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ABSTRACT

This article considers the problem of reconstrgctime 3D shape model of asteroids and cometaryenfrom images
obtained with an imaging system on board a spafte@¥a present a photoclinometry method based enrtimimization
of the chi-square difference between observed gnithstic images of the object by deformations fiiitial shape. The
minimization is performed using the so-called “lied-memory Broyden-Fletcher-Golbfarb-Shanno” aldonit The
deformations can be applied: (i) by modifying tleefficients of a spherical harmonic expansion ideorto extract the
global shape of the object, and/or (ii) by movihg teight of the vertices of a triangular meshriheo to increase the
accuracy of the global shape model and/or to dddealized topographic maps of the surface. Thishoe has been
tested on images of the asteroids Steins and hutéserved by the imaging system on board the Rosptcecraft of
the European Space Agency.
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1. INTRODUCTION

There are several ways to reconstruct a three-diimeal surface from the grey levels measured irptkels

of an image. The stereo technique allows to buildetwork of control points from remarkable features
identified at the surface of the object [8]. Stepbmtogrammetry, an extension of the former, iowqrful
technique widely used in the past to reconstrugitaliterrain models, for instance that of plari&{sor that

of the nuclei of comets [6]. More recently, stereofoclinometry using several views of the same afdhe
surface under different viewing and/or illuminati@onditions has been successfully applied to sévera
bodies of our solar system, among them the astéiakdwa observed by the Hayabusa spacecraft [2].

We present here a new photoclinometry method irchvhie apply deformations to a triangular mesh in a
non-linear optimization loop until the syntheticages resulting from the mesh best match the obderve
ones. The article is organized as follows: we preseir method in Section 2, its application to ewtes
Steins and Lutetia in section 3 and we finally dode in Section 4.

2. 3D RECONSTRUCTION METHOD

Our 3D reconstruction method needs an input moestribed as a mesh of triangular facets. This moalel
be a sphere or a more refined model obtained withheer reconstruction method.

2.1 Generation of synthetic images



Synthetic images are generated using a tool c&l&8IS (Optimized Astrophysical Simulator for Imagin
Systems) [5]. OASIS calculates the position anddtientation of the object in the camera framethén
performs ray-casting to determine which facet$efgshape model are illuminated and in view of ti@era.
For each such facétand each image, it calculates the bi-directional reflectance (BDR" following
Hapke’s model [4]. The intersectiofs™®" between this facet and the pixp| g)are calculated in terms of
solid angle. The signfﬂpq(”) received by each pixel (in DN) is then estimatgdbmming the contributions
of all facets in the field-of-view of this pixel:

q g t-:n: Mpq
D':J.” o ! cni.': £ ;‘;: mn) S_E::-P'q_n:l i 1
rq h-f‘ ( R;_Jr‘r) :IQ E . ¥ ( )

whereg is the gain of the electronicS,q is the collecting surface of the telescop®) is the exposure
time of imagen, R," is the heliocentric distance of the object (irr@sdmical units)h is Planck’s constant,
c is the light speed; is a pre-calculated absolute calibration factonalty, the image is convolved by the
point-spread-function of the instrument.

2.2 Deformations of the shape model

2.2.1 Deformation based on Spherical Harmonics

Spherical parametrization of a triangular mesh shrapdel has been developed in the last three decate
spherical harmonic transform [10] is used to deomsepthe input model in the frequency domain. The
coordinateRR' of the vertices are described as:

sinfy, cos gy,
Ry = Ry, | sinfy singy (2)
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where(6y, p) defines the vertices of a pre-defined triangulasmin a spherical coordinates system and
R¢ is given by:
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Yim(0, ¢) are the real form of the spherical harmonic funwidn this representation, the parame@ys

define the shape of the object. The number of aefits depends on the degigg;of the above expansion.
Increasing its value allows us to get higher fregirs in the 3D representation of the object.

2.2.2 Deformation based on vertex offsets

In order to increase the accuracy of the sphenhiaehonic model or of the input model, we introdacether
deformation scheme in which we directly modify theight of the vertices with respect to the initiagsh
used as starting points in the optimization proc#és calculate the vectdt, normal to the surface at the
vertexk by averaging the normal vectaxsof theV, facets which share this vertex:
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wheres§ is the surface of the facet number
The modification of the height of the vertexk is applied in the directioN, . The coordinateR', of
the vertex after this deformation become:

RL =Ry + H; Ny (5)
The coefficientdH, are initially set to zero and their value is magtifduring the optimization.

