
CGI2013 manuscript No.
(will be inserted by the editor)

Three-dimensional Reconstruction using Multiresolution
Photoclinometry by Deformation
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Abstract We present a new photoclinometric recon-
struction method based on the deformation of a 3D
mesh. The optimization process of our method relies on
a maximum-likelihood estimation with a density func-
tion measuring discrepancies between observed images
and the corresponding synthetic images calculated from
the progressively deformed 3D mesh. An input mesh is
necessary and can be obtained from other methods or
created by implementing a multiresolution scheme. We
present a 3D shape model of an asteroid obtained by
this method and compare it with the models obtained
with two high-resolution 3D reconstruction techniques,
stereophotogrammetry and stereophotoclinometry.

Keywords Photoclinometry · 3D reconstruction ·
Mesh deformation · Optimization · Multiresolution

1 Introduction

Three-dimensional shape reconstruction from images is
a key problem in the field of computer vision. It con-
sists in retrieving the 3D shape of the surface of objects
from the variations of the pixels intensities in images of
these objects. The two main families of methods devel-
opped in this field are stereography (hereafter stereo)
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and shape-from-shading (SfS).
We present here a new photoclinometry method which
takes into account several images to reconstruct shape
models thus combining the advantages of stereo and
SfS. This method allows us to obtain a 3D shape model
of any object presenting a uniform bi-directional re-
flectance. The surface must be seen from different di-
rections and illuminated by a single point light source
located at a distance from the object much greater than
its size. The camera can in principle be located at any
distance from the object given that the object repre-
sents at least ∼10 pixels across the image.
Our method is based on the deformation of a 3D trian-
gular mesh in a non-linear optimization process. From
the 3D mesh, synthetic images are created and this
mesh is deformed until these synthetic images match
the observed ones. This deformation is performed in a
multiresolution scheme where the resolution of the mesh
and the pixel scale of the images evolve in parallel.
Our method needs an input model described as a tri-
angular mesh. This model can be a model obtained
with another method (such as stereo, SfS or shape-from-
silhouette [23]) or a simple geometric surface (such as
a sphere or an ellipsoid).
After presenting related works in 3D reconstruction and
in multiresolution (section 2), we describe in detail our
reconstruction method (section 3) and show its appli-
cation to the reconstruction of the asteroid (21) Lutetia
(section 4).

2 Related works

We present below an overview of the 3D reconstruction
methods implemented so far. We then focus on mul-
tiresolution schemes, often used in shape-from-shading.
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2.1 3D reconstruction from images

The first type of 3D reconstruction methods is binoc-
ular stereo which uses only two images. It has been
studied for several decades [19] and has been extended
to multi-view stereo [20]. Stereo methods calculate po-
sitions of stereo control points using a triangulation of
corresponding points in several images. It is based on
points and remarkable schemes detection, points match-
ing and 3D control points calculation.
In astrophysics and geophysics, dense stereo is referred
to as stereophotogrammetry (SPG). It correlates patches
of a reference image in other images [8] in order to iden-
tify where the surface imaged in a patch of this refer-
ence image is observed in other images. SPG finds op-
erations (translations, rotations, distortions) allowing
to go from one image to the other so as to deduce the
3D topography of the observed object. Giese et al. [5]
present a photogrammetry method in three steps: orien-
tation parameters adjustment or rectification of images,
conjugate points determination in the different images
(correlation method using least squares minimization)
and digital terrain models (DTMs) generation. Com-
plex objects can be reconstructed but the conjugate
points determination is always difficult to achieve, espe-
cially when the illumination of the scene changes from
one image to the other because of the rotation of the
object.

The second type of 3D reconstruction methods is
shape-from-shading. This type of method was intro-
duced by Horn [9] and has also been studied for decades
[26]. It consists in determining the distribution of slopes
of the surface facets of an object in a 3D scene from the
intensity of the pixels. When an object is illuminated,
the radiance reflected towards the observer depends on
the observer and light source positions, as well as on the
shape and reflectance properties of the object. Likewise
stereo, SfS is an inverse problem (to find a 3D shape
from 2D information) for which there is no unique so-
lution unless several external constraints are introduced
[16].
In astrophysics and geophysics, SfS is referred to as
photoclinometry. Gaskell et al. [4] have developed a
stereophotoclinometry (SPC) method calculating sev-
eral control points and tiling the entire surface of an
ofject in small DTMs of increasing resolution centered
at these control points. From several images of a sin-
gle area taken under different viewing and illumina-
tion conditions, this method has allowed to reconstruct
models of several small bodies of our Solar System.

