
1

1
G. Beslon – INSA-Lyon – BSMC/LIRIS/ISC

Introduction to individual-based
modeling

Guillaume Beslon
INSA – LIRIS – IXXI

G. Beslon – CSSS’09 Lecture – July, 23, 2009 2

Introduction
• Aim of the course:

– Introduce Agent-Based Modeling as a tool
– Give the main hints to develop your own ABM
– Present NetLogo as a tool to develop ABMs
– NetLogo tutorial
– Build your (first?) NetLogo models

• Who am I?
– Guillaume BESLON (guillaume.beslon@liris.cnrs.fr)
– Professor at the INSA-Lyon, LIRIS Lab. (Laboratoire d’Informatique

en Image et Systèmes d’Information)
– Assistant-director of IXXI (Rhône-Alpes Complex Systems Institute)
– Research topics: Individual-based modeling of complex biological

systems (mainly evolution)

2

G. Beslon – CSSS’09 Lecture – July, 23, 2009 3

• Programmable simulation environment
– Designed for Agent-Based Modeling

• Used mainly to simulate natural and social systems
– Available for all systems (java),
– Can be used in parallel
– Simple “intuitive” programming language

to setup
 ca ;; clear the screen
 crt 10 ;; make 10 new turtles
end

to go
 ask turtles
 [fd 1 ;; all turtles move forward one step
 set heading random 360 ;; and turn randomly
]
end

G. Beslon – CSSS’09 Lecture – July, 23, 2009 4

References
• Bonabeau, E. (2002). Agent-based modeling : Methods and techniques for

simulating human systems. Proceedings of the National Academy of Sciences
of the USA (PNAS), 99(suppl. 3):7280–7287.

• Grimm, V. (1999). Ten years of individual-based modelling in ecology : what
have we learned and what could we learn in the future ? Ecological Modelling,
115:129–148.

• Bankes, S. (2002). Agent-based modeling : A revolution ? Proceedings of the
National Academy of Sciences of the USA (PNAS), 99:7199–7200.

• Grimm,V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W.M., Railsback, S.F.,
Thulke, H.-H., Weiner, J., Wiegand, T., DeAngelis, D.L. (2005) Pattern-
Oriented Modeling of Agent-Based Complex Systems: Lessons from Ecology.
Science, 310:987-991.

• Macal, C. M. et North, M. J. (2006). Tutorial on agent-based modeling and
simulation part 2 : how to model with agents. In WSC06 : Proceedings of the
38th Winter simulation conference, Monterey (USA), pages 73–83.

3

G. Beslon – CSSS’09 Lecture – July, 23, 2009 5

Reminder
• What is a model?

“To an observer B, an object A* is a model of an object A to the extent
that B can use A* to answer questions that interest him about A.”

[Marvin Minsky]

• Remember that scientific models are instruments for
scientific discovery
– Used to explore properties of systems through virtual experiments

• Computational models are those which uses computation
to perform the experiments
– The model typically uses an algorithm to compute the state at type

t from the state at time t-1
– Agent-Based Modeling is a kind of computational models based on

an explicit description of the agents.

G. Beslon – CSSS’09 Lecture – July, 23, 2009 6

What is ABM?
• “Bottom-Up” modeling:

– Describe the system at the local level with some formalism
– Simulate it (computational model)
– Observe and analyze the results (at both levels!)

“In agent-based modeling (ABM), a system is modeled as a
collection of autonomous decision-making entities called agents.
Each agent individually assesses its situation and makes decisions
on the basis of a set of rules. Agents may execute various
behaviors appropriate for the system they represent -- for example,
producing, consuming, or selling. Repetitive competitive
interactions between agents are a feature of agent-based modeling,
which relies on the power of computers to explore dynamics out of
the reach of pure mathematical methods.”

[Bonabeau, 2002]

4

G. Beslon – CSSS’09 Lecture – July, 23, 2009 7

What is ABM?
• Agent-Based Modeling is more a methodology than a

precise technique
– You can choose the formalism you “want” at the agent level

(dynamical models, set of rules, discrete/continuous
coordinates, punctual particles or not, …)

– The only thing you need is a way to compute the interactions
and, thus, the resulting behavior

• But this may not be a trivial question!
– The used computational tools can be very diverse…

“Agent-Based Model is a mindset more than a technology.”
[Bonabeau, 2002]

G. Beslon – CSSS’09 Lecture – July, 23, 2009 8

What is ABM?

Agent-Based
modeling

Individual-based
modeling

Micro-
simulation

Multi-agent
systems

?

