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What is a network ?

points linked by edges
./ \
individuals social relations
computers wires
web pages hyperlinks
airports flights
proteins reactions

What is a network ?

points linked by edges
=>» modeled by a graph G=(V,E)

\ Auto-organisation

Dynamic evolution




What is a network ?

A graph captures a structure: n nodes / vertices, m edges

A graph is not a drawing; one graph, several drawings !

E.g.:K4=a,b,c,d;a-b, a-c, a-d, b-c, b-d, c-d

A\

What is a network ?

Many type of networks / graphs :

* Directed vs undirected networks

*  Weighted vs unweighted networks
* Digraphs




What 1s a complex network ?

A complex network is a network build from observations / measurements
of interactions occuring in the « real world » :

* Biology

* Sociology

* Transportation
* Chemistry

* Epidemiology

As opposed to absract graphs, mathematical objects.

Internet
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Metabolic Network

Protein Interactions
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Complex networks

=> Most of the complex networks offer some common non-
trivial properties...

=>» ... and some common issues. ..
- Measure
—  Analysis
—  Modeling
—  Algorithm

Complex networking : issues

Measure = +» Analysis

<

Algorithm < — Modeling




Measure

v

measure

obtained vue
real network

Measure

v

measure

inference obtained vue
real network

What can we say about the real object given the measure ?

Impact on the observed properties
Impact of the properties on the view
Mesures targeting some properties




Analysis

Describe

Extract some useful information

Analysis

Describe

Extract some useful information

statistics

density

degree
local density
correlations




Modeling

Generation of realistic graphs
(i.e. given the observed properties)

motivations: formal approaches, simulation,
algorithms, meaning.

Modeling

Generation of realistic graphs
(i.e. given the observed properties)

motivations: formal approaches, simulation,
algorithms, meaning.

state of the art:
* Size, density, distances: easy

* Degree: consensus, models

* Clustering: no consensus




Algorithms

* Specific problems
» Revisited problems
» Space restrictions

Algorithms

* Specific problems
» Revisited problems
» Space restrictions

» Take profit of observed properties
* Approximated results often enough

* Experimental, empiric algorithms

=> New way of doing
algorithms




Global view

Measure —— Analysis —  Modeling — Algorithm

Global view

Measure — Analysis —  Modeling — Algorithm

* Measure = data = analysis = properties = model




Global view

Measure — Analysis —  Modeling — Algorithm

* Measure = data = analysis = properties = model
* Model 2> formalism = metrology, algorithm

Global view

Measure — Analysis —  Modeling — Algorithm

* Measure = data = analysis = properties = model
* Model 2> formalism = metrology, algorithm

* Analysis = calculuous = algorithm = computation -
analysis




Global view

Measure — Analysis —  Modeling — Algorithm

* Measure = data = analysis = properties = model
* Model 2> formalism = metrology, algorithm

* Analysis = calculuous = algorithm = computation -
analysis
» Metrology = robust properties = analysis
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Graph modeling

Graph G=(V, E)
- What about dynamic network ?

Size of the network
— N =|V|, number of nodes / vertices
— M = |E|, number of edges

Weighted, directed graphs
— Social relationship graphs
— Traffic networks

Basic properties

Path

Connectivity of the network
— GCC, GWCC, GSCC...

Shortest path = distance
Distance = eccentricity, radius, diameter, etc.
Node degree




Graph density

* Number of edges vs number of potential
edges

/

N=4,M =4, delta=0.66...

Centrality measures

=>» measures the centrality of a node i in the
network

Various definitions

May be based on degree, distance or
betweenness.




Degree centrality

* Classifies nodes according to the number of
neighbors

» Based on inbound and outbound degree

* Refined: the Bonacich index
— Considers the degree of the neighbors
— Computed through iterations.