Nonetheless, both methods have limitations:

(i) The horizontal resolution of the SPG method is
comparable to the size of the patches used to build the
stereo control points, i. e., 5-10 times the pixel scale.
The projected pixel scale of an image corresponds to
the size of the area at the surface of the object imaged
by a single pixel of the camera.

(ii) When the illumination and viewing conditions
during the acquisition of the images are unfavorable,
the SPC method tends to smooth out small scale to-
pographic details which are interpreted by the algo-
rithm as variations of the local reflectance properties
(cf. Figure 1).

(iii) SPG and SPC both require images in which the
object represents at least ∼100 pixels across to retrieve
the 3D shape of the object.

(iv) In SPG, the silhouette is not taken into ac-
count during the reconstruction. In SPC, it is taken
into account only if the surface responsible for the sil-
houette can be tiled with a DTM from other images (cf.
Figure 2).

To overcome these limitations, these two methods
are often used in conjunction, which leads to improve
the accuracy of the reconstructed 3D models [25].

Fig. 1 Illustration of the problems with SPC reconstruction
by comparing the observed image (left panel) of a small body
and the synthetic image (right panel) created from the SPC
3D model. The arrows point to topographic details (grooves)
which are absent in the synthetic image.

Fig. 2 Illustration of the silhouette problems with SPC re-
construction by comparing the observed image (left panel) of
a small body of the Solar System and the synthetic image
(right panel) created from the SPC 3D model. The arrow, in
the synthetic image, points to parts of the silhouette which
are not correctly reconstructed.
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Fig. 3 ”Cascading Multigrid” (left panel) and ”Full Multi-
grid” (right panel) multiresolution schemes [1] .

2.2 Multiresolution

Multiresolution methods are often used in SfS to ensure
the propagation of constraints across large representa-
tions [24]. Since increases (resp. reductions) of the spa-
tial resolution of the 3D models imply reductions (resp.
increases) of images pixel scales [15], multiresolution
has to be applied to both 3D models and images.

There are different multiresolution schemes (e.g.,
[2]). Botsch et al. [1] demonstrate that a scheme which
goes back and forth in resolutions provides a better
quality result than the “Cascading Multigrid”(direct
ascending scheme) illustrated on the left panel of Fig-
ure 3. Given a level of resolution R, the “Full Multi-
grid” scheme [1] consists in: (a) going back to the start-
ing (lowest) resolution going through each intermedi-
ary level of resolutions, and then (b) using a direct as-
cending scheme to reach back the resolution R, once
again going through each intermediary resolutions, be-
fore considering a new higher resolution R + 1. This
multiresolution scheme is illustrated on the right panel
of Figure 3.

3 Multiresolution Photoclinometry by
Deformation

Our reconstruction method belongs to the family of cli-
nometry methods and consists in deforming of a 3D
triangular mesh in a non-linear minimization process.
From the 3D mesh, synthetic images are created and
this mesh is deformed using the parameters pk until
the synthetic images S match the observed ones O.
The objective function F , that we minimize, combines
two terms. The first term L(O, pk) is minus the log of
the maximum-likelihood of the parameters for quantify-
ing the discrepancies between images. The second term
is a prior penalty SC(pk) used to enforce the smooth-
ness of the mesh. We write:

F(pk) = L(O, pk) + SC(pk). (1)

This function F is minimized at different resolutions.
At each level of resolution, we use corresponding images
with approximatively the same pixel scale.

We call our reconstruction method “Multiresolu-
tion Photoclinometry by Deformation” (MPCD). We
present its flow chart in Figure 4. As a starting point,
we consider a 3D shape described by a triangular mesh.
This model can either be a sphere or a model obtained
by another 3D reconstruction method when it is avail-
able.

The different steps of our reconstruction method (cf.
Figure 4) are thus:
- the maximum likelihood estimation (L): the density
function quantifies the discrepancies between images
(cf. section 3.1)
- the smoothness constraint (SC): the prior function
prevents artifacts which can appear during the opti-
mization process (cf. section 3.2)
- the deformation scheme: the choice of the set of pa-
rameters (pk) triggers the model deformation and al-
lows to maximize the likelihood function (cf. section
3.3)
- the optimization method: the algorithm chosen max-
imizes the likelihood (cf. section 3.4)
- the multiresolution scheme (cf. section 3.5).