? ?

?

?

?

Cellular
automata

Grid-
worlds

?

?

??

5

G. Beslon – CSSS’09 Lecture – July, 23, 2009 9

What is ABM?
• Consensus for the principles
• Diversity of the appellations!

– Micro-simulation (physics)
– Agent-Based Modeling (computer science, social science)
– Individual-Based Modeling (biology, ecology)
– Bottom-Up simulation

• The only real difference is with MAS
– Multi-Agent Systems are NOT Agent-Based Models
– MAS are IT technologies trying to use CS approaches to improve

the behavior of programs and computers
– MAS are NOT models
– MAS can be used to implement ABM but… why?

G. Beslon – CSSS’09 Lecture – July, 23, 2009 10

ABM, Cellular Automata and
Grid Worlds

• 2D cellular automata are often presented as ABM
– In CA rules are associated with the places, not with the agents
– CA are not ABM, except when dealing with fixed agents (one

place-one agent)

• Grid world are 2D worlds (sometimes 3D) where objects
move on a grid-based space according to rules

– The rules are local to the objects,
not to the places

– Probably the simplest ABM
– E.g., DLA …

6

G. Beslon – CSSS’09 Lecture – July, 23, 2009 11

What is an agent?
• What is an agent?

– A discrete entity/program with its own goals and behaviors
– Autonomous, with a capability to adapt and modify its

behaviors
– Some key aspect of behaviors can be described.
– Mechanisms by which agents interact can be described.

• Examples
– People, groups, organizations, insects, swarms, robots…

• But this definition is strongly rooted in MAS and
social systems

G. Beslon – CSSS’09 Lecture – July, 23, 2009 12

What is an agent?
• You will often find figures like:

[N
or

th
 &

 M
ac

al
, 2

00
6]OR

7

G. Beslon – CSSS’09 Lecture – July, 23, 2009 13

What is an agent?
• An agent is (only) the unit of description of the micro-

level
– Again, “Agent” is more a methodological concept than a

technological concept!

• What is agent (or not) depends on your point of view!
– What is really important is what is local and what is not!

• It is often very difficult to decide what is an attribute,
what is a memory, what is a resource …
– E.g. xcor, ycor, speed, energy, …

G. Beslon – CSSS’09 Lecture – July, 23, 2009 14

What is an agent?
• Care the difference between:

– “Anthropomorphic” definition: An entity that senses its
environment and acts upon it in order to achieve a goal

– Technical definition: A persistent autonomous software
entity dedicated to a specific purpose (e.g. a program, a
thread or a robot)

– Methodological definition: The conceptual unit of interest,
defines a boundary between what is modelled and what is
observed (but often the observed system is the agent…)

8

G. Beslon – CSSS’09 Lecture – July, 23, 2009 15

Life-cycle of an ABM
• Developing an ABM seems straightforward!

– Describe the system at the agent level ; describe the
interactions between the agents

– Create a population of agents
– Use some simulation method/software to let the agents and

the population run
– Observe the result(s)
– Draw conclusion

• Actually it is (quite) as simple as this…
– But some steps may be difficult ;)

• Modeling is an art
– Agent-Based Modeling is a black-art!

G. Beslon – CSSS’09 Lecture – July, 23, 2009 16

Designing the agent level
• NOT YET: As in every model, define very carefully

your system and your aim FIRST!
– Generally a scientific question but…
– ABM can also be used to help to define a scientific question!

• Choose the agent level, the agents behavior and the
agent interactions
– Take care: the devil is in the details!
– You need a good knowledge and skill in order to be able to

select the appropriate description at the appropriate level!
– Care habits, transfer of models from a domain to another

one, code reuse, …
– Care implicit choices

9

G. Beslon – CSSS’09 Lecture – July, 23, 2009 17

How to design the agents?
• Actually no real methodology…

– ABM skill helps,
– A precise question helps a lot,
– Domain knowledge helps enormously!

• The only methodology is trial and errors!
• Examples of agents

– Molecules
– Planets/stars
– Humans
– Insects
– Companies
– Cars
– Drops of water
– Birds…

Both have similar properties:
inanimate objects following
physical (Newtonian) laws

Can we use the same
agents models

G. Beslon – CSSS’09 Lecture – July, 23, 2009 18

How to choose the “level of
complexity” ?

