@ "44INSA B INRIA

Introduction to individual-based
modeling

Guillaume Beslon
INSA — LIRIS — IXXI

L!R:S

Introduction

* Aim of the course:

Introduce Agent-Based Modeling as a tool
Give the main hints to develop your own ABM
Present NetLogo as a tool to develop ABMs
NetLogo tutorial

Build your (first?) NetLogo models

* Who am 1?
Guillaume BESLON (guillaume.beslon@liris.cnrs.fr)

Professor at the INSA-Lyon, LIRIS Lab. (Laboratoire d’'Informatique
en Image et Systémes d’Information)

Assistant-director of IXXI (Rhéne-Alpes Complex Systems Institute)

Research topics: Individual-based modeling of complex biological
systems (mainly evolution)

G. Beslon — CSSS’09 Lecture — July, 23, 2009 2

ke

* Programmable simulation environment
— Designed for Agent-Based Modeling

* Used mainly to simulate natural and social systems
— Available for all systems (java),)
— Can be used in parallel
— Simple “intuitive” programming language

to setup
ca ;; clear the screen
crt 10 ;; make 10 new tfurtles
end

to go
ask turtles
[fd1 ;; all turtles move forward one step
set heading random 360 ;; and turn randomly
]

end

) G. Beslon — CSSS’09 Lecture — July, 23, 2009 3

References

» Bonabeau, E. (2002). Agent-based modeling : Methods and techniques for
simulating human systems. Proceedings of the National Academy of Sciences
of the USA (PNAS), 99(suppl. 3):7280-7287.

e Grimm, V. (1999). Ten years of individual-based modelling in ecology : what
have we learned and what could we learn in the future ? Ecological Modelling,
115:129-148.

+ Bankes, S. (2002). Agent-based modeling : A revolution ? Proceedings of the
National Academy of Sciences of the USA (PNAS), 99:7199-7200.

+ Grimm,V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W.M., Railsback, S.F.,
Thulke, H.-H., Weiner, J., Wiegand, T., DeAngelis, D.L. (2005) Pattern-
Oriented Modeling of Agent-Based Complex Systems: Lessons from Ecology.
Science, 310:987-991.

* Macal, C. M. et North, M. J. (2006). Tutorial on agent-based modeling and
simulation part 2 : how to model with agents. In WSCO6 : Proceedings of the
38th Winter simulation conference, Monterey (USA), pages 73—83.

) G. Beslon — CSSS’09 Lecture — July, 23, 2009 4

O
Reminder

What is a model?

“To an observer B, an object 4* is a model of an object 4 to the extent
that B can use 4 * to answer questions that interest him about 4.”
[Marvin Minsky]

Remember that scientific models are instruments for
scientific discovery

— Used to explore properties of systems through virtual experiments
Computational models are those which uses computation
to perform the experiments

— The model typically uses an algorithm to compute the state at type
t from the state at time #-1

— Agent-Based Modeling is a kind of computational models based on
an explicit description of the agents.

G. Beslon — CSSS’09 Lecture — July, 23, 2009 5

What is ABM?

“Bottom-Up” modeling:

— Describe the system at the local level with some formalism
— Simulate it (computational model)

— Observe and analyze the results (at both levels!)

“In agent-based modeling (ABM), a system is modeled as a
collection of autonomous decision-making entities called agents.
Each agent individually assesses its situation and makes decisions
on the basis of a set of rules. Agents may execute various
behaviors appropriate for the system they represent -- for example,
producing, consuming, or selling. Repetitive competitive
interactions between agents are a feature of agent-based modeling,
which relies on the power of computers to explore dynamics out of
the reach of pure mathematical methods.”

[Bonabeau, 2002]

G. Beslon — CSSS’09 Lecture — July, 23, 2009 6

O
What is ABM?

* Agent-Based Modeling is more a methodology than a
precise technique

— You can choose the formalism you “want” at the agent level
(dynamical models, set of rules, discrete/continuous
coordinates, punctual particles or not, ...)

— The only thing you need is a way to compute the interactions
and, thus, the resulting behavior

+ But this may not be a trivial question!
— The used computational tools can be very diverse...

“Agent-Based Model is a mindset more than a technology.”
[Bonabeau, 2002]

G. Beslon — CSSS’09 Lecture — July, 23, 2009 7

What is ABM?

Individual-based

modeling <\> Multi-agent
systems
Agent-Based \
" modeling ‘\ Cellular
/ automata
Micro-
slmulatlon\
Grid-

worlds

G. Beslon — CSSS’09 Lecture — July, 23, 2009 8

What is ABM?

» Consensus for the principles

» Diversity of the appellations!
— Micro-simulation (physics)
— Agent-Based Modeling (computer science, social science)
— Individual-Based Modeling (biology, ecology)
— Bottom-Up simulation

» The only real difference is with MAS

Multi-Agent Systems are NOT Agent-Based Models

MAS are IT technologies trying to use CS approaches to improve
the behavior of programs and computers

MAS are NOT models
MAS can be used to implement ABM but... why?