3.1 Maximum likelihood estimation

Our problem corresponds to the maximization of the
likelihood of a 3D shape model given noisy observations
of an object. We model the observations by synthetic
images and an additive gaussian noise n such as:

O = S(pk) + n. (2)

This noise n is composed of the noise of the readout
electronics, which is generally assumed to be gaussian,

Fig. 4 Flow chart of our MPCD method. For more details,
see section 3.
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and the photon noise which follows a Poisson statistic.
Generally, the signal values are large enough so that the
Poisson noise can be approximated by a gaussian func-
tion and consequently, n becomes altogether a gaussian
noise. Its standard deviation at each pixel m is:

σm(pk) = g ·

√
Sm(pk) · texp

g
+ κ2 (3)

with texp the exposition time of the image and g the
gain of electronics. The first term under the square-
root corresponds to photon noise [10] and the second
term κ to the readout noise.

The probability of a gaussian noise with N its co-
variance matrix is P(n) = exp(−1/2ntN−1n).
The likelihood of the parameters is L(pk) = P(O|pk).
For a gaussian noise we can write:

L(pk) = exp

(
−1

2
(O− S(pk))tN−1(O− S(pk))

)
(4)

If the noise is non correlated, we have N = diag(σm).
Taking the log, we thus have:

L(pk) = −2 log(L(pk)) =
Npix∑

m

(Om − Sm(pk))2

σ2
m(pk)

(5)

This function L(pk) is a non-linear function of the free
parameters pk which quantifies the differences between
the Npix pixels of the observed images and their syn-
thetic counterparts. Hence, it takes into account both
pixel variations in the illuminated part of the images
due to changes of the slope and silhouette constraints.

3.2 Smoothness constraint

Our deformation scheme (cf. section 3.3) implies that
the changes of the position of a vertex do not directly
imply changes of the position of its neighbors. This may
result in artifacts which are most pronounced in ar-
eas which are observed at the silhouette in at least one
image. The bi-directional reflectance is not well deter-
mined in those areas and the large number of facets in-
cluded in a pixel of the silhouette, combined with large
values of the derivatives cause the optimization routine
to create artifacts in these regions. This implies large
displacement of such vertices and since the neighbor-
ing vertices are not forced to move, it creates artifacts.
To prevent this problem, we add a prior SC(pk) to the
maximum-likelihood estimation, so as to force the slope
of neighbouring facets to remain close from one another.

This prior corresponds to a smoothness constraint given
by:

SC(pk) = α

F∑
i=1

3∑
mi=1

|Fmi(pk)− Fi(pk)|2.Smi(pk)

F∑
i=1

Si(pk)

(6)

for a model containing F facets where Fj is the normal
of facet number j, Sj its surface, and mi describes the
indexes of the 3 neighboring facets of facet number i.

The factor α, which allows to set the weight of the
smoothness penalty relative to the maximum-likelihood,
has been determined empirically to prevent artifacts
without stopping the convergence of the maximum-like-
lihood term. We adopt a constant value of α = Fo/(4SCo)
with Fo given by (Eq. 1) at the beginning of the op-
timization and SCo the initial smoothness constraint
value with α = 1. This leads to a value of the smooth-
ness constraint (SC) four times lower than the maximum-
likelihood function (L) of the images at the beginning
of the optimization.

3.3 Deformation scheme

A deformation scheme is used to modify the coordinates
of the vertices of the three-dimensional mesh used to
represent the surface of the body. The choice of this
scheme defines the free parameters pk. Our deforma-
tion scheme is based on a modification of the heights
of the vertices along a pre-defined local direction. This
direction is chosen parallel to the initial local normal
No

k, which is calculated by averaging the initial nor-
mal vectors of the facets which share this vertex. The
free parameter pk represents the displacement of the
vertex number k along this direction No

k. This direc-
tion is not updated during the optimization due to the
small displacements at each iteration.