[G
rim

m
 e

t a
l.,

 2
00

5]

10

G. Beslon – CSSS’09 Lecture – July, 23, 2009 19

The main problem
• The structure and dynamics of complex systems call

for Agent-Based Modeling
– Many elements with non-linear interactions
– Natural interpretations (Fayerabend) are often false

• But the structure and dynamics of complex systems
make modeling difficult and dangerous
– Complex systems are very sensitive to (generally many)

parameters
– Complex systems are often sensitive to initial conditions
– Complex systems are often noisy
– The analysis of the system strongly depends on some

subjective judgment

• Playing with models is the only solution!

G. Beslon – CSSS’09 Lecture – July, 23, 2009 20

From agents to multi-agents
• Once you have designed the agents, you still have

important choices to make
– These choices are often forgotten (often implicit!)

• Agent will “live” in a spatio-temporal world
– Real world is continuous
– Agents’ world is not!
– It creates risks and difficulties

• How to model time?
• How to model space?

11

G. Beslon – CSSS’09 Lecture – July, 23, 2009 21

The time model
• Time is (always?) neglected in MAS approaches

– Generally considered as a non-problem
• Discrete Time

– Synchronous, asynchronous, discrete-events
– What is the correct time step?

• The higher the time step, the higher the error
• The lower the time step, the slower the simulation

– Practitioners are generally NOT able to estimate the correct time
step of their systems!

– The correct time step depends on the movement and on the
interaction models

• The time model may strongly influences the
global behavior

G. Beslon – CSSS’09 Lecture – July, 23, 2009 22

The space model
• Space is often at the core of ABM

– Space is mainly a constraint on agents’ neighborhood
– Very often, you will use ABMs to test the behavior of

analytical models in a given spatial framework

• Lots of different space models are possible
– From “Soup model” to GIS models
– You often have to mix different space models (e.g.

continuous space for agents + diffusion on a grid)

[N
or

th
 &

 M
ac

al
, 2

00
6]

12

G. Beslon – CSSS’09 Lecture – July, 23, 2009 23

The space model
• Care: like for time, there are often implicit assumption

for the space model
– Is 2D sufficient?
– How to model the borders of the space?

• Absorbing, reflecting, static, periodic…
– How to model infinite spaces?

“Diffusion is not a perfectly mixing process in low dimension
because the diffusing molecule will return to its initial position
with probability 1, whereas, for d > 2, there is a significant
probability that the diffusing molecule will never return to its
origin.”

[berry, 2002]

G. Beslon – CSSS’09 Lecture – July, 23, 2009 24

Movement
• Agents will often move in the space

– The laws of movement are generally supposed simple
– Very often they are not!
– Care not to reuse implicitly macroscopic laws of motion into

a microscopic world (e.g., planets and molecules)
– Sometimes the laws of motion explains the “emergent”

results by themselves!

• E.G., DLA
– Agents explore differently their vicinity depending on the

laws of motion!

13

G. Beslon – CSSS’09 Lecture – July, 23, 2009 25

Fractals structures
created by DLA

Two different laws of movement,
which one is correct?

G. Beslon – CSSS’09 Lecture – July, 23, 2009 26
Slow diffusion

• Coral morphogenesis [Merks et al., 2003]
– Same agents
– Different diffusion parameters leads to different shapes

Fast diffusion

Law of motion maters!

14

G. Beslon – CSSS’09 Lecture – July, 23, 2009 27

Implementation step
• Once you have designed your agents and their relations,

how can you implement them and run the simulation?
– Plate-forms, frameworks,
– Programming from scratch (which language),
– Reuse a previous model

• Take care: the implementation phase is NOT the most
difficult nor the longer!

• Choose the methods/tools such that they
– respect the modeling phase
– will be efficient during the experimental phase
– enable to follow “strictly” a scientific experimental methodology

• Then, you’ll probably have to program “a little”…

G. Beslon – CSSS’09 Lecture – July, 23, 2009 28

Implementation
• You will often find figures like:

[N
or

th
 &

 M
ac

al
, 2

00
6]

15

G. Beslon – CSSS’09 Lecture – July, 23, 2009 29

The pro&cons of visualization
• Complex systems are based on subjective judgment

– We need a visual feedback!
• We often have no mean to decide what is correct and what is not

– We need a visual feedback!
• We have to care natural interpretations

– Care visual feedback! (“I like it!”)
• We have to repeat the experiments

– Visual feedback are often slow!
• We have to repeat experiments

– Visual feedback cannot be aggregated
• Conclusion

– Care to visualize easily and to emphasize what is important
– Care not to focus only on visualization: data output are important

G. Beslon – CSSS’09 Lecture – July, 23, 2009 30

Experiments
• Agent-Based Models often have MANY parameters

– Most of them are often implicit …
– E.g., in my own model (Aevol) : 53 parameters!