/

Proximity centrality

Centrality based on the distance between a
node and its peers

/




Betweenness centrality

Betweenness centrality of a node 1:

for each pair (I,m) in the graph, there are
s!m gshortest paths between 1 and m
s Im shortest paths going through i

b, is the sum of s.,m/ s!mover all pairs (1,m)

j
bj is small

Clustering coefficient

Qll

3
} Higher probability to be connected
2

# of links between 1,2,...n neighbors
1 - n(n-1)/2

Clustering: My friends will know each other with high probability!
(typical example: social networks)

c)

@ C




Satistical characterization

» Degree distribution
— Homogeneous vs heterogeneous networks

— n-th moment of the degree distribution

* Betweenness distribution

— Average betweenness linked to the average
distance in the network

— Notion of hubs

Topological correlations:
assortativity

1
knn i = 12 ajk;
1
_ % 0k — K)kpn
>; 0(k; — k)

ki=4
knn,i=(3+4+4+7)/4=4.5

a;: Adjacency matrix




Assortativity

* Assortative behaviour: growing k, (k)

* Disassortative behaviour: decreasing k_ (k)

Topological correlations:
clustering

1
ci = mzﬁék 23581k Ajk

C=<Ci>
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Social networks:
Milgram’s experiment

Milgram, Psych Today 2, 60 (1967)

Total no. of
+{Chains, 44

S%Nq o 2 4 6 8 12 / !

PN'”CN No. of Intermediaries needed
to reach Target Person

from two to 10 intermediate acquaintances

“Sao 2 P
Cococaw In the Nebraska Study the chains varied \\
S /]\7175 »y with the median at five. ]}
—

Dodds et al., Science 301, 827 (2003)




Exp. vs. Scale-Free
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R. Albert, H. Jeong, A-L Barabasi, Nature, 401 130 (1999).

Swedish sex-web

Nodes: people (Females; Males)
Links: sexual relationships
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Cumulative distribution, P(k
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4781 Swedes; 18-74;
59% response rate.

Liljeros et al. Nature 2001




Scale-free Networks in Real

World
:y = 2.24 (depending on species)

— Node <& Chemical compound
— Edge < Chemical reaction (almost equivalently, enzyme)
Yy = 2.2
iy = 2.1
— Node & Web page
— Edge < Link between web pages
y = 2.3
— Node < Actor/Actress
— Edge © Act in the same movie

Main Features of complex networks

*Many interacting units
*Self-organization
*Small-world

*Scale-free heterogeneity

*Dynamical evolution

Standard graph theory

P(k)

Random |
i ).

et

*Ad-hoc topology —
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Erdos-Rényi
model (1960)

Connect with

probability p Pal Erdos

p=1/6 (1913-1996)
N=10 (k
)~ 15 Poisson distribution
’.;
e g
short distances BUT...
L <k>
(log N) AR




Asymptotic behavior

Lattice Random graph
L(N)=N"* L(N)=log N
C(N) = const. C(N)=N"'

Work of Watt and Strogatz

» Asks why we see the small world pattern
and what implications it has for the
dynamical properties of social networks.

 Their contribution is to show that the
globally significant changes can result from
locally insignificant network change.




Assumptions of WS Model

» Undirected Edges

» Un-weighted Edges:- no weight associated
with edges

 Sparse:- Number of Edges << total number
of edges

Connected:- All vertices are connected. (no
isolated clusters)

In-between.: Small-world networks

Regular Small-world Random

N nodes forms a regular lattice.
With probability p,
each edge is rewired randomly

=>Shortcuts

"EETETE 6 g g T
p=0 - > L O o —
Increasing randomness o8l . . C(p) / C(O) o N i 1000 1
eLarge clustering coeff.  °°f . ]
041 o
eShort typical path ’
ypicalp wl LRI e
Watts & Strogatz, 0 - L R
0.0001 0.001 0.01 0.1

Nature 393, 440 (1998) p




Size-dependence

1A oo ™8 0 & g" o T T
o8l ° . Clp)/ C(0) © ]
0.6 ’ 1
ok N-dependence? , |
g L(p)
02l L(p)/ LO) = —
- p >> 1/N => Small-world
ol ivw . |Structure
0.0001 0.001 oo U
p e
0.4 N=20000
0.2

Amaral & Barthélemy Phys Rev Lett 83, 3180 (1999)
Newman & Watts, Phys Lett A 263, 341 (1999)

N=100
/

Barrat & Weigt, Eur Phys J B 13, 547 (2000)

Small World Graphs

Examples !! Studied by Watts-Strogatz
* Kevin Bacon Graph (KBG)
¢ Power Grid (Western US)

* C. elegans Worm

Table 1 Empirical examples of small-world networks

Fllmamnrs '3:65 ) 299 ) 0.79
Power grid 18.7 124 0.080

L aztual L random C):tu:l

C. elegans 2.65 2.25 0.28

Cmndcm

0.00027
0,005
0.05




Is that all we need ?