2.3 Optimization of the parameters



2.3.1Shape model

We want to minimize the reduced chi-square betwerpixel valuestq(”) of the N observed images and
those of the synthetic images given by Eq. (1):
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whereN, is the total number of pixels used in the minirtizma process, and,,™, the uncertainty on the
observed pixel value, is given by:
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whereoy, is the readout noise. In Eqg. (6), the free paramejvariablespy are the coefficient€,, when
the shape model is defined as an expansion in isphé&armonics (section 2.2.1) and the heigtitsvhen
we modify the coordinates of the vertices (secldh?2).

In order to minimize the chi-square function (6)¢ wse a non-linear optimization algorithm called
“limited memory Broyden-Fletcher-Golbfarb-Shann@*BFGS), a quasi-Newton optimization method [1].
It is well suited to large scale optimization predols and requires a limited amount of memory. Adspi
number of ~ 50 - 100 iterations of the algorithmeguired before it converges to a stable v&uef the free
parameters. When the final parameters are reathedoordinate®', of the vertices form the final shape
model.

The L-BFGS method requires the calculation of thdial derivatives at each iteration. These deiresat
are calculated with the finite difference methadwihich two chi-squares are calculated with the (& for
each partial derivative:
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where the indek' =1, ... I-1,1+1, ...,N,, whereN, is the number of vertices.
We emphasize that a major part of the CPU timeséxifor the calculation of these derivatives. Wk wi

see in section 2.4 how these partial derivativeshm calculated much faster, thus allowing us &edpup
considerably the optimization process.

2.3.2 Local error calculation

For each pixe(p, q) of the image numbaer, we calculate the residual value in units of tierumental noise
at the end of the optimization using the notatibeextion 2.3.1:
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We “project” the value of the residuals from theg$ to the facets using the pixel-facets intemsgct
solid angle=2®%" calculated earlier in section 2.1:
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where Qp is the total pixel solid angle, and the second suns over the pixel§, q) intersecting the
facet numbei. We then calculate the effect of a variation & #hope of each facet on the measured signal,
normalized to its associated instrumental noise. ddrivativedD;de (in DN/°) of the signal with respect to a
change of slope is obtained numerically by calindathe mean variation of the sigriaJ™ from Eq. (1)
when the vector normal to each facet remains oona of axisN; - the normal to the surface of the facet —
and of half cone apertuee The error, on the slope of each facet is deduced fgemdD;de, and from the
instrumental noise; associated to the sigrndj (Eq. 7):
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We take a typical value af~ 1° to estimate the value of the derivatili2i/de. Knowing the error on the
slope, the error on the heights (paramekéj)scan be easily deduced. The paramétéorms what we call
the “slope error map”.

2.3.3 Additional parameters

Additional parameters can be optimized in the samg if they have an impact on the synthetic imagms,
instance:

- the parameters which describe the BDR of the sarfa

- the three angles describing the pointing directiow roll angle of the camera for each individual
image,

- the three Euler angles describing the orientaticthe object in space.

The accuracy in the reconstruction of these pamdty the space agencies is usually not suffident
successfully achieve the optimization process. &foee, we always need to perform iterative optiriiaes
of the shape, of the pointing direction and roljlerof the camera.

2.4 Faster calculation of the partial derivatives

2.4.1 General principle of the method

As explained in section 2.3.1, most of the CPU tidneng the optimization process is used to cateulhe
partial derivatives of Eq. (8). In this section, wWescribe a method that allows to calculate thestefa
accelerating considerably the whole reconstruciozcess. The relationship (8) implies the calcatatf
two chi-squares, i.e. the calculation & &8nthetic images for each partial derivative. Wefly describe in
this section how we can perform the same task ealzding only the pixel values of the images whéck
modified when we move the height of a vertex frbiito H, + ey (section 2.4.2) and to extract from these
values the final partial derivative of the chi-spuésection 2.4.3).

2.4.2 Calculation of updated pixel values
The calculation of the pixel values modified bytege of the height of the vertex numb&om its original
valueH, to H, = e is performed in the following steps.