G. Beslon — CSSS’09 Lecture — July, 23, 2009 9

O
ABM, Cellular Automata and

Grid Worlds

» 2D cellular automata are often presented as ABM
— In CA rules are associated with the places, not with the agents
— CA are not ABM, except when dealing with fixed agents (one
place-one agent)

» Grid world are 2D worlds (sometimes 3D) where objects
move on a grid-based space according to rules

— The rules are local to the objects,
not to the places

— Probably the simplest ABM
- E.g.,,DLA ...

G. Beslon — CSSS’09 Lecture — July, 23, 2009 10

®
What is an agent?

* What is an agent?
A discrete entity/program with its own goals and behaviors

Autonomous, with a capability to adapt and modify its
behaviors

Some key aspect of behaviors can be described.
Mechanisms by which agents interact can be described.

* Examples
— People, groups, organizations, insects, swarms, robots...

» But this definition is strongly rooted in MAS and
social systems

G. Beslon — CSSS’09 Lecture — July, 23, 2009 1

®
What is an agent?

* You will often find figures like:

l | Function
lMemory

L OR
+ Attributes Obiect
* Rules of behavior)

* Memory
- Sophistication Autonomy

* Resources

l r Agent

G. Beslon — CSSS’09 Lecture — July, 23, 2009 12

[North & Macal, 2006]

@)
What is an agent?

* An agent is (only) the unit of description of the micro-
level

— Again, “Agent” is more a methodological concept than a
technological concept!

+ What is agent (or not) depends on your point of view!
— What is really important is what is local and what is not!

+ |tis often very difficult to decide what is an attribute,
what is a memory, what is a resource ...

— E.g. xcor, ycor, speed, energy, ...

G. Beslon — CSSS’09 Lecture — July, 23, 2009 13

@)
What is an agent?

» Care the difference between:

— “Anthropomorphic” definition: An entity that senses its
environment and acts upon it in order to achieve a goal

— Technical definition: A persistent autonomous software
entity dedicated to a specific purpose (e.g. a program, a
thread or a robot)

— Methodological definition: The conceptual unit of interest,
defines a boundary between what is modelled and what is
observed (but often the observed system is the agent...)

G. Beslon — CSSS’09 Lecture — July, 23, 2009 14

@
Life-cycle of an ABM

» Developing an ABM seems straightforward!

— Describe the system at the agent level ; describe the
interactions between the agents

— Create a population of agents

— Use some simulation method/software to let the agents and
the population run

— Observe the resuli(s)
— Draw conclusion
» Actually it is (quite) as simple as this...
— But some steps may be difficult ;)
* Modeling is an art
— Agent-Based Modeling is a black-art!

G. Beslon — CSSS’09 Lecture — July, 23, 2009 15

@
Designing the agent level

* NOT YET: As in every model, define very carefully
your system and your aim FIRST!

— Generally a scientific question but...
— ABM can also be used to help to define a scientific question!
» Choose the agent level, the agents behavior and the
agent interactions
— Take care: the devil is in the details!

— You need a good knowledge and skill in order to be able to
select the appropriate description at the appropriate level!

— Care habits, transfer of models from a domain to another
one, code reuse, ...

— Care implicit choices

G. Beslon — CSSS’09 Lecture — July, 23, 2009 16

®
How to design the agents?

* Actually no real methodology...
— ABM skill helps,
— A precise question helps a lot,
— Domain knowledge helps enormously!

* The only methodology is trial and errors!

+ Examples of agents

— Molecules Both have similar properties:
_ Planets/stars inanimate objects following

physical (Newtonian) laws

— Humans
— Insects
— Companies Can we use the same
- Cars agents models
— Drops of water
)® — Birds...
) G. Beslon — CSSS’09 Lecture — July, 23, 2009 17

O
How to choose the “level of

complexity” ?

Medawar zone Fig. 1. Payoff of bottom-up models versus their
complexity. A model’s payoff is determined not
only by how useful it is for the problem it was
developed for, but also by its structural realism;
i.e,, its ability to produce independent predictions
that match observations. If model design is guided
only by the problem to be addressed (which often
is the explanation of a single pattern), the model
will be too simple. If model design is driven by all
the data available, the model will be too complex.
But there is a zone of intermediate complexity
where the payoff is high. We call this the
. “Medawar zone” because Medawar described a
Model complexity similar relation between the difficulty of a
scientific problem and its payoff (47). If the very
process of model development is guided by
Multiple multiple patterns observed at different scales
Problem. Patterns Data and hierarchical levels, the model is likely to end
- ~ up in the Medawar zone.

Payoff

) G. Beslon — CSSS’09 Lecture — July, 23, 2009 18

[Grimm et al., 2005]

@
The main problem

» The structure and dynamics of complex systems call
for Agent-Based Modeling

— Many elements with non-linear interactions
— Natural interpretations (Fayerabend) are often false

» But the structure and dynamics of complex systems
make modeling difficult and dangerous

Complex systems are very sensitive to (generally many)
parameters

Complex systems are often sensitive to initial conditions
Complex systems are often noisy

The analysis of the system strongly depends on some
subjective judgment

* Playing with models is the only solution!

) G. Beslon — CSSS’09 Lecture — July, 23, 2009 19

@)
From agents to multi-agents

* Once you have designed the agents, you still have
important choices to make

— These choices are often forgotten (often implicit!)
Agent will “live” in a spatio-temporal world

— Real world is continuous

— Agents’ world is not!

— It creates risks and difficulties

* How to model time?
How to model space?

