of three parameters. The first 
parameter, ɣ(n), is calculated from the nominal image before the calculation of the partial derivatives. The 

parameters 
pq
(n) and 
'pq

(n) are recalculated knowing the sets of modified pixel Pl
(n) of all images and the 

new pixel values D'pq(Hk). 
The partial derivatives can be calculated with the finite difference of the new chi-square: 

 

This calculation is simplified since only the sums of contributions 
pq
(n) and 
'pq

(n) have to be calculated: 

 

The gain in CPU time in the calculation of the partial derivatives between the relationships (8) and (18) is 
then given by the ratio between the total number of pixels of the images and the typical number of pixels in 

all the set Pl
(n), i.e., typically 4 pixels per image. The gain is therefore of the order of Np / (4 N). 

3. APPLICATIONS TO ASTEROIDS STEINS AND LUTETIA 

3.1 Observations 

The Rosetta spacecraft [7] launched in 2004 by the European Space Agency is now on its way to meet its 
final target, the nucleus of comet P/Churyumov-Gerasimenko. During its cruise, Rosetta flew by two 
asteroids: Steins in September 2008 and Lutetia in July 2010. Images of these two asteroids have been 
acquired by OSIRIS, the imaging system on board Rosetta. OSIRIS includes a narrow and a wide-angle 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 



camera both equipped with the same 20482 pixels E2V 42-40 CCD detector offering pixel field-of-views of 
respectively 18.9 and 99.5 µrad. 

Rosetta flew by Steins at a minimum distance of 802 km, with a phase angle which varied from 38° to 0° 
and then increased to almost 140° out-bound. For the following analysis, we use a set of 8 geometrically 
calibrated images: one image acquired with the narrow-angle camera from a distance of 5235 km and seven 
images acquired with the wide-angle camera from a distance of 1120 km in-bound (see Fig. 1) to 865 km 
out-bound. These images correspond to a range of phase angles from 7° to 73°. 

Lutetia was flown by at a minimum distance of 3170 km, with a phase angle which varied from 10° to 0° 
and then increased to almost 140° out-bound. For the following preliminary tests, we use a set of 4 small 
images extracted from geometrically calibrated images acquired with the narrow-angle camera from a 
distance of 5200 km in-bound (see Fig. 3) to 3670 km out-bound. These images correspond to a range of 
phase angles from 26° to 110°. 

3.2 Steins reconstruction 

3.2.1 Reconstruction strategy 

The shape reconstruction of Steins is performed in two main steps. The first step consists in calculating a 
low-resolution spherical harmonic model. For this, we start from a sphere, for which C00 = Ra = 2.7 km and 
the other parameters are set to zero. We use the Hapke parameters [4] describing the BDR derived from a 
global photometric analysis. We begin optimizing the Clm spherical harmonic coefficients of the shape model 
with lmax = 2. We iteratively optimize the shape and the Euler angles describing the pointing of the camera. 
When a stable solution is reached, typically after 3-5 iterations, we set the degree of the expansion to lmax = 4 
and we repeat the cycle of shape and Euler angles optimizations until lmax = 20 . The sampling of the shape 
model is given by a hierarchical triangular mesh [9] of level five built from an icosahedron. The resulting 
20480 facets and 10242 vertices ensure that the pixels of the images contain typically a few facets. At the end 
of this step, we have a spherical harmonic model of the asteroid. The corresponding synthetic image is given 
in Fig. 1. 

In a second step, we optimize the heights of the vertices in order to improve the spherical harmonic shape 
model calculated at the previous step. We proceed as before by iteratively optimizing the shape model and 
the Euler angles. After a total of 3 iterations, the final shape model of the asteroid is obtained (see Fig. 1). We 
keep the same sampling of the surface used to derive the spherical harmonic shape model 

The results given in this section were obtained with the “slow” version of chi-square partial derivative 
calculation, which corresponds to the Eq. (8). 

3.2.2 Final shape model 

Table 1 summarizes our results. The mean residuals are expressed in units of the instrumental noise. The 
final mean slope error is calculated from the residuals (section 2.3.2). Note that, for the spherical harmonic 
optimization, only one iteration between pointing and shape optimization is needed.  

Table 1. Summary of our results for spherical harmonic Optimization (SHO)  
and Vertices Height Optimization (VHO) 

Parameters SHO VHO 

Starting chi-square 28640 90 

Final chi-square 90 37 

Mean residuals 9.5 6.1 

Mean slope error 12° 7° 

Mean height error 20 m 10 m 

Number of iterations 1 3 

Total CPU time 30 hours 3 weeks 
 



The CPU times are given for a dual-core 2 GHz Opteron CPU with 2 GB of RAM. The mean residuals 
decrease from 9.5 to 6.1 (in units of instrumental noise) from the spherical harmonic to the triangular mesh 
representation (see also Fig. 1). 