• Agent-Based Models are generally slow
– Need lots of computational resources

• It is NOT possible to test all parameters
– Again, no hint! (except your own knowledge and experiments)

• Don’t explore randomly the parameter space
– Use “good practices” of experimental science
– Actually ABM is an experimental approach (digital experiments)
– Having a laboratory notebook is a VERY good practice!
– Log all your experiments ; finish all your experiments

• Making the model is often less difficult than running the model…
– Plan resources and time from the beginning of your project

16

G. Beslon – CSSS’09 Lecture – July, 23, 2009 31

ABM validation
• Verification: The program is doing what you want it to do

– Very difficult problem! (+/- software engineering)

• Validation: The model produces the “correct” behavior
– Impossible problem: A model is never “valid”

“Essentially, all models are wrong, but some are useful.”
[G. Box]

• Actually it depends on what you want to do with the model!
– Predictive models can be tested (but never proved!)
– Scientific models generally cannot

G. Beslon – CSSS’09 Lecture – July, 23, 2009 32

The meta-life-cycle of ABM
• Actually, ABM are not so difficult to build!
• The difficulty is (again) to produce knowledge with them!
• Meta-life cycle of ABM

– Identify a good question
– Build different simple models and play with them to identify what

matters or not
– Build YOUR model and make it stable
– Make experiments with the model (experimental method helps!)
– Analyze the results (statistical skill helps!)
– Hopefully, acquire new knowledge (model the model)
– Communicate, confront, publish
– FORGET YOUR MODEL

17

G. Beslon – CSSS’09 Lecture – July, 23, 2009 33

Forget your model?
• Two reasons:
• The model is not the knowledge

“It could be argued that a criterion to determine good models is that
they are no longer needed afterwards; The decisive thing with
modeling is not the model per se, but what the model and working
with the model does to our mind.”

[V. Grimm, 1999]

• Remember that a model depends on a question…
– If you change the question you MUST change the model
– Of course, you can reuse some pieces of software but be careful

on implicit choice
– The software is not the model
– Take care not to jump steps in the meta-life-cycle!

G. Beslon – CSSS’09 Lecture – July, 23, 2009 34

Applications

[N
or

th
 &

 M
ac

al
, 2

00
6]

+ evolution

+ hydrology

+ membrane models

+ soil models

+ agriculture

+ diffusion of innovation

+ …

Note that businessmen
are not as “narrow-
minded“ as scientists ;)

No need of “proofs”,
just need to sell!

18

G. Beslon – CSSS’09 Lecture – July, 23, 2009 35

Grand challenge of ABM

Fusion of agents

Fission of agents

G. Beslon – CSSS’09 Lecture – July, 23, 2009 36

When/why using ABM?
• [Grimm, 1999]

– Pragmatic motivation: ABM can model phenomenon impossible to
model with other approaches (“another tool in the modelers
toolbox”)

– Paradigmatic motivation: State variables modeling gives a false
vision of reality since individuality, discreteness, locality or space
matter

• Hum, not clear … real motivations are more basic
– Easy to construct, manipulate and extent (easy to

change/add/remove parameters, rules,…) … to easy?
– Can model unknown phenomenon (if you have knowledge at the

lower level)
– ABM use a domain-based ontology (they are good interfaces

between disciplines) easy to describe and to explain … too easy?
– “Looks like” (pleasant models) … too pleasant?

19

G. Beslon – CSSS’09 Lecture – July, 23, 2009 37

Why/when using ABM?
• Very often, it is claimed that ABM must be used when

analytical models fails but
– Analytical models have a long history in ~every scientific

domain (are you sure they fail?)
– Can we (computer scientists) really know when analytical

models can or cannot be used

• In practice, always try to use ABM in parallel with
analytical models…
– ABM can be use before analytical model (to propose

hypothesis)
– ABM can be used after analytical model (to validate

hypothesis)

G. Beslon – CSSS’09 Lecture – July, 23, 2009 38

Why/when using ABM?
• ABM is drinking the sea with a teaspoon

– Each run is easy, each run helps but you’ll need a long time!

• Analytical models is drinking bears without a bottle
opener

– Each run is difficult but when you succeed you can drink the
whole bottle at once!

• Note that there is much more diversity in the sea than
in a bear bottle!

Another metaphor?