NO, because..
Random graphs,

Watts-Strogatz graphs ar

e"\
S
"

homogeneous graphs |

While.....

Airplane route network
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Topological characterization

. *The Internet and the World-Wide-Web
*Protein networks as k links

-~ *Metabolic networks
:n *Social networks

’ *Food-webs and ecological networks

"] Are

Heterogeneous networks

@uc-lrcc Properucs] Wy  DIVCI g nuctaauons




Exp. vs. Scale-Free

Poisson distribution Power-law distribution
b
<
I X 0.1F
S 0.01
SN [ . =
&
0.001F
0.0001F

100 1000

—_
[
=33

Two important observations

(1] The numher of nodes (N) is NOT fixed.

Networks continuously expand

by the addition of new nodes
Examples:
WWW : addition of new
documents Citation :
publication of new papers

(2) The attachment is NOT uniform.

A node is linked with higher probability to a
node tygimpregady has a large number of links.

WWW : new documents link to well known sites
(CNN, YAHOO, NewYork Times, etc)
Citation : well cited papers are more likely to be cited
again




Origin of SF networks: Growth and preferential attachment

(1) Networks continuously expand ~ GROWTH:
by the addition of new nodes add a new node with m links

WWW : addition of new documents
PREFERENTIAL ATTACHMENT:

(2) New nodes prefer to link to the probability that a node
highly connected nodes. connects to a node with k links is
WWW : linking to well known sites pm?{rjio:nal ko k.
Y Xk
JJ
10° :
107 | b
'E“:m* H .
o P(k)~k3 B
1 *° 0 5 vl 3
Barabasi & Albert, Science 286, 509 (1999) ® o 0,0 10

Connectivity distribution

BA network




More models

*Generalized BA model (Redner et al. 2000)
Non-linear preferential attachment : TI(k) ~ k* *Highly clustered

(Dorogovtsev et al. 2001)

Initial attractiveness : II(k) ~ A+k® 0) (Eguiluz & KI 2002)
guiluz emm

Rewiring
*Fitness Model
(Bianconi et al. 2001)

(Albert et al. 2000)

-k
H(k;) = ok Multiplicative noise

(Huberman & Adamic 1999)

()

Tools for characterizing
the various models

Connectivity distribution P(k)

=>Homogeneous vs. Scale-free

Clustering

Assortativity

=> Compare with real-world networks
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Consequences of the topological
heterogeneity

* Robustness and vulnerability

* Propagation of epidemics




Robustness

Complex systems maintain their basic functions
even under errors and failures
(cell = mutations; Internet — router breakdowns)
1
S: fraction of giant

component fe

0 1
Fraction of removed nodes, f

L '/-. .
node failure '\ w
—

R. Albert, H. Jeong, A.L. Barabasi, Nature 406 378 (2000)

Case of Scale-free Networks

Random failure fc =1 (2<9 =

"
Attack =progressive faih}re of the most

connected nodes fc <1

fC 1 Igs . . ; .
L] 4
osh |
- i ]
06 . ]
S = [ 4
Internet maps 04, “og 1
0214 Ug ]

A ]

- a <
oL B nn ra s nBlmme

0 0.2 04 0.0 0%

f




Failures vs. attacks

oo O OO

Failures o © ©
) o % o

Topological o o5

error tolerance o

__ y=3: fc=1
(R. Cohen et al PRL, 2000)

o fe f I

o) O %og
o OO °s © 5o
Attacks 0o © o 3o OOO o
o o o
fC

Other attack strategies

Most connected nodes

Nodes with largest betweenness

Removal of links linked to nodes with large k

Removal of links with largest betweenness

Cascades




Epidemic spreading on SF networks

Natural computer virus
*DNS-cache computer viruses

== Internet topology

*Routing tables corruption

Data carried viruses

«ftp, file exchange, etc. :
p, lile exchang m=mp E-mail network topology

Computer worms
*e-mail diffusing

sself-replicating

Epidemiology mmm)p  Air travel topology

Mathematical models of epidemics

Coarse grained description of individuals and their state

*Individuals exist only in few states:
*Healthy or Susceptible * Infected * Immune * Dead

eParticulars an the infection mechanism on each individual are neg]ected.

