Complex Networks

IXXI Summer School 2009

Guillaume Chelius <u>guillaume.chelius@inria.fr</u> INRIA / ENS Lyon / IXXI

Contributors

- Alain Barrat Alain.Barrat@cpt.univ-mrs.fr http://www.cpt.univ-mrs.fr/~barrat/
- Eric Fleury
 <u>Eric Fleury@inria.fr</u>
 <u>http://perso.ens-lyin.fr/eric.fleury</u>
- Matthieu Latapy <u>Matthieu Latapy@lip6.fr</u> http://www-rp.lip6.fr/~latapy/

A complex network is a network build from observations / measurements of interactions occuring in the « real world » :

- Biology
- Sociology
- Transportation
- Chemistry
- Epidemiology
- ...

As opposed to absract graphs, mathematical objects.

Analysis

Describe Extract some useful information

Modeling

Generation of realistic graphs

(i.e. given the observed properties)

motivations: formal approaches, simulation, algorithms, meaning.

Modeling

Generation of realistic graphs

(i.e. given the observed properties)

motivations: formal approaches, simulation, algorithms, meaning.

state of the art:

- Size, density, distances: easy
- Degree: consensus, models
- Clustering: no consensus

Graph modeling

- Graph G = (V, E)
 → What about dynamic network ?
- Size of the network
 - N = |V|, number of nodes / vertices
 - M = |E|, number of edges
- Weighted, directed graphs
 - Social relationship graphs
 - Traffic networks

- Degree distribution
 - Homogeneous vs heterogeneous networks
 - *n*-th moment of the degree distribution
- Betweenness distribution
 - Average betweenness linked to the average distance in the network
 - Notion of hubs

Contents

- I. Complex Networks, an introduction
- II. Network properties
- III. Network classes
- IV. Network models
- V. Applications
- VI. Case studies
 - I. Contact monitoring
 - II. Radar for the Internet

Scale-free Networks in Real World

- Metabolic networks: $\gamma \doteq 2.24$ (depending on species)
 - Node \Leftrightarrow Chemical compound
 - Edge ⇔ Chemical reaction (almost equivalently, enzyme)
- Protein interaction networks: $\gamma \doteq 2.2$
- WWW: $\gamma \doteq 2.1$
 - Node \Leftrightarrow Web page
 - Edge \Leftrightarrow Link between web pages
- Movie stars: $\gamma \rightleftharpoons 2.3$
 - Node ⇔ Actor/Actress
 - Edge \Leftrightarrow Act in the same movie

Contents

- I. Complex Networks, an introduction
- II. Network properties
- III. Network classes
- IV. Network models
- V. Applications
- VI. Case studies
 - I. Contact monitoring
 - II. Radar for the Internet

Assumptions of WS Model

- Undirected Edges
- Un-weighted Edges:- no weight associated with edges
- Sparse:- Number of Edges << total number of edges
- Connected:- All vertices are connected. (no isolated clusters)

S	mall W	/orld (Graphs	
xamples !! Stu	died by Watts-S	Strogatz		
Kevin Bacon (Graph (KBC	i)		
	I V	/		
Power Grid (V	Vostorn US)			
Power Grid (V	Western US)			
Power Grid (V C. elegans Wo	Vestern US) orm			
Power Grid (V C. elegans Wc Table 1 Empirio	Vestern US) orm cal examples of	small-world net	Norks	
Power Grid (V C. elegans Wc <u>Table 1 Empiric</u>	Vestern US) orm cal examples of s Lactual	small-world net	Norks C _{actual}	Crandom
Power Grid (V C. elegans Wc <u>Table 1 Empiric</u> Film actors	Vestern US) orm cal examples of <i>L</i> actual 3.65	small-world net L _{random} 2.99	Norks C _{actual} 0.79	C _{random} 0.00027

Contents

- I. Complex Networks, an introduction
- II. Network properties
- III. Network classes
- IV. Network models
- V. <u>Applications</u>
- VI. Case studies
 - I. Contact monitoring
 - II. Radar for the Internet

Consequences of the topological heterogeneity

- Robustness and vulnerability
- Propagation of epidemics

SIS= Susceptible – Infected – Susceptible
Mean-Field usual approximation: all nodes are "equivalent" (same connectivity) => existence of an epidemic threshold 1/<k> for the order parameter r (density of infected nodes)
Scale free structure => reconserve to take into

Scale-free structure => necessary to take into account the strong heterogeneity of connectivities => r = density of infected nodes of connectivity k = <<u>k</u>> <<u>k</u>> <<u>k</u>>

Main results for epidemics spreading on SF networks

•Absence of an epidemic/immunization threshold

•The network is prone to infections (endemic state always possible)

•Small prevalence for a wide range of spreading rates

•Progressive random immunization is totally ineffective

•Infinite propagation velocity

Very important consequences of the SF topology!

(NB: Consequences for immunization strategies)

Pastor-Satorras & Vespignani (2001, 2002), Boguna, Pastor-Satorras, Vespignani (2003),