20

G. Beslon – CSSS’09 Lecture – July, 23, 2009 39

ABM vs. Analytical models

G. Beslon – CSSS’09 Lecture – July, 23, 2009 40

The BIG risk!

21

G. Beslon – CSSS’09 Lecture – July, 23, 2009 41

The other BIG risk!

G. Beslon – CSSS’09 Lecture – July, 23, 2009 42

The future of ABM?

22

G. Beslon – CSSS’09 Lecture – July, 23, 2009 43

• Programmable simulation environment
– Designed for Agent-Based Modeling

• Used mainly to simulate natural and social systems
– Available for all systems (java),
– Can be used in parallel
– Simple “intuitive” programming language

to setup
 ca ;; clear the screen
 crt 10 ;; make 10 new turtles
end

to go
 ask turtles
 [fd 1 ;; all turtles move forward one step
 set heading random 360 ;; and turn randomly
]
end

G. Beslon – CSSS’09 Lecture – July, 23, 2009 44

What is NetLogo?
• Programmable environment for modeling phenomena

based on collective behavior
– Well suited for Agent-Based Modeling
– Well suited for complex systems modeling (not all)
– Can be used to model almost everything but may not be well

suited for numerous applications (e.g., neural systems…)

• Made to be easy (comes from Logo and StarLogo)
– Lots of high level instructions to manage the agents
– Time and space are implicitly modeled (!)

• Made to be pedagogical
– User-friendly interface
– Large library of “curricular” models

• Made to be efficient? Not exactly but actually it is!

23

G. Beslon – CSSS’09 Lecture – July, 23, 2009 45

Basic Concepts
• 2D world peopled with agents

– Square world (finite, cylindric or toric)

• 2+1 kinds of agents
– Patches: Tiling elements that fill the

world regularly (cannot move)
– Turtles: Mobile agents moving on the

“patches world”
– Observer: Unique agent that perceives

everything

• Only the first two ones are agents in
(my) methodological meaning
– The observer is a technological agent…

G. Beslon – CSSS’09 Lecture – July, 23, 2009 46

Basic Concepts
• Models in NetLogo may contain patches and/or turtles

– Patch-models
• Ising model

Patches: Spins

– Turtle-models
• Free-Gaz

Turtles: Molecules

– Patches and turtle models
• Termites

Turtles: Termites
Patches: Wood chips

24

G. Beslon – CSSS’09 Lecture – July, 23, 2009 47

Basic Concepts: interface

G. Beslon – CSSS’09 Lecture – July, 23, 2009 48

Let’s install it…
12

3

25

G. Beslon – CSSS’09 Lecture – July, 23, 2009 49

Basic Concepts
• Models

File
+

Model
Library

+
Networks

+
Giant

Component

G. Beslon – CSSS’09 Lecture – July, 23, 2009 50

Basic Concepts
• Models

File
+

Model
Library

+
Networks

+
Giant

Component

26

G. Beslon – CSSS’09 Lecture – July, 23, 2009 51

Basic Concepts
• Models

File
+

Model
Library

+
Networks

+
Giant

Component

G. Beslon – CSSS’09 Lecture – July, 23, 2009 52

Command center
• The command center can be used directly to control the

agents
– Try e.g. the following command

ca
setup
go
setup
ask turtles [forward 1] ;; repeat this command
ask turtles [lt 90] ;; you can also try [rt 90]
ask turtles [forward 1] ;; repeat this command
ask turtles with [color = red][set color green]
ask patches [set pcolor blue]
…

– You have the basis!

• Now create your own project (FILES + NEW)

comments

27

G. Beslon – CSSS’09 Lecture – July, 23, 2009 53

Command center
• Other commands to try:

– Try the following command
crt 100
ask turtles [forward 1] ; repeat this command

– What is the structure of the universe?
– You can change it (button “settings”) … Try it!
– Now try

ca
crt 100
ask turtles [forward 10] ; repeat this command
ask turtles [set heading 0]
ask turtles [forward 1] ; repeat this command

– OK? Try the same commands with “heading random 360”

G. Beslon – CSSS’09 Lecture – July, 23, 2009 54

Command center
• Other commands you can try

ask turtles [setxy random-xcor random-ycor]
ask turtles [pen-down]
ask turtles [forward 1 set heading random 360] ; repeat
ask turtles [pen-up]

ask turtles with [who < 25] [set color red]
ask turtles with [who >= 25] [set color green]
ask turtles with [color = red] [pen-down repeat 1000 [forward

1 heading random 360]]

• Note that you can write multiple commands on a same line or in the
same block ([.])