) G. Beslon — CSSS’09 Lecture — July, 23, 2009 20

10

The time model

+ Time is (always?) neglected in MAS approaches
— Generally considered as a non-problem
* Discrete Time
Synchronous, asynchronous, discrete-events
What is the correct time step?
» The higher the time step, the higher the error
» The lower the time step, the slower the simulation

Practitioners are generally NOT able to estimate the correct time
step of their systems!
The correct time step depends on the movement and on the
interaction models
* The time model may strongly influences the

global behavior

[=]

G. Beslon — CSSS’09 Lecture — July, 23, 2009 21

The space model

» Space is often at the core of ABM
— Space is mainly a constraint on agents’ neighborhood

— Very often, you will use ABMs to test the behavior of
analytical models in a given spatial framework

» Lots of different space models are possible

— From “Soup model” to GIS models

— You often have to mix different space models (e.g.
continuous space for agents + diffusion on a grid)

Euclidean Grid: von Neumann k :
X) Network GIS: Geographic
\® Space: 2D, 3D neighborhood Information

System 2

[North & Macal, 2006]

@
The space model

» Care: like for time, there are often implicit assumption
for the space model

— Is 2D sufficient?

— How to model the borders of the space?
» Absorbing, reflecting, static, periodic...

— How to model infinite spaces?

“Diffusion is not a perfectly mixing process in low dimension
because the diffusing molecule will return to its initial position
with probability 1, whereas, for d > 2, there is a significant
probability that the diffusing molecule will never return to its
origin.”

[berry, 2002]

G. Beslon — CSSS’09 Lecture — July, 23, 2009 23

Movement

» Agents will often move in the space
— The laws of movement are generally supposed simple
— Very often they are not!

— Care not to reuse implicitly macroscopic laws of motion into
a microscopic world (e.g., planets and molecules)

— Sometimes the laws of motion explains the “emergent”
results by themselves!

+ E.G,DLA

— Agents explore differently their vicinity depending on the
laws of motion!

O

G. Beslon — CSSS’09 Lecture — July, 23, 2009 24

12

Fractals structures ®
created by DLA

Two different laws of movement,
which one is correct?

G. Beslon — CSSS’09 Lecture — July, 23, 2009 25

-
Law of motion maters!

» Coral morphogenesis [Merks et al., 2003]
— Same agents
— Different diffusion parameters leads to different shapes

1 Fig. 4b 1 Fig. 4d
Cells Cells
fax fx
[0.9 [09
- 08 - 08
- 07 - 07
- 0.6 — 08
~ 05 — 05
~ 04 — 04
- 0.3 — 03
- 02 ~ 02 Q
l 01 [01
9(c)2003 R. Merks, SGS/Univ. of Amsterdam 9(c)2003 R. Merks, SCS/Univ. of Amsterdam
o Slow diffusion Fast diffusion

) G. Beslon — CSSS’09 Lecture — July, 23, 2009 26

@
Implementation step

Once you have designed your agents and their relations,
how can you implement them and run the simulation?

— Plate-forms, frameworks,

— Programming from scratch (which language),

— Reuse a previous model
Take care: the implementation phase is NOT the most
difficult nor the longer!

Choose the methods/tools such that they

— respect the modeling phase

— will be efficient during the experimental phase

— enable to follow “strictly” a scientific experimental methodology

Then, you’ll probably have to program “a little”...

G. Beslon — CSSS’09 Lecture — July, 23, 2009 27

Implementation

* You will often find figures like:

[] Repast S ® DIAS www.dis.ani goviDIAS/
® |[MT flock.cbl.umces.edulimt

High

{Repast 3.X repast.sourceforge.net
[] Ascape www.brook.edu/es/dynamics/models/ascape
Swarm www.swarm.org

® Object Oriented Languages (Java, C++, etc.)

® Structured Languages (C, Pascal, etc.)
® Mathematics Packages (Mathematica®, etc.)

@ Spreadsheets
® NetLogo ccl.northwestern.edu/netiogo/

® StarLogo www.media.mit.eduistarlogo

Modeling Power

Selected Example
ABMS Environments

[North & Macal, 2006]

g ® Participatory Simulation

Easy Ease of Model Development Hard

G. Beslon — CSSS’09 Lecture — July, 23, 2009 28

14

@
The pro&cons of visualization

» Complex systems are based on subjective judgment
— We need a visual feedback!
* We often have no mean to decide what is correct and what is not
— We need a visual feedback!
* We have to care natural interpretations
— Care visual feedback! (“I like it!")
* We have to repeat the experiments
— Visual feedback are often slow!
* We have to repeat experiments
— Visual feedback cannot be aggregated
+ Conclusion
— Care to visualize easily and to emphasize what is important
— Care not to focus only on visualization: data output are important

G. Beslon — CSSS’09 Lecture — July, 23, 2009 29

Experiments

+ Agent-Based Models often have MANY parameters
— Most of them are often implicit ...
— E.g., in my own model (Aevol) : 53 parameters!
* Agent-Based Models are generally slow
— Need lots of computational resources
» Itis NOT possible to test all parameters
— Again, no hint! (except your own knowledge and experiments)
» Don’t explore randomly the parameter space
Use “good practices” of experimental science
Actually ABM is an experimental approach (digital experiments)
Having a laboratory notebook is a VERY good practice!
Log all your experiments ; finish all your experiments
» Making the model is often less difficult than running the model...
— Plan resources and time from the beginning of your project