 

Figure 1. Illustration of the reconstruction methods for one of the eight images of asteroid Steins. Left panel: Observed 
image. Center panel: synthetic image calculated from spherical harmonic model. Right panel: synthetic image calculated 

from the final optimized model 

3.2.3. Accuracy 

We present in Fig. 2 the histogram of the values in the “slope error map” defined in section 2.3.2 for both the 
spherical harmonic model and the final triangular mesh model. For the latter, the histogram peaks at 7, which 
corresponds to 10 m in height, about 1/8th of the pixel resolution at closest approach. 

Larger values of up to ~ 30° are however obtained in regions of the shape model which correspond to 
limbs or terminators on the images. 

 
Figure 2. Slope Error Histogram of the models of Steins. 

3.3 Preliminary Tests on Lutetia 

Figure 3 shows the result of preliminary tests performed on a Digital Terrain Model of the asteroid Lutetia 
applying deformation on the height of the vertices. Our input model is a ``maplet'' (DTM) extracted from the 
Stereophotoclinometry model of R. Gaskell [2] calculated with his software LITHOS. Our method allows us 
to recover high-frequency information (right panel) compared to the initial DTM (middle panel). Craters and 
grooves are reconstructed with a more accurate depth. 



 

Figure 3. Illustration of the reconstruction method used on asteroid Lutetia. Left panel: Observed image. Center panel: 
synthetic image calculated from LITHOS model. Right panel: synthetic image calculated from the final optimized model 

4. CONCLUSION AND FUTURE WORK 

We developed and tested a new multi-image photoclinometry method based on deformations of a three-
dimensional shape model, on images of the asteroid Steins obtained by the imaging system on board ESA’s 
Rosetta spacecraft. The method also generates a map of the local topographic error deduced from the pixel 
residuals, both in slopes and in heights. In the case of Steins, the local averaged slope error amounts to 7°.  

The “faster” version of the code for the calculation of the partial derivatives of the chi-square described in 
section 2.4 has been implemented in the code and is in the test and validation process. The first results 
indicate an overall gain in speed which is in agreement with the prediction, i.e., would correspond a factor of 
about 1000 for the example described in section 3, therefore reducing the total CPU time to 30 min. 

In the near future, we intend to improve the speed and the robustness of the method by implementing it in 
a multi-resolution approach. We will also apply this technique to the Lutetia images in order to improve 
existing shape models of this asteroid. Finally, we will apply it to the images of the asteroid Vesta acquired 
by the DAWN spacecraft, and later on to the high-resolution images of the nucleus of comet 
67P/Churuymov-Gerasimenko acquired by the scientific cameras of Rosetta. 

REFERENCES 

[1] Byrd, R.H. Et al., 1994, Representation of quasi-newton matrices and their use in limited memory methods, 
Mathematical Programming , Vol. 63, No. 4, pp. 129–156, 1994. 

[2] Gaskell, R.W. et al., 2006, Landmark navigation studies and target characterization in the hayabusa encounter with 
itokawa, AIAA, Astrodynamics Specialists Conference and Exhibit. 

[3] Gwinner, K. et al., 2007, Derivation and validation of high resolution digital terrain models from mars express HRSC-
Data, Photogramm. Eng. Remote Sens. 

[4] Hapke, B., 2002, Bidirectional reflectance spectroscopy 5. the coherent backscatter opposition effect and anisotropic 
scattering, Icarus , vol. 157, pp. 523-534. 

[5] Jorda, L. et al., 2010, OASIS: a simulator to prepare and interpret remote imaging of solar system bodies, Proc. SPIE, 
Vol. 7533, No. 753311. 

[6] Oberst, J. et al., 2004, The nucleus of Comet Borrelly: a study of morphology and surface brightness, Icarus, Vol. 
167, pp. 70-79. 

[7] Schulz, R., 2009, Rosetta - one comet rendezvous and two asteroid fly-bys, Solar System Research , Vol. 43, No. 4, 
pp. 343-352. 

[8] Simonelli, D.P. Et al., 1993., The generation and use of numerical shape models for irregular solar system objects, 
Icarus , Vol. 103, pp. 49-61. 

[9] Szalay, A. et al., 2005, Indexing the sphere with the hierarchical triangular mesh, Tech. Rep. MSR-TR-2005-123, 
Microsoft Research 

[10] Wiebicke, H.J., 1989, A method for modelling the surface of irregular celestial bodies, Astron. Nachr. , Vol. 310, 
No.2, pp. 159–174. 