'.°._no 2L o o2 »9
eo” % ®, o ®
se *T S, LA
L hea ) Topology of the system: the pattern of contacts
& a®s «3vp " * *e, along which infections spread in population is
Tt . ae identified by a network
sa .’

*Each node represents an individual

*Each link is a connection along which the
virus can spread




SIS model:

*Each node is infected with
rate nh if connected to one or r
more infected nodes

Absorbin
g Active phase

phase

. Finite prevalence
Virus death

eInfected nodes are

recovered (cured) with rate >
d without loss of generality I c I
d =1 (sets the time scale)
r=prevalence *Non-equilibrium phase

transition
*Definition of an effective

spreading rate | =n/d eepidemic threshold =
critical point

The epidemic threshold is a general result

*prevalence r =order

1 parameter

The question of thresholds in epidemics is central

(in particular for immunization strategies)

What about computer viruses?

A

o

Very I ,

Compa] Absorbing . /1TUS

Active phase
° Small I Virﬂlslflseeath Finite prevalence
| e |
Computer viruses ???
Long lifetime + low prevalence = computer viruses always tuned 299

infinitesimally close to the epidemic threshold




SIS model on SF networks

SIS= Susceptible — Infected — Susceptible

Mean-Field usual approximation: all nodes are
“equivalent” (same connectivity) => existence
of an epidemic threshold 1/<k> for the order
parameter ' (density of infected nodes)

Scale-free structure => necessary to take into
account the strong heterogeneity of
ot . .
connectlgetl}ggmic th.rre Jj\mlgliensnz': ogigfected
nodes of connectivity k <k2>

Epidemic threshold in scale-free networks

| & k>
<k2>

<k2> — o

l &= 0

Order parameter

— —1/mA
behavior in an - p==2e

infinite system




Rationalization of computer virus data

*Wide range of spreading rate with low prevalence (no
tuning)

*Lack of healthy phase = standard immunization cannot

Results can be generalized to ge

scale-free connectivity distributions

*If2 < g =3 we have absence of an epidemic threshold

and no critical behavior.

*If 3<{ <4 an epidemic threshold appears, but

it is approached with vanishing slope (no criticality).

If J > 4 the usual MF behavior is recovered.

SF networks are equal to random graph.




Main results for epidemics
spreading on SF networks

*Absence of an epidemic/immunization threshold
*The network is prone to infections (endemic state always possible)
*Small prevalence for a wide range of spreading rates
*Progressive random immunization is totally ineffective

Infinite propagation velocity
Very important consequences of the SF topology!

(NB: Consequences for immunization strategies)

Pastor-Satorras & Vespignani (2001, 2002), Boguna,
Pastor-Satorras, Vespignani (2003),

First Mover Advantage

Network Scale Free Model: First mover advantage
Real Systems: nodes compete for links
Fitness (h):  P(k) ~ hk
mJ "/ ha
d K(t) ~ t
My
Fit-gets-rich Bose-Einstein condensation

G. Bianconi and A.-L. Barabasi, Physical Review Letters (2001)




Modularity

» Real networks are fragmented into group or modules

& SOCiCtyI Granovetter, M. S. (1973) ; Girvan, M., & Newman, M.E.J. (2001); Watts, D. J.,
Dodds, P. S., & Newman, M. E. J. (2002).

< WWW:  Flake, G. W., Lawrence, S., & Giles. C. L. (2000).
+“* Biology: Hartwell, L.-H., Hopficld, J. J., Leibler, S., & Murray, A. W. (1999).
¢ Internet: Vasquez, Pastor-Satorras, Vespignani(2001).

» Traditional view of modularity:

Ravasz, Somera, Mongru, Oltvai, A-L. B, Science 297, 1551 (2002).

Modular vs. Scale-free Topology

(@)

Scale-free

(b)

Modular




Hierarchical Networks

3. Clustering
coefficient scales

C(k) ~ k™1

a1
C(k)= k(k-1)/2

Finding Overlapping Communities in Networks

o
Q)  Co-authorship £2F b) phone—call
2

growth contraction
. — t+1 = 1+l
birth

Palla, ALB, Vicsek