G. Beslon — CSSS’09 Lecture — July, 23, 2009 30

15

O
ABM validation

» Verification: The program is doing what you want it to do
— Very difficult problem! (+/- software engineering)

» Validation: The model produces the “correct” behavior
— Impossible problem: A model is never “valid”

“Essentially, all models are wrong, but some are useful.”
[G. Box]

» Actually it depends on what you want to do with the model!
— Predictive models can be tested (but never proved!)
— Scientific models generally cannot

) G. Beslon — CSSS’09 Lecture — July, 23, 2009 31

@)
The meta-life-cycle of ABM

* Actually, ABM are not so difficult to build!
» The difficulty is (again) to produce knowledge with them!

* Meta-life cycle of ABM
— ldentify a good question

— Build different simple models and play with them to identify what
matters or not

— Build YOUR model and make it stable

— Make experiments with the model (experimental method helps!)
— Analyze the results (statistical skill helps!)

— Hopefully, acquire new knowledge (model the model)

— Communicate, confront, publish

— FORGET YOUR MODEL

) G. Beslon — CSSS’09 Lecture — July, 23, 2009 32

16

@
Forget your model?

+ Two reasons:
* The model is not the knowledge

“It could be argued that a criterion to determine good models is that
they are no longer needed afterwards; The decisive thing with
modeling is not the model per se, but what the model and working
with the model does to our mind.”

[V. Grimm, 1999]

* Remember that a model depends on a question...
— If you change the question you MUST change the model
— Of course, you can reuse some pieces of software but be careful
on implicit choice
— The software is not the model
— Take care not to jump steps in the meta-life-cycle!

G. Beslon — CSSS’09 Lecture — July, 23, 2009 33

Applications O

Table 1: Agent-based Modeling Applications

Business and Organizations | Society and Culture + evolution
e Manufacturing e Ancient civilizations
. v . + hydrology

e Consumer markets e Civil disobedience

e Supply chains Terrorism + membrane models

e Insurance e Social determinants + soil models

Economics e Organizational net-

e Artificial financial works + agriculture
= markets Mlllt?fry + diffusion of innovation
= e Trade networks e Command & control
N | Infrastructure e Force-on-force *.
K e Electric power markets | Biology
g e Hydrogen economy e Ecology)
o3 ¢ Transportation e Animal group behav- Note that b“usmessmen

. . - are not as “narrow-
£ Crowds 101 i ded" enfists -
§ e Human movement o Cell behavior minded" as scientists ;)
=| e Evacuation modeling e Sub cellular molecu- | No need of “proofs”,
lar behavior just need to sell!
G. Beslon — CSSS’09 Lecture — July, 23, 2009 34

17

Grand challenge of ABM @

(53
\/ [
l Fusion of agents

Fission of agents

) G. Beslon — CSSS’09 Lecture — July, 23, 2009 35

@)
When/why using ABM?

* [Grimm, 1999]

— Pragmatic motivation: ABM can model phenomenon impossible to
model with other approaches (“another tool in the modelers
toolbox”)

— Paradigmatic motivation: State variables modeling gives a false
vision of reality since individuality, discreteness, locality or space
matter

* Hum, not clear ... real motivations are more basic

— Easy to construct, manipulate and extent (easy to
change/add/remove parameters, rules,...) ... to easy?

— Can model unknown phenomenon (if you have knowledge at the
lower level)

— ABM use a domain-based ontology (they are good interfaces
between disciplines) easy to describe and to explain ... too easy?

— “Looks like” (pleasant models) ... too pleasant?

) G. Beslon — CSSS’09 Lecture — July, 23, 2009 36

18

®
Why/when using ABM?

» Very often, it is claimed that ABM must be used when
analytical models fails but

— Analytical models have a long history in ~every scientific
domain (are you sure they fail?)

— Can we (computer scientists) really know when analytical
models can or cannot be used

* In practice, always try to use ABM in parallel with
analytical models...

— ABM can be use before analytical model (to propose
hypothesis)

— ABM can be used after analytical model (to validate
hypothesis)

G. Beslon — CSSS’09 Lecture — July, 23, 2009 37

®
Why/when using ABM?

* ABM is drinking the sea with a teaspoon
— Each run is easy, each run helps but you'll need a long time!

* Analytical models is drinking bears without a bottle
opener

— Each run is difficult but when you succeed you can drink the
whole bottle at once!

* Note that there is much more diversity in the sea than
in a bear bottle!

Another metaphor?

G. Beslon — CSSS’09 Lecture — July, 23, 2009 38

19

G. Beslon — CSSS’09 Lecture — July, 23, 2009 39

G. Beslon — CSSS’09 Lecture — July, 23, 2009 40

20

G. Beslon — CSSS’09 Lecture — July, 23, 2009

G. Beslon — CSSS’09 Lecture — July, 23, 2009

42

21

ke

* Programmable simulation environment
— Designed for Agent-Based Modeling

* Used mainly to simulate natural and social systems
— Available for all systems (java),
— Can be used in parallel
— Simple “intuitive” programming language

to setup
ca ;; clear the screen
crt 10 ;; make 10 new tfurtles
end

to go
ask turtles
[fd1 ;; all turtles move forward one step
set heading random 360 ;; and turn randomly
]

end

) G. Beslon — CSSS’09 Lecture — July, 23, 2009 43

@
What is NetLogo?