With Ro
k the initial position of vertex k, the coor-

dinates Rk of this vertex after deformation become:

Rk = Ro
k + pk No

k. (7)

3.4 Optimization method

To minimize the objective function F (Eq. 1), we use
a non-linear optimization routine based on the “lim-
ited memory Broyden - Fletcher - Golbfarb - Shanno
with boundaries” (L-BFGS-b) algorithm [13], a quasi-
Newton method [3] especially designed for large-scale
convex problems. Other methods, such as [14] and [6],
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have also been tested, but we found L-BFGS-b to con-
verge to lower values of the function in our case. It also
allows to set lower and upper boundaries for each pa-
rameter.
In order to find a function f extrema, Newton methods
define a sequence xi such as:

xi+1 = xi − [∇2f(xi)]︸ ︷︷ ︸
Hessian matrix

−1. ∇f(xi)︸ ︷︷ ︸
Gradient

. (8)

Quasi-Newton methods use the sequence:

xi+1 = xi − αi.[∇2f(xi)]−1.∇f(xi) (9)

with αi a coefficient chosen to optimize the convergence.
As Newton methods, quasi-Newton methods allow to
find the extrema of a function but the second deriva-
tives of the Hessian matrix do not need to be calculated.
We define di the search directions at iteration i such as:
di = −[∇2f(xi)]−1.∇f(xi) and xi+1 = xi + αidi. We
thus have Bi.di ≈ −∇f(xi).
The estimationBi of the Hessian matrix can thus be up-
loaded with successive analyses of the gradient. Quasi-
Newton methods give: Bi+1 = ηi.Bi + Ui and in the
case of BFGS we have: ηi = 1

Ui =
yi.

t(yi)
t(yi).si

− Bi.si.
t(si).Bi

t(si).Bi.si

(10)

with si = xi+1 − xi and yi = f(xi+1)− f(xi).

The L-BFGS-b procedure thus requires the calcu-
lation of the first order partial derivatives (∇f(xi)) of
the function to minimize. The method can converge af-
ter a low number of function and gradient evaluations.
This is particularly important in our case since those
evaluations are highly time-consuming.
The convergence is achieved when at least one of the
two following conditions are met: (i) the difference of
the function values between two iterations is lower than
a threshold, (ii) the difference of the maximum value
of the gradient between two iterations is lower than
another threshold (http://users.eecs.northwestern.edu/
∼nocedal/lbfgsb.html). These thresholds are both pa-
rameters of the L-BFGS-b procedure.

It is important to note that, like any quasi-Newton
method, L-BFGS-b is guaranteed to converge to a global
solution only if the function is convex.

3.5 Multiresolution scheme

Our objective function F is unfortunately non necessar-
ily convex which means that the minimization method
using L-BFGS-b can lead us to a local minimum. In

order to overcome this problem we use a multiresolu-
tion scheme. At coarse resolution the function tends to
become more convex.

Our multiresolution scheme is inspired by the ”Full
Multigrid” method. The only difference is that we go
back only to the level of resolution just below the cur-
rent level while the ”Full Multigrid” method consists in
going back to the starting (lowest) resolution. The mul-
tiresolution scheme allows to avoid local minima since
going back to a coarser resolution removes small local
minima and thus tends to find the global minimum with
L-BFGS-b.

For a 3D shape model, going from one resolution
to the next one can be achieved with mesh subdivision
[12] and going down in resolution with reverse subdivi-
sion [18]. For images, only going down in resolution is
feasible, large pixel scale images can indeed be calcu-
lated from low pixel scale images. For this, we use the
binning method, which consists in averaging the values
of a group of 2x2 pixels.

At each resolution, we reconstruct the shape with
an accuracy proportional to the projected pixel scale of
the observed images.

The highest resolution level reachable by the method
is currently limited by the computational time. We reach
the last step when the number of pixels and facets is so
large that the computational time becomes prohibitive.
Another method will then be used to retrieve the to-
pography at higher resolution. This method will use a
division of the global model into small surface elements
so as to generate local DTMs, following the approach
introduced by Gaskell et al. [4]. The optimization of
these DTMs will be done with the same optimization
process. This extension of the method will be described
in a forthcoming article.

4 Results: Lutetia 3D reconstruction

We used several small solar system bodies to test our
method. We choose here to only present the results
given with our case study of the asteroid (21) Lutetia
which has also been reconstructed with other methods.