• You can “talk” directly to the turtle by changing the context of the
command center
pen-down
forward 1 set heading random 360

28

G. Beslon – CSSS’09 Lecture – July, 23, 2009 55

Agents: Turtles

x

y

0 xcor

ycor • forward # ;; move forward by # steps
• back # ;; move backward by # steps
• right # ;; turns right by # degrees
• left # ;; turns left by # degrees

• die
• …

“attributes” “perceptions”

who = 17
color = red
shape = default
heading = 180

Turtles coordinates
(xcor, ycor, heading)

are real

G. Beslon – CSSS’09 Lecture – July, 23, 2009 56

Agents: Patches

(0, 0)
x

y

Patch attributes
• pcolor
• pxcor
• pycor

(16, -16)(-16, 16)

(-16, 16) (16, 16)

Default size
1089 = 33 × 33

Patch attributes
are integers

29

G. Beslon – CSSS’09 Lecture – July, 23, 2009 57

Agent: Observer

• Disembodied “agent” that sees everything in the world
clear-all ;; reset everything
create-turtles # ;; create # turtles
ask turtles [turtle only commands]
ask patches [patch only commands]

• Examples:
ask turtles [forward 1]
ask patches [set pcolor red]
ask turtle 4 [rt 90]
ask patches with [pxcor = 0][set pcolor yellow]

• Some commands can be abbreviated (not a good idea)
ca ;; clear-all
crt ;; create-turtles
fd ;; forward
…

G. Beslon – CSSS’09 Lecture – July, 23, 2009 58

Programming
• Direct use of the command center is very rough

– To build and use models, you need to program…

• In NetLogo you can program by writing “procedures”
– A procedure is a list of command with a name
– The name can be used to execute the whole list
– You can call a procedure in another one
– Some procedures can be called from the interface by

creating “buttons”

• Lets try!

30

G. Beslon – CSSS’09 Lecture – July, 23, 2009 59

Programming
• In the “procedure” frame, just write:

to setup ;; setup is the name of the procedure
 ca ;; clear the screen
 crt 10 ;; make 10 new turtles
end

• Then you can call your procedure from the command center
Setup

• Write a second procedure and call it
to go
 ask turtles
 [fd 1 ;; all turtles move forward one step
 set heading random 360 ;; and turn randomly
]
end

• Your first NetLogo program is “finished”…

G. Beslon – CSSS’09 Lecture – July, 23, 2009 60

Calling the program
• But your “program” is really not easy to use!

– It lacks an interface and a temporal loop
– Both will be managed from the “interface” frame

• Lets create two buttons
– Call the first one “setup”
– Call the second one “go”
– Care to check the “forever” box for the “go” button (it creates

an implicit time loop)

• That’s it …
– Run your program and test the different possibilities of the

control panel (speed, settings, …)
– Try to modify your program…

31

G. Beslon – CSSS’09 Lecture – July, 23, 2009 61

More on procedures
• Procedures can receive “arguments” (inputs)

to draw-polygon [sides size]

pen-down
repeat sides

 [forward size right (360 / sides)]
end

• Call it from the command center
ask turtles [draw-polygon 5 5]

• Procedures can report values
to-report max-value [a b]

if a > b [report a][report b]

end

• Test it by yourself…
– Hint: call it by “print max-value 6 10”

G. Beslon – CSSS’09 Lecture – July, 23, 2009 62

A first model
• Our program is not really a model…

– Why?

• Adding variables to the program
– Variables are containers for data. Each variable is identified

by a name that must be declare before the variable is used
– Variables can be global or local (local variables can only be

used in the procedure where they are defined)
global [mean-distance] ; global variable
let dist-to-center sqrt((xcor * xcor) + (ycor * ycor))

– Variables can be associates to turtles or patches
turtle-own [energy speed]
patch-own [local-diffusion-coefficient]

• Variables will enable us to measure some local or
global information… The program becomes a model!