1) We identify the facet$,™ using the vertex numbér We determine the nominal set of pix&i§”
intersected by the facets. We then determine ase\of piersSLi(")intersected by the facets after the height
of the vertex humbelr has been modified. The set of pixels potentiallydified by a displacement of this
vertex is the union of both sampl&® - S, ™ U S, ™.

2) We re-determine if the facets intersected by theelpiP,™ are illuminated and visible from the
observer taking into account the displacement efvrtex.

3) For all the facet$'™ which are both illuminated and in view from thesebver, we re-calculate the
BDR ;" taking into account the new geometry.

4) The updated values',"(H,) of the pixels’,"” are then calculated using the relationship (1).
We repeat this operation for all images=(1.N).
2.4.3 Chi-square partial derivatives calculation

Let us introduce the contribution of the image nemibto the global chi-square of Eq. (6):
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where:
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The value of the function'," corresponding to the updated pixel val@s™(H,) calculated in section
2.4.2 is calculated in the same way:
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for pge P; . We now calA™ the set of all pixels of image numberAfter modification of the height of a

vertex, the pixels which remain unchanged belor@q]& Using these notations, we ha\® = C|(n) u P|(n).
With these notations, the modified chi-square camhitten as:
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which can be rewritten:

N
cen ([ T A+ T ap| @
n=1 pqE'P;'” }

This relationship gives us the expression of thiesgbare as a function of three parameters. Tl fir
parametery™, is calculated from the nominal image before takwlation of the partial derivatives. The
parameters,” andA'," are recalculated knowing the sets of modified P& of all images and the
new pixel value®',(Hy).

The partial derivatives can be calculated withfthiée difference of the new chi-square:
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This calculation is simplified since only the suaiontributions," andA',{" have to be calculated:
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The gain in CPU time in the calculation of the @uderivatives between the relationships (8) &l®) {s
then given by the ratio between the total numbepixéls of the images and the typical number o&fs)n

all the se1P|(n), i.e., typically 4 pixels per image. The gaintisriefore of the order &,/ (4 N).

3. APPLICATIONS TO ASTEROIDS STEINS AND LUTETIA

3.1 Observations

The Rosetta spacecraft [7] launched in 2004 byBhepean Space Agency is now on its way to meet its
final target, the nucleus of comet P/Churyumov-Gienanko. During its cruise, Rosetta flew by two

asteroids: Steins in September 2008 and Lutetiduly 2010. Images of these two asteroids have been
acquired by OSIRIS, the imaging system on boardeRasOSIRIS includes a narrow and a wide-angle



camera both equipped with the same 2Qgigels E2V 42-40 CCD detector offering pixel fiedd-views of
respectively 18.9 and 99/fad.

Rosetta flew by Steins at a minimum distance of B®2 with a phase angle which varied from 38° to 0°
and then increased to almost 140° out-bound. Ferfdhowing analysis, we use a set of 8 geometsical
calibrated images: one image acquired with theomaangle camera from a distance of 5235 km andrseve
images acquired with the wide-angle camera fronistdce of 1120 km in-bound (see Fig. 1) to 865 km
out-bound. These images correspond to a rangeasipdingles from 7° to 73°.

Lutetia was flown by at a minimum distance of 3K, with a phase angle which varied from 10° to 0°
and then increased to almost 140° out-bound. Ferfdhowing preliminary tests, we use a set of 4a8m
images extracted from geometrically calibrated iesagcquired with the narrow-angle camera from a
distance of 5200 km in-bound (see Fig. 3) to 36@0dut-bound. These images correspond to a range of
phase angles from 26° to 110°.

3.2 Steins reconstruction

3.2.1 Reconstruction strategy

The shape reconstruction of Steins is performetivin main steps. The first step consists in caltugpi
low-resolution spherical harmonic model. For thig, start from a sphere, for whi€ky, = R, = 2.7 kmand
the other parameters are set to zero. We use thkeHaarameters [4] describing the BDR derived fimm
global photometric analysis. We begin optimizing @&}, spherical harmonic coefficients of the shape model
with l,ax = 2. We iteratively optimize the shape and the Eulegles describing the pointing of the camera.
When a stable solution is reached, typically a3tériterations, we set the degree of the exparisitf, = 4
and we repeat the cycle of shape and Euler angli@siaations untill,,,,x = 20 . The sampling of the shape
model is given by a hierarchical triangular meshdBlevel five built from an icosahedron. The rking
20480 facets and 10242 vertices ensure that tledspdf the images contain typically a few facetsth® end

of this step, we have a spherical harmonic modéh@efasteroid. The corresponding synthetic imaggvisn

in Fig. 1.