The asteroid (21) Lutetia was observed during a fly-
by by the Rosetta spacecraft of the European Space
Agency (ESA). The Rosetta spacecraft includes the imag-
ing experiment OSIRIS (Optical, Spectroscopic, and In-
frared Remote Imaging System).

4.1 Image selection criteria

The CCD images are acquired by a single moving cam-
era while the object rotates. They are processed to re-
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move radiometric and geometric instrumental effects.
A set of images taken with the same colored filter is
extracted according to three criteria. A new image is
selected if: (i) the distance between the object and the
camera varies by a factor of at least 1.5, or (ii) the view-
ing angle varies by at least 10◦, or (iii) the illumination
angle varies by at least 10◦. This scheme ensures that
the selected images are sufficiently different one from
another, thus bringing enough new information to the
algorithm.

A sub-set of 27 images of Lutetia, extracted from
the whole set of 400 images acquired by the camera,
is selected according to the above mentionned crite-
ria. For these images, the spacecraft-object distance
decreases from 510, 000 km (image #1) to 3, 170 km
(image #20) at closest approach, and increases again
to 6, 100 km (image #27) later on. The corresponding
projected pixel scales are respectively 9.70 km, 60 m
and 115 m. The phase angle varies from 10◦ (image #1)
to 140◦ (image #27). The phase angle is the angle be-
tween the Sun direction and the spacecraft direction, as
seen from the center of the object. Six of the 27 selected
images of Lutetia are presented in Figure 5, where the
pixel scale varies from ∼ 4 km (top left panel) to 60 m
(bottom left panel).

4.2 Application of MPCD

The synthetic images (cf. Section 3.1) are created by a
tool called OASIS (Optimized Astrophysical Simulator
for Imaging Systems, [10]). OASIS considers a shape
model described by a triangular mesh. It calculates the

Fig. 5 Example of 6 images with different pixel scales used
for the 3D reconstruction (case of asteroid Lutetia).

position and the orientation of the object in the camera
frame as a function of time.

To start our reconstruction, we need high pixel scale
images. To obtain such images, we progressively rebin
each selected image up to the pixel scale needed to per-
form the first step of the multiresolution scheme and
keep the intermediary binned images for upper levels
of resolution. The images already at this pixel scale are
not rebinned.

After this binning, we thus have n subsets of im-
ages corresponding to n different pixel scales with n

depending on the range of pixel scales in the subset.
If we note A the largest pixel scale and B the lowest,
we have n such as A ' 2nB. In Figure 6, A ' 20
km (bottom row), B ' 1.24 km (top row) and n = 5
(number of rows). The first subset of images constains
27 un-binned and binned images corresponding to the
highest pixel scale, the second subset only contains 26
images and the following subsets 24 images. The sub-
sets contain decreasing numbers of images because the
low pixel scale images corresponding to the level of res-
olution does not always exist.

We apply our multiresolution method of photocli-
nometry by deformation (MPCD, cf. Figure 4) to re-
construct the shape of the asteroid Lutetia with 5 lev-
els of resolution (cf. Figure 6). This case study im-
plies a very good knowledge of the positions of the
camera and the object as well as an optimization of
their orientation parameters. These parameters are op-
timized, apart from the heights of vertices, with the
same maximum-likelihood computation (Section 3.1).
The values χ given in Figure 6 correspond to the sum
of absolute value of the differences between observed
and synthetic images:

χ =
Npix∑

m

| Om − Sm(pk) | . (11)

It represents the discrepancies between these images
given in units of the instrumental noise (σ). Computa-
tional times given in Figure 6 correspond to a paral-
lelized code running on an Intel Xeon CPU of 3.20GHz
with a 8 GB RAM and 4 cores. In this section, we first
show our results and justify with examples our differ-
ent choices and especially the use of our multiresolu-
tion scheme. We then compare our results with those
of other methods: SPC and SPG [17] (see Section 2.1).

The body rotates during the flyby, which allows us
to image all the surface illuminated during one rota-
tion cycle of the asteroid. However, about 25 % of the
surface is not imaged because the spin axis is not per-
pendicular to the orbital plane which contains the light
source (the Sun).
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Fig. 6 Steps of the multiresolution scheme: evolution of the images and the shape model.