32

G. Beslon – CSSS’09 Lecture – July, 23, 2009 63

More on variables
• Agents have built-in variables that can be used

directly without previous declaration
– Turtles: color, heading, xcor, ycor, who, shape, size,

label, breed
– Patches: pcolor, pxcor, pycor, plablel
– label and plabel are used to print information
– breed is used to create agent classes

• Some examples of built-in variables manipulation
ask turtles [set color red]
ask patches [set pcolor red]
ask turtles [set pcolor red]
ask turtle 5 [set color red]
ask patch 2 3 [set color red]

• Lets finish our first model

G. Beslon – CSSS’09 Lecture – July, 23, 2009 64

Measuring information
• Add three global variables to your code (at the

beginning of the code)
globals

[
max-distance
theoretical-mean-distance
mean-distance

]

• Time is measured by the “tick counter”
– Two commands

ticks ;; reports the current value of the counter
tick ;; add one to the counter

• In the “go” procedure, compute the three variables
– Hint: In a diffusion process, the mean distance is given by

the square root of the time…

33

G. Beslon – CSSS’09 Lecture – July, 23, 2009 65

Printing the information
• Information can be printed in “monitors”

– Use the monitor icon in the toolbar
– Choose the reporter you want; Here:

Theoretical-mean-distance - mean-distance
– Try it; What is the problem? Correct it…

• Monitors only give the immediate value
• You will probably want to draw graphics

– Use the plot icon in the toolbar and fill the form
• Here the plot will be called distance

– Create as many pens as you want to draw different curves
on the graphic (care to change pen colors)

• Here, create pens theoretical, simulated, max-distance
– But to draw the curves, you will need to program a little…

G. Beslon – CSSS’09 Lecture – July, 23, 2009 66

Plotting
• To plot the graph, create a new procedure and call it

in the “go” one
to do-plotting
 set-current-plot "distance"
 set-current-plot-pen "theoretical"
 plot theoretical-mean-distance
 set-current-plot-pen "simulated"
 plot moy-distance
 set-current-plot-pen "max-distance"
 plot max-distance
end

34

G. Beslon – CSSS’09 Lecture – July, 23, 2009 67

Printing local information
• Labels can be used to show information on each agent

– Create a turtle variable distance-to-origin and update it in the
go procedure

– Here, in the go procedure, add
ifelse show−distance?

 [set label distance-to-origin]
 [set label ""]

– show−distance? Is a global variable that is created by a switch in
the interface

– Use the switch icon in the toolbar
– In the Global variable section of the switch dialog box type:

show-distance?

G. Beslon – CSSS’09 Lecture – July, 23, 2009 68

Data input
• Using the interface, you can also enter data in your

model; Here we will use a slider
– Use the slider icon in the toolbar
– Give the slider the name nb-turtles
– Replace everywhere in the procedures the 10 value by
nb-turtles

– That’s it!
• Your model is ready to be used … test it

– How is the error?
– Add a slider to modify the size of the steps of the random

walk
– Does it change something?

• Now you have an object and a question … you have
a model!

35

G. Beslon – CSSS’09 Lecture – July, 23, 2009 69

Next steps …
• In this tutorial, we only used turtles

– Next step: program a “game of life” in NetLogo to learn to
use patches

– The general principles are exactly similar…

• Next slides will give some more information on
NetLogo programming
– Remember that NetLogo contains lots of dedicated

instructions and variables…
– Here we only saw part of them…
– Possibilities are (almost?) infinite!

http://ccl.northwestern.edu/netlogo/docs/
Have Fun!

G. Beslon – CSSS’09 Lecture – July, 23, 2009 70

Agentsets
• Agentsets enable to access to subsets of agents

turtles with [color = red] ;; all red turtles
turtles-hear with [color = red] ;; all red turtles on the current patch
patches with [pxcor > 0] ;; all patches on the right of the space
turtles in-radius 3 ;; all turtles less than three patches away
patches at-points [[1 0] [0 1] [-1 0] [0 -1]] ;; von Neumann neighbors
Neighbors4 ;; von Neumann neighbors

• How to use agentsets
ask <agentset> […] ;; ask agents to do […]
Show any? <agentset> ;; check if the agentset is not empty
Show count <agentset> ;; compute the cardinal of the agentset

• Examples
ask neighbors4 [set pcolor red]
 ;; turns the four neighboring patches red

ask max-one-of turtles [sum assets] [die]
 ;; remove the richest turtle (with the maximum “assets” value)

36

G. Beslon – CSSS’09 Lecture – July, 23, 2009 71

Breeds
• Breeds enable to create “natural classes” of agents

breed [wolves wolf]
breed [sheep a-sheep]
create-sheep 50
create-wolves 50

• When a breed is created, new functions become
automatically available
create-<breed>, hatch-<breed>, sprout-<breed>, <breed>-here,
<breed>-at, <breed>-on, is-a-<breed>?