* Programmable environment for modeling phenomena
based on collective behavior

— Well suited for Agent-Based Modeling
— Well suited for complex systems modeling (not all)

— Can be used to model almost everything but may not be well
suited for numerous applications (e.g., neural systems...)

* Made to be easy (comes from Logo and StarLogo)
— Lots of high level instructions to manage the agents
— Time and space are implicitly modeled (!)
* Made to be pedagogical
— User-friendly interface
— Large library of “curricular” models

» Made to be efficient? Not exactly but actually it is!

) G. Beslon — CSSS’09 Lecture — July, 23, 2009 44

22

Basic Concepts

» 2D world peopled with agents
— Square world (finite, cylindric or toric)

+ 2+1 kinds of agents

— Patches: Tiling elements that fill the
world regularly (cannot move)

— Turtles: Mobile agents moving on the
“patches world”

— Observer: Unique agent that perceives
everything
* Only the first two ones are agents in
(my) methodological meaning
— The observer is a technological agent...

G. Beslon — CSSS’09 Lecture — July, 23, 2009 45

@
Basic Concepts

* Models in NetLogo may contain patches and/or turtles

— Patch-models i~ W
* Ising model o

Patches: Spins

— Turtle-models
* Free-Gaz
Turtles: Molecules

— Patches and turtle models
* Termites
Turtles: Termites
Patches: Wood chips

G. Beslon — CSSS’09 Lecture — July, 23, 2009 46

@
Basic Concepts: interface

800 Netlogo — Untitled
Interface i Procedures

)

+
Add

abe Button = == (settings...)
continuous 1% Setings...
normal speed Lcontinuous B3

G4 S tckso

B

Command Center 2| Clear

) observer> -

) G. Beslon — CSSS’09 Lecture — July, 23, 2009 47

O
Let's install it...

NetLogo Home Paqe.
| - | c) \ [- e http: / fccl.northwestern. edu-’net.logD »

Le Conjugueur development = modellsahon blo - = artificial life = complexity =

> NetLogo Home Page + '-',

)

Welcome to NetLogo!

NetLogo is a cross-platform multi-agent programmable
modeling environment. NetLogo was authored by Uri Wilensky
in 1999 and is under continuous development at the CCL (the
people who brought you StarLogoT). NetLogo also powers the

HubNet participatory simulation system. NetLogo is free of A
charge. For a fuller description, click here. v
Terminé s

) G. Beslon — CSSS’09 Lecture — July, 23, 2009 48

* Models

File

+
Model
Library

+

Networks

+

Giant
Component

Basic Concepts

800 Netlogo — Giant Component

[nterface | Information Procedures

* e —————— Bvevupsaes

Add onticks 5

normal speed)

%dpd csao

[— i —
sewp num-nodes 150

100 jayourz
our?
soonce || a0 4 3%
Giant component size
redo layout p| 58

Growth of the giant component

Fraction in giant component

Connections per node 3

Y Settings...)

Command Center

abserver>

G. Beslon — CSSS’09 Lecture — July, 23, 2009

& Clear

49

* Models

File

+
Model
Library

+

Networks

+

Giant
Component

Basic Concepts

Netlogo

Information | Pcedures

[

Find... Edit

WHAT IS IT?

In a network, a "component” is a group of nodes that are all connected to each other, directly

or indirectly. So if a network has a "giant component”, that means aimost every node is
reachable from almost every other. This model shows how quickly a giant component arises
if you grow & random network.

HOW IT WORKS

Initially we have nodes but no connections (edges) between them. At each step, we pick two
nodes at random which were not directly connected before and add an edge between them.
All possible connections between them have exactly the same probability of ocourring.

As the model runs, small chain-like "components” are formed, where the members in each
component are either directly or indirectly connected to each other. If an edge is created
between nodes from two different components, then those two components merge into one.
The component with the most members at any given point in time is the "giant" component
and it is colored red. (If there s a tie for largest, we pick a random component to color.)

HOW TO USE IT

The NUM-NODES slider controls the size of the network. Choose a size and press SETUP.

Pressing the GO ONCE button adds one new edge to the network. To repeatedly add edges,
press GO

As the model runs, the nodes and edges try to position themselves in a layout that makes

the structure of the network easy to see. Layout makes the model run slower, though. To get
results faster, turn off the LAYOUT? switch.

G. Beslon — CSSS’09 Lecture — July, 23, 2009

50

25

* Models

File

+
Model
Library

+

Networks

+

Giant
Component

Basic Concepts

Netlogo — Giant Comaeog

£ Procedures v

Find

turtles

C
;3 this is used to mark turtles we have already visited
explored?