As starting point, we use a 120 km-diameter sphere
built from an icosahedron [22]. This size of the sphere
is estimated from previous studies of the object: e. g.
Lamy et al. [11] estimate a size of ∼130 x 100 x 95
km. With this very low resolution model (level 1, first
bottom row of Figure 6) containing 320 facets, we use
the whole first subset of images corresponding to the
largest pixel scale. We deform this model using our op-
timization method with the smoothness constraint The
model is then subdivided to obtain the level 2 (second
row of Figure 6) of resolution and optimized with the
corresponding subset of 26 images. For level 3, level 4
and level 5 (third, fourth and fifth rows of Figure 6) of
our multiresolution scheme, the corresponding subsets
of 24 images are used.
The steps of our multiresolution scheme are illustrated
in Figure 6 where we can see that smaller topographic
details are reconstructed when we decrease the pixel
scale of the images. Our method allows us to recon-
struct entirely the 74% of the surface of Lutetia ob-
served during the flyby, . Lutetia dimensions are ap-
proximatively 121 x 101 x 75 km [21], this prooves that
our reconstruction method is efficient eventhough the
shape is not exactly spherical and the starting sphere
is not a good approximation of the shape of the object.

4.3 Validation of our method

Figure 7 presents one of the 24 images used for our level
5 optimization.
Figure 8 presents the results of the method when no
multiresolution scheme is used, i.e., when we directly
optimize the sphere at high resolution with low pixel
scale images.

For each pixel m of image n, we can calculate the
residual value in units of instrumental noise:

ρ(n)
m =

O
(n)
m − S(n)

m (pk)

σ
(n)
m

(12)

The resulting residual images allow an easy visualiza-
tion of the differences between the observed and syn-
thetic images.

Without multiresolution, the limbs (silhouettes) of
the asteroid are not correctly reconstructed. Indeed on
the top of the residual image (Figure 8, right panel), we
can see that several neighboring pixels have a very low
grey value which proves that the model presents a limb
that is too smooth and does not create the trough that
is visible in the observed image of Figure 7. This result
proves that, without multiresolution, the minimization
with L-BFGS-b reaches a local minimum which does
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Fig. 7 One of the selected observed image using during Lute-
tia reconstruction using MPCD.

Fig. 8 One of the synthetic image from the model (left panel)
obtained with our method without using multiresolution and
corresponding residual image (right panel). The arrows show
the main problems.

Fig. 9 One of the synthetic image from the model obtained
using the Cascading Multigrid scheme (left panel) and corre-
sponding residual image (right panel). The arrows show the
main problems.

Fig. 10 One of the synthetic images from our MPCD model
(left panel) and corresponding residual image (right panel).

not correspond to the best fit of parameters.
Figure 9 shows the result of the ”Cascading Multigrid”
scheme. Even though this result is better than the one
with no multiresolution scheme, the limbs are still not
very well retrieved. Large white and black areas are in-
deed visible in the corresponding residual image (Figure
9, right panel).
Figure 10 presents the results of our MPCD method.
The synthetic image of Figure 10 can be compared with

One of the observed 
images

Shape model without 
smoothness constraint

Shape model with 
smoothness constraint

Fig. 11 Example of a mesh obtained without (middle panel)
and with (right panel) a smoothness constraint after an op-
timization with 8 images. The white arrow on the observed
image (left panel) shows the silhouette that creates the arti-
fact on the shape model also shown by a white arrow.

the observed image of Figure 7, we can see that regard-
less high resolution details the surface is correctly re-
constructed. The residual image (Figure 10, right panel)
confirms this results since no large white and black ar-
eas are visible. Nevertheless, we can see that with our
method there are still some problems with the topog-
raphy of the asteroid. For example, several craters are
visible on the residual images which means that they
are not perfectly reconstructed. Black and white pix-
els m correspond to a residual value ρm = ± 12 σm in
Figures 8–10. The use of the ”Full Multigrid” scheme
gives the same results as our multiresolution scheme.
The only difference is an increase of the computational
time with the ”Full Multigrid” scheme.
Figure 11 illustrates the difference of models obtained
with and without smoothness constraint (see Section
3.2) during the tests on the reconstruction of Lutetia.
The improvement speaks for itself.