In a second step, we optimize the heights of thieces in order to improve the spherical harmohiape
model calculated at the previous step. We procedokefore by iteratively optimizing the shape moaied
the Euler angles. After a total of 3 iteration® fimal shape model of the asteroid is obtained [gg. 1). We
keep the same sampling of the surface used toedtfré/spherical harmonic shape model

The results given in this section were obtainedhwlie “slow” version of chi-square partial derivati
calculation, which corresponds to the Eq. (8).

3.2.2 Final shape model

Table 1 summarizes our results. The mean resicaralexpressed in units of the instrumental noise T
final mean slope error is calculated from the nesld (section 2.3.2). Note that, for the spher@imonic
optimization, only one iteration between pointinglahape optimization is needed.

Table 1. Summary of our results for spherical harim@ptimization (SHO)
and Vertices Height Optimization (VHO)

Parameters SHO VHO
Starting chi-square 28640 90
Final chi-square 90 37
Mean residuals 9.5 6.1
Mean slope error 12° 7°
Mean height error 20m 10 m
Number of iterations 1 3

Total CPU time 30 hours 3 weeks




The CPU times are given for a dual-core 2 GHz @pteéZPU with 2 GB of RAM. The mean residuals
decrease from 9.5 to 6.1 (in units of instrumentzike) from the spherical harmonic to the triangutesh

representation (see also Fig. 1).

Figure 1. lllustration of the reconstruction methdor one of the eight images of asteroid Steimst panel: Observed
image. Center panel: synthetic image calculated Bpherical harmonic model. Right panel: synthetiagecalculated
from the final optimized model

3.2.3. Accuracy

We present in Fig. 2 the histogram of the valuethén“slope error map” defined in section 2.3.2loth the
spherical harmonic model and the final triangul@smmodel. For the latter, the histogram peaks @&hith
corresponds to 10 m in height, about 1/8th of ikelpesolution at closest approach.

Larger values of up to ~ 30° are however obtaimedegions of the shape model which correspond to
limbs or terminators on the images.
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Figure 2. Slope Error Histogram of the models @firgt.

3.3 Preliminary Tests on Lutetia

Figure 3 shows the result of preliminary tests qaned on a Digital Terrain Model of the asteroiddtia
applying deformation on the height of the vertid®sr input model is a “"maplet" (DTM) extractedrfr the
Stereophotoclinometry model of R. Gaskell [2] cédbed with his software LITHOS. Our method alloves u
to recover high-frequency information (right paned)mpared to the initial DTM (middle panel). Cratand
grooves are reconstructed with a more accuratédept



Figure 3. lllustration of the reconstruction methm@d on asteroid Lutetia. Left panel: Observedyen&enter panel:
synthetic image calculated from LITHOS model. Rigahel: synthetic image calculated from the finairojzed model

4. CONCLUSION AND FUTURE WORK

We developed and tested a new multi-image photoietry method based on deformations of a three-
dimensional shape model, on images of the ast&t@iths obtained by the imaging system on board ESA’
Rosetta spacecraft. The method also generates aihthp local topographic error deduced from theespi
residuals, both in slopes and in heights. In tlee e Steins, the local averaged slope error arsdant®.

The “faster” version of the code for the calculatf the partial derivatives of the chi-square dibsd in
section 2.4 has been implemented in the code amd tise test and validation process. The first ltasu
indicate an overall gain in speed which is in agreet with the prediction, i.e., would corresporfetor of
about 1000 for the example described in sectidhe8efore reducing the total CPU time to 30 min.

In the near future, we intend to improve the spesdithe robustness of the method by implementing it
a multi-resolution approach. We will also applysthechnique to the Lutetia images in order to inapro
existing shape models of this asteroid. Finally,wi apply it to the images of the asteroid Veatajuired
by the DAWN spacecraft, and later on to the higéshation images of the nucleus of comet
67P/Churuymov-Gerasimenko acquired by the scientdimeras of Rosetta.
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