]

globals

3
component-size ;3 number of turtles explored so nt
giant t-size ;; number of turtles in the giant
glant-start-node 33 node from where we Started exp

]

o setup
ca
set-default-shape turtles "circle”
make-turtles
;3 ot this stoge, all the components will be of size 1,
;; since there are no edges yet
find-al1-components
color-giant-compenent
setup-plot
do-plotting

o moke-turtles

crt nun-nodes

layout-circle turtles max-pxcor - 1
end

o setup-plot
;; Draws the transition line
set-current-plot-pen “transition
plot-pen-up

G. Beslon — CSSS’09 Lecture — July, 23, 2009

he giant component

51

Command center

* The command center can be used directly to control the

agents

— Try e.g. the following command

ca

setup

go

setup

comments

ask turtles [forward 1] ;; repeat this command
ask turtles [1lt 90] ;; you can also try [rt 90]
ask turtles [forward 1] ;; repeat this command

ask turtles

ask patches [set pcolor blue]

— You have the basis!
* Now create your own project (FILES + NEW)

G. Beslon — CSSS’09 Lecture — July, 23, 2009

with [color = red][set color green]

52

26

Command center

* Other commands to try:
Try the following command
crt 100
ask turtles [forward 1] ; repeat this command
What is the structure of the universe?
You can change it (button “settings”) ... Try it!
Now try
ca
crt 100
ask turtles [forward 10] ; repeat this command
ask turtles [set heading 0]
ask turtles [forward 1] ; repeat this command

— OK? Try the same commands with “heading random 360"

G. Beslon — CSSS’09 Lecture — July, 23, 2009 53

Command center

» Other commands you can try
ask turtles [setxy random-xcor random-ycor]
ask turtles [pen-down]
ask turtles [forward 1 set heading random 360] ; repeat
ask turtles [pen-up]
ask turtles with [who < 25] [set color red]
ask turtles with [who >= 25] [set color green]
ask turtles with [color = red] [pen-down repeat 1000 [forward
1 heading random 360]]
* Note that you can write multiple commands on a same line orin the
same block ([.])

* You can “talk” directly to the turtle by changing the context of the
command center i =

observer

pen-down
. patches
forward 1 set heading random 360 links

G. Beslon — CSSS’09 Lecture — July, 23, 2009 54

Agents: Turtles ®

who = 17
color = red
YV 4 shape = default
heading = 180
yeor | _____________ e forward # ;; move forward by # steps
e back # ;; move backward by # steps
e right # ;; turns right by # degrees

e left # ;; turns left by # degrees

e die
0 Xcor X
“attributes” “perceptions”
Turtles coordinates
(xcor, ycor, heading)
(] are real
..
g G. Beslon — CSSS’09 Lecture — July, 23, 2009 55

Agents: Patches

A
(-16, 16) (16, 16)

Default size
1089 = 33 x 33

> x Patch attributes
* pcolor

* pxcor

* pycor

Patch attributes
are integers

(-16, 16) e, -16)
@
..
g G. Beslon — CSSS’09 Lecture — July, 23, 2009 56

28

Agent: Observer ®

» Disembodied “agent” that sees everything in the world

clear-all ;; reset everything
create-turtles # ;; create # turtles
ask turtles [turtle only commands]
ask patches [patch only commands]

* Examples:
ask turtles [forward 1]
ask patches [set pcolor red]
ask turtle 4 [rt 90]
ask patches with [pxcor = 0][set pcolor yellow]

* Some commands can be abbreviated (not a good idea)
ca ;; clear-all
crt ;; create-turtles
fd ;; forward

) G. Beslon — CSSS’09 Lecture — July, 23, 2009 57

Programming

» Direct use of the command center is very rough
— To build and use models, you need to program...

* In NetLogo you can program by writing “procedures”
A procedure is a list of command with a name

The name can be used to execute the whole list

You can call a procedure in another one

Some procedures can be called from the interface by
creating “buttons”

* Lets try!

) G. Beslon — CSSS’09 Lecture — July, 23, 2009 58

29

Programming

* In the “procedure” frame, just write:

to setup ;; setup is the name of the procedure
ca ;3 clear the screen
crt 10 ;7 make 10 new turtles
end
» Then you can call your procedure from the command center
Setup
» Write a second procedure and call it
to go

ask turtles
[£fd 1 ;; all turtles move forward one step
set heading random 360 ;; and turn randomly

1

end
* Your first NetLogo program is “finished”...

G. Beslon — CSSS’09 Lecture — July, 23, 2009 59

@)
Calling the program

» But your “program” is really not easy to use!
— It lacks an interface and a temporal loop
— Both will be managed from the “interface” frame

NetLogo

* Lets create two buttons o
— Call the first one “setup” —O—
— Call the second one “go” P a s

— Care to check the “forever” box for the “go” button (it creates
an implicit time loop)

« That'sit...

— Run your program and test the different possibilities of the
control panel (speed, settings, ...)

— Try to modify your program...

G. Beslon — CSSS’09 Lecture — July, 23, 2009 60

30

More on procedures

Procedures can receive “arguments” (inputs)
to draw-polygon [sides size]

pen-down

repeat sides

[forward size right (360 / sides)]
end

Call it from the command center
ask turtles [draw-polygon 5 5]

Procedures can report values
to-report max-value [a b]

if a > b [report a][report b]
end

Test it by yourself...
— Hint: call it by “print max-value 6 10”

®
; G. Beslon — CSSS’09 Lecture — July, 23, 2009 61
* Our program is not really a model...
— Why?
* Adding variables to the program
— Variables are containers for data. Each variable is identified
by a name that must be declare before the variable is used
— Variables can be global or local (local variables can only be
used in the procedure where they are defined)
global [mean-distance] ; global variable
let dist-to-center sqrt((xcor * xcor) + (ycor * ycor))
— Variables can be associates to turtles or patches
turtle-own [energy speed]
patch-own [local-diffusion-coefficient]
» Variables will enable us to measure some local or
K global information... The program becomes a model!