4.4 Comparison with other methods

In order to test the accuracy of our method, we perform
a quantitative comparison of the low-resolution model
of Lutetia retrieved with the MPCD method with high-
resolution models of the same object obtained with the
SPC and SPG methods (Figure 12). These two models
have an uncertainty of about 40 m in elevation above
the surface and a spatial resolution of about 100 m.
We point out that, unlike the MPCD model presented

Fig. 12 Comparison between our MPCD model (left), the
SPC model (center) and the SPG model topography recon-
struction (right).
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Observation

MPCD

SPC

SPG

Fig. 13 Comparison between our method MPCD, SPC and
SPG: topography reconstruction. Observed image (1st row),
synthetic (left pannel) and residual images (right panel) from
our MPCD model (second row), from the SPC model (third
row) and from the SPG method (fourth row). The arrows
show the main problems.

here, the SPC and SPG models have been reconstructed
using purely un-binned images with the lowest possible
pixel scale of 60 m at the closest approach. For this com-
parison, we generate 27 synthetic images corresponding
to those used to build the MPCD model, but using as
input the SPC and SPG shape models of Figure 12.
We also calculate the corresponding residual images.
Residual images of the SPC and SPG models are shown
in Figure 13 respectively, where black and white pix-
els m in residual images correspond to a residual value
ρm = ± 8 σm. We also quantify the local distance be-
tween two models using the “CloudCompare” tool [7].
This tool also provides us with the histogram of the dis-
tribution of local distances. The comparison is shown
in Figures 15 and 16.

The MPCD model has the lowest image residuals
of the three methods, but a few pixels near projected
shadows still have large residuals (Figure 13, first row
left panel). The topography around areas in shadow is
more accurately modeled by MPCD. The histograms
of local distances (Figures 15 and 16, right panels) are
both well-described by a Gaussian distribution. We can
see on Figures 15 and 16 that the differences between

the MPCD model and the SPG and SPC models present
clear similarities. As an example, part of the rim of the
large crater at the center of the models is higher in
both models (yellow-orange patches). Figures 15 and
16 indicate that, apart from these specific locations our
MPCD model is mainly affected by errors of less than 1
km. We stress that these errors still remain lower than
the pixel scale (between 20.2 and 1.24 km) of the images
used to reconstruct the MPCD shape model.

The MPCD method reproduces the limb of the ob-
ject slightly better than the SPC method (Figure 13 ,
second and third row). This is also illustrated in Fig-
ure 14, in which the observed limb is better reproduced
with the MPCD model than with the SPC one. The
SPC model covers 60 % of the surface, slightly less than
the MPCD model (74 %). The corresponding histogram
(Figure 15) can be compared to a gaussian function cen-
tered at -0.2 with a standard deviation of 0.8.

The SPG model only covers 36% of the object. The
corresponding histogram (Figure 16) can be compared
to a gaussian function centered at zero with a standard
deviation of 0.6. Note however that the two models have
a slightly different surface coverage.

5 Conclusion and future work

We develop a new multi-image photoclinometry method
(MPCD) based on local deformations of a three-dimen-
sional shape model. The deformation is guided by the
minimization of the differences between a set of ob-
served images of the object and their synthetic coun-
terparts, generated from the deformed shape model.
We use a multiresolution scheme to ensure a better
accuracy of the final reconstructed shape model. This
method is applied to a set of 27 images of the aster-
oid Lutetia observed during a flyby of the asteroid by
the ROSETTA spacecraft. We successfully reconstruct
a model which covers the whole surface imaged by the
camera aboard ROSETTA. The accuracy of this model
is equal to ∼ 0.5 times the minimum pixel scale of the
observed images.

Fig. 14 Comparison between our method MPCD and SPC:
limbs reconstruction. Observed image (left panel), synthetic
images from our MPCD model (center panel) and from the
SPC model (right panel). The arrow shows the main problem.



10 Claire Capanna et al.

Fig. 15 Image of the distance in km between the MPCD
and the SPC models (left panel) and histogram of these
distances (right panel).

Fig. 16 Image of the distance in km between the MPCD
and the SPG models (left panel) and histogram of these
distances (right panel).

We compare our MPCD model with those derived
with the SPC and SPG techniques. The MPCD method
allows to model a larger fraction of the surface (74 %
instead of 36–60 %). It also allows to better reproduce
the limb of the object on images, and the topography
near shadowed areas.

Our final goal is the reconstruction of the shape at
a spatial resolution comparable to the lowest pixel scale
of images acquired by the camera. For this, we will seg-
ment the model into smaller DTMs and optimize each
of them with our MPCD technique before merging them
into a global shape.
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