• Examples
ask turtles 5 [if breed = sheep …] ;; Check the breed
ask turtle 5 [set breed sheep] ;; Change breed to sheep

• Note that breed is a variable

G. Beslon – CSSS’09 Lecture – July, 23, 2009 72

Programming structures
• Tests

– One possibility
if xcor > 0 [set color blue]

– Two alternatives
ifelse pxcor > 0

[set pcolor blue]
[set pcolor red]

• Loops
– Repeat loop

repeat 36 [fd 1 rt 10]

– While loop
while [any? other turtles−here][fd 1]

– Foreach command
foreach [1.1 2.2 2.6][show (word ? " −> " round ?)]

37

G. Beslon – CSSS’09 Lecture – July, 23, 2009 73

Turtle Shape

• A turtle's shape is stored
in its shape variable and
can be set using the set
command

• New shapes can be
created, or imported
from the shapes library
or from other models, in
the Shapes Editor

• Shape have names to identify them : default, airplane,
arrow, box, bug, butterfly, car, circle, circle 2, cow,
cylinder, dot, face happy, face neutral, face sad, fish, flag,
flower, …

G. Beslon – CSSS’09 Lecture – July, 23, 2009 74

Colors

• There are 140 colors
• Wrap-around is used

when the color value
is out of the range

• Try the following
patch command

set pcolor pxcor + pycor

38

G. Beslon – CSSS’09 Lecture – July, 23, 2009 75

Mathematics
• Most mathematical functions are supported
• Two number types

– 64 bits integers: range from -2147483648 to 2147483647 (-2^31 to 2^31-
1)

– 64 bits floating numbers: 1.014534154524532 x 10-8 (about 16-digit
accuracy)

• Different pseudo-random functions are available
random 10 ;; returns an integer between 0 and 10

random-float 10.0 ;; returns a float between 0 and 10.0

random-seed 10 ;; initializes the pseudo-random generator

– You can also use
random-normal, random-poisson, random-exponential, random-gamma

G. Beslon – CSSS’09 Lecture – July, 23, 2009 76

Storing data (I): Outputs
• The simple way: the “output” interface

– Use the “output” option in the toolbar
– An “output” is a place where you can write data and store them

at once after the end of the simulation (right-click + export)

• Output primitives are very simple
output-print ;; basic command sufficient in most situations.
output-show ;; print a value and the name of the agent.
output-type ;; lets you print several things on the same line.
export-output ;; store the content of the output in a file.
clear-output ;; clear ;)

• Outputs are quite basic devices; you may want more
powerful ones
– Use file I/O

39

G. Beslon – CSSS’09 Lecture – July, 23, 2009 77

Storing data (II): File I/O
• File I/O commands enable you to open, close and write

files
– When working with a file, you need to open it before

file-open <file-name>

– When you have finished remember to close it
file-close <file-name>

– I/O commands include:
file-print, file-show, file-type, file-write, file-delete,
file-read, file-read-line, file-read-characters, file-at-end?

– If several files are opened, you must specify which one you
want to use by calling “file-open” again

G. Beslon – CSSS’09 Lecture – July, 23, 2009 78

Storing data (III): Movies
• You can capture a QuickTime movie of a NetLogo simulation

– Four simple primitives; Very easy to use!
movie-start <file-name.mov> ;; starts a new movie
movie-grab-view ;; grab the environment window
movie-grab-interface ;; grab the whole interface window
movie-close ;; ends the movie

– Example
;; export a 30 frame movie of the view

setup
movie-start "out.mov"
repeat 30
[movie-grab-view go]
movie-close

– Of course, you can call all these primitives from the command center
– Care the size of the files! NetLogo produced uncompressed videos!

40

G. Beslon – CSSS’09 Lecture – July, 23, 2009 79

Example

• 300 steps (300x15 frames) : 60.1 Mo!

G. Beslon – CSSS’09 Lecture – July, 23, 2009 80

Managing experiments
• NetLogo includes a “BehaviorSpace” tool which enables to manage

experiments and to explore automatically the parameter spaces
– Menu “Tools + BehaviorSpace”
– BehaviorSpace collects data from multiple runs of a model

• When creating a new experiment NetLogo opens the experiment
window which enables you to choose:
– Parameter space, varying input variables, reporters…
– Number of repetitions
– Stop conditions, to go conditions, setup procedures…

• You can specify lists of values or extreme values and step
["max-pxcor" [11 1 14]] ;; go from 11 to 14 one by one (care

the brackets)
["random-seed" 343 564 812 23] ;; to test these 4 values

• All input variables can be specified
– NetLogo also enables to specify some “internal” variables (environment

size, seed of the random generator)