G. Beslon — CSSS’09 Lecture — July, 23, 2009 62

31

-
More on variables

Agents have built-in variables that can be used
directly without previous declaration

Turtles: color, heading, xcor, ycor, who, shape, size,
label, breed

Patches: pcolor, pxcor, pycor, plablel

label and plabel are used to print information

breed is used to create agent classes

Some examples of built-in variables manipulation
ask turtles [set color red]

ask patches [set pcolor red]

ask turtles [set pcolor red]

ask turtle 5 [set color red]

ask patch 2 3 [set color red]

Lets finish our first model

G. Beslon — CSSS’09 Lecture — July, 23, 2009 63

@)
Measuring information

Add three global variables to your code (at the

beginning of the code)
globals
[

max-distance
theoretical-mean-distance
mean-distance

]
Time is measured by the “tick counter”

— Two commands
ticks ;; reports the current value of the counter
tick ;; add one to the counter
In the “go” procedure, compute the three variables

— Hint: In a diffusion process, the mean distance is given by
the square root of the time...

G. Beslon — CSSS’09 Lecture — July, 23, 2009 64

32

@)
Printing the information

* Information can be printed in “monitors”
— Use the monitor icon in the toolbar

— Choose the reporter you want; Here:
Theoretical-mean-distance - mean-distance

— Try it; What is the problem? Correct it...
* Monitors only give the immediate value

* You will probably want to draw graphics
— Use the ploticon in the toolbar and fill the form
» Here the plot will be called distance
— Create as many pens as you want to draw different curves
on the graphic (care to change pen colors)
* Here, create pens theoretical, simulated, max-distance
— But to draw the curves, you will need to program a little...

G. Beslon — CSSS’09 Lecture — July, 23, 2009 65

@)
Plotting

* To plot the graph, create a new procedure and call it

in the “go” one

to do-plotting
set-current-plot "distance"
set-current-plot-pen "theoretical"
plot theoretical-mean-distance
set-current-plot-pen "simulated"
plot moy-distance

set-current-plot-pen "max-distance"”

plot max-distance

end

G. Beslon — CSSS’09 Lecture — July, 23, 2009 66

33

@)
Printing local information

Labels can be used to show information on each agent

— Create a turtle variable distance-to-origin and update it in the
go procedure
Here, in the go procedure, add
ifelse show-distance?
[set label distance-to-origin]
[set label ""]
— show-distance? Is a global variable that is created by a switch in
the interface
— Use the switch icon in the toolbar

— In the Global variable section of the switch dialog box type:
show-distance?

G. Beslon — CSSS’09 Lecture — July, 23, 2009 67

_ @
Data input

Using the interface, you can also enter data in your
model; Here we will use a slider

— Use the slider icon in the toolbar

— Give the slider the name nb-turtles

— Replace everywhere in the procedures the 10 value by
nb-turtles

— That's it!
Your model is ready to be used ... test it
— How is the error?

— Add a slider to modify the size of the steps of the random
walk

— Does it change something?

Now you have an object and a question ... you have
a model!

G. Beslon — CSSS’09 Lecture — July, 23, 2009 68

34

Next steps ...

* In this tutorial, we only used turtles

— Next step: program a “game of life” in NetLogo to learn to
use patches

— The general principles are exactly similar...
* Next slides will give some more information on
NetLogo programming

— Remember that NetLogo contains lots of dedicated
instructions and variables...

— Here we only saw part of them...
— Possibilities are (almost?) infinite!

http://ccl.northwestern.edu/netlogo/docs/
Have Fun!

G. Beslon — CSSS’09 Lecture — July, 23, 2009 69

Agentsets

» Agentsets enable to access to subsets of agents
turtles with [color = red] ;; all red turtles
turtles-hear with [color = red] ;; all red turtles on the current patch
patches with [pxcor > 0] ;; all patches on the right of the space
turtles in-radius 3 ;; all turtles less than three patches away
patches at-points [[1 0] [0 1] [-1 O] [0 -1]] ;; von Neumann neighbors
Neighbors4 ;; von Neumann neighbors

* How to use agentsets

ask <agentset> [..] ;; ask agents to do [..]
Show any? <agentset> ;; check if the agentset is not empty
Show count <agentset> ;; compute the cardinal of the agentset

* Examples

ask neighbors4 [set pcolor red]
;; turns the four neighboring patches red

ask max-one-of turtles [sum assets] [die]
;; remove the richest turtle (with the maximum “assets” value)

G. Beslon — CSSS’09 Lecture — July, 23, 2009 70

35

O
Breeds

Breeds enable to create “natural classes” of agents

breed [wolves wolf]
breed [sheep a-sheep]
create-sheep 50
create-wolves 50

When a breed is created, new functions become
automatically available

create-<breed>, hatch-<breed>, sprout-<breed>, <breed>-here,
<breed>-at, <breed>-on, is-a-<breed>?

Examples
ask turtles 5 [if breed = sheep ..] ;; Check the breed
ask turtle 5 [set breed sheep] ;; Change breed to sheep

Note that breed is a variable

G. Beslon — CSSS’09 Lecture — July, 23, 2009 71

@)
Programming structures

Tests
— One possibility
if xcor > 0 [set color blue]
— Two alternatives
ifelse pxcor > 0
[set pcolor blue]
[set pcolor red]

Loops
— Repeat loop
repeat 36 [fd 1 rt 10]

— While loop
while [any? other turtles—here][£4d 1]
— Foreach command

foreach [1.1 2.2 2.6][show (word ? " —> " round ?)]

G. Beslon — CSSS’09 Lecture — July, 23, 2009 72

36

Turtle Shape

A turtle's shape is stored
in its shape variable and
can be set using the set
command

* New shapes can be
created, or imported
from the shapes library
or from other models, in
the Shapes Editor

» Shape have names to identify them : default, airplane,
arrow, box, bug, butterfly, car, circle, circle 2, cow,
cylinder, dot, face happy, face neutral, face sad, fish, flag,
flower, ...

(]
b
) G. Beslon — CSSS’09 Lecture — July, 23, 2009 73
0
black = 0 white = 9.9999
aray = 5 9 9.9999
red = 15 19 19.9999
* There are 140 colors i S5 25 29999
. Wrap_arou nd is used brown = 35 39 39.9999
llow = 45 8 49 499999
when the color value e
. green = 55 59 59.9999
IS OUt Of the range lime = 65 69 69.9999
* Try the following 75 79999
patch com mand cyan = 85 89 89.9999
set pcolor pxcor + pycor sky = 95 99 99.9999
blue = 105 109 109.9999
violet = 115 119 119.9999
magenta = 125 129 129.9999
pink = 135 139 139.9999
'.
) G. Beslon — CSSS’09 Lecture — July, 23, 2009 74

37

Mathematics

* Most mathematical functions are supported
* Two number types

— 64 bits integers: range from -2147483648 to 2147483647 (-2731 to 2"31-
1)
— 64 bits floating numbers: 1.014534154524532 x 108 (about 16-digit
accuracy)
» Different pseudo-random functions are available
random 10 ;; returns an integer between 0 and 10
random-float 10.0 ;; returns a float between 0 and 10.0
random-seed 10 ;; initializes the pseudo-random generator
— You can also use

random-normal, random-poisson, random-exponential, random-gamma

) G. Beslon — CSSS’09 Lecture — July, 23, 2009 75

@
Storing data (l): Outputs

» The simple way: the “output” interface
— Use the “output” option in the toolbar

— An “output” is a place where you can write data and store them
at once after the end of the simulation (right-click + export)

» Output primitives are very simple
output-print ;; basic command sufficient in most situations.
output-show ;; print a value and the name of the agent.
output-type ;; lets you print several things on the same line.
export-output ;; store the content of the output in a file.
clear-output ;; clear ;)

» Outputs are quite basic devices; you may want more
powerful ones
— Use file /1O

) G. Beslon — CSSS’09 Lecture — July, 23, 2009 76

@)
Storing data (ll): File 1/0

» File /0 commands enable you to open, close and write
files

— When working with a file, you need to open it before
file-open <file-name>

When you have finished remember to close it

file-close <file-name>

I/O commands include:
file-print, file-show, file-type, file-write, file-delete,
file-read, file-read-line, file-read-characters, file-at-end?

If several files are opened, you must specify which one you
want to use by calling “£ile-open” again

) G. Beslon — CSSS’09 Lecture — July, 23, 2009 77

@)
Storing data (lll): Movies

* You can capture a QuickTime movie of a NetLogo simulation
— Four simple primitives; Very easy to use!
movie-start <file-name.mov> ;; starts a new movie
movie-grab-view ;; grab the environment window
movie-grab-interface ;; grab the whole interface window
movie-close ;; ends the movie
— Example
;; export a 30 frame movie of the view
setup
movie-start "out.mov"
repeat 30
[movie-grab-view go]
movie-close
— Of course, you can call all these primitives from the command center
— Care the size of the files! NetLogo produced uncompressed videos!

) G. Beslon — CSSS’09 Lecture — July, 23, 2009 78

39

Example

300 steps (300x15 frames) : 60.1 Mo!

G. Beslon — CSSS’09 Lecture — July, 23, 2009 79

Managing experiments

NetLogo includes a “BehaviorSpace” tool which enables to manage
experiments and to explore automatically the parameter spaces

— Menu “Tools + BehaviorSpace”

— BehaviorSpace collects data from multiple runs of a model
When creating a new experiment NetLogo opens the experiment
window which enables you to choose:

— Parameter space, varying input variables, reporters...

— Number of repetitions

— Stop conditions, to go conditions, setup procedures...

You can specify lists of values or extreme values and step

["max-pxcor" [11] 1 14]] ;; go from 11 to 14 one by one (care
the brackets)

["random-seed" 343 564 812 23] ;; to test these 4 values
All input variables can be specified

— NetLogo also enables to specify some “internal” variables (environment
size, seed of the random generator)

G. Beslon — CSSS’09 Lecture — July, 23, 2009 80

40

