BACKGROUND O	Model Overview	Observations 000000	Conclusions	Acknowledgements

Endless evolutionary paths to Virtual Microbes

Thomas Cuypers Paulien Hogeweg Theoretical Biology Utrecht University

Background 0	Model Overview	Observations 000000	Conclusions	Acknowledgements

OUTLINE

BACKGROUND evolution in Virtual Cells

MODEL OVERVIEW

OBSERVATIONS Metabolisms in Flux TF regulation

CONCLUSIONS

Acknowledgements

◆□ > ◆昼 > ◆臣 > ◆臣 > ○ ● ●

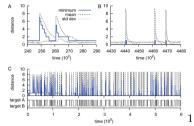
Background 0	Model Overview	Observations 000000	Conclusions	Acknowledgements
EVOLVABILIT	Y			

(micro) organisms show a remarkable ability to adapt rapidly under stress or changing conditions in vivo

- rapid extensive transcriptional changes (yeast)¹
- adaptation to experimental condition by parallel gene loss and point mutations (e. coli)²

EVOLVABILITY

(micro) organisms show a remarkable ability to adapt rapidly under stress or changing conditions in vivo


- ► rapid extensive transcriptional changes (yeast)¹
- adaptation to experimental condition by parallel gene loss and point mutations (e. coli)²

Question: does evolvability evolve?

Background 0	Model Overview	Observations 000000	Conclusions	Acknowledgements
IN SILICO				

when environment alternates between discreet states

- ► genome restructuring
- ► regulatory changes

biases spectrum towards favourable mutations

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

¹Crombach & Hogeweg, 2008

BACKGROUND	Model Overview	OBSERVATIONS	Conclusions	ACKNOWLEDGEMENTS
0		000000		

IN BIOLOGY

However

- environmental change on continuum (vs. predictable)
- ► organisms *sense* their environment
- ecological interactions may promote or reduce need for adaptation

BACKGROUND	Model Overview	Observations	Conclusions	ACKNOWLEDGEMENTS
0		000000		

IN BIOLOGY

However

- environmental change on continuum (vs. predictable)
- ► organisms *sense* their environment
- ecological interactions may promote or reduce need for adaptation

Redefined question: how do evolvability, regulation and ecosystem interact?

EVOLUTION OF EVOLVABILITY

defining the problem space:

• manifests when conditions change (intrinsic or extrinsic)

EVOLUTION OF EVOLVABILITY

defining the problem space:

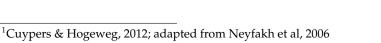
- manifests when conditions change (intrinsic or extrinsic)
- ► regulation may interfere with evolution of evolvability

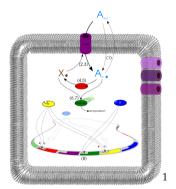
EVOLUTION OF EVOLVABILITY

defining the problem space:

- manifests when conditions change (intrinsic or extrinsic)
- ► regulation may interfere with evolution of evolvability
- evolution of evolvability can imprint GRN as well as genome structure

Background 0	Model Overview	Observations 000000	Conclusions	Acknowledgements


VIRTUAL CELLS


Virtual Cell model has

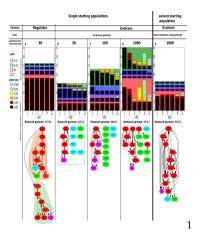
- ► TFs sense internal metabolites
- continuous environment
- ► also drastic environmental change
- evolve for homeostasis

Mutations:

- ▶ genome scale → dup, del, invert, translocate
- ► genes:
 - $\blacktriangleright enzymes \rightarrow alter metabolic constants$
 - sequences \rightarrow bit string mutations

◆□ ▶ ◆昼 ▶ ◆臣 ▶ ◆臣 ● ◆ ○ ◆ ○ ◆

OBSERVATIONS

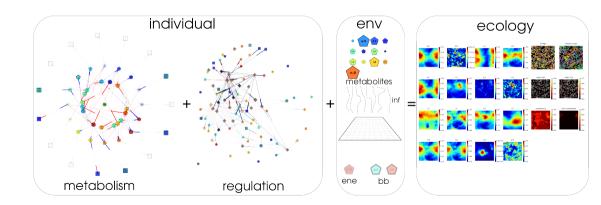

000000

CONCLUSION

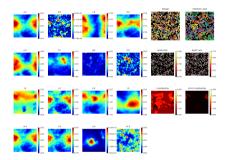
DIFFERENT STRATEGIES EVOLVE

We observed:

- evolution of *homeostasis* regulation
- ► fast readaptation when change is drastic
- competition between evolutionary adaptation and regulation (timescales)


¹in collaboration with Jaap Rutten (in progress)

OBSERVATIONS


CONCLUSIONS

ACKNOWLEDGEMENTS

TOWARDS VIRTUAL MICROBES

WHAT IS THERE TO DO?

no explicit fitness function that can be optimized (cf. Virtual Cell), instead:

- ► increase *production* through metabolism
- avoid *toxic* build up of internal metabolites
- ► *ecosystem* feedback changes the fitness seascape.

COUNTING GENES



at t = 200000 change from fluctuating to constant environment Fast initial increase, and tendency to reduce on long time scale (cf. Knibbe & Beslon, Cuypers & Hogeweg)

590

Background o	Model Overview	Observations	Conclusions	Acknowledgements

GENE EXPRESSION

▲□▶▲□▶▲□▶▲□▶ = 三 のへで

Background 0	Model Overview	OBSERVATIONS	Conclusions	Acknowledgements
GENE EXPRE	SSION			
why do pump	and enzyme expressi	on have opposite	evolutionary patte	rn?
	pumps	tfs	enzymes	
			Atomic	

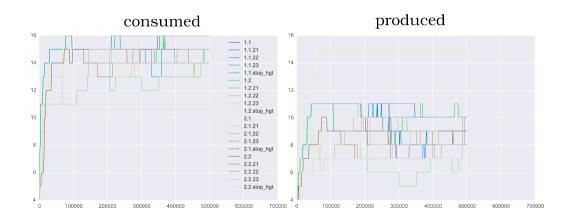
Background o	Model Overview	Observations	Conclusions	Acknowledgements	
	FORIONI				
GENE EXPR	ESSION				
why do pump and enzyme expression have opposite evolutionary pattern?					
	pumps	tfs	enzymes		
		= 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			

• too high internal concentrations can be toxic

Background 0	Model Overview	OBSERVATIONS 000000	CONCLUSIONS	Acknowledgements	
GENE EXPR	ESSION				
why do pump and enzyme expression have opposite evolutionary pattern?					
	pumps	tfs	enzymes		
		0.5 1.3.31 1.3.22 1.3.22 1.3.25 1.3.55 1			

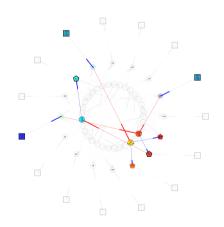
- too high internal concentrations can be toxic
- increasing metabolic enzymes can *dissipate* high resource concentration (metabolic regulation)

Background 0	Model Overview	OBSERVATIONS 000000	Conclusions	Acknowledgements		
GENE EXPR	ESSION					
why do pump and enzyme expression have opposite evolutionary pattern?						
5	pumps	tís	enzymes			


- too high internal concentrations can be toxic
- increasing metabolic enzymes can *dissipate* high resource concentration (metabolic regulation)
- once, established, it becomes safe to pump

Background 0	Model Overview	OBSERVATIONS 000000	Conclusions	Acknowledgements
GENE EXPR	ESSION			
why do pun	ip and enzyme express	sion have opposite e	volutionary pattern?	
	pumps	tfs	enzymes	
		15.20 15.20 15.22		

- ► too high internal concentrations can be toxic
- increasing metabolic enzymes can *dissipate* high resource concentration (metabolic regulation)
- once, established, it becomes safe to pump
- ► fine tuning of enzymes can minimize cost of expression


Background	Model Overview	OBSERVATIONS	Conclusions	ACKNOWLEDGEMENTS
0		•00000		

EVOLVING RESOURCE EXPLOITATION

Background	MODEL OVERVIEW	OBSERVATIONS	Conclusions	Acknowledgements
0		00000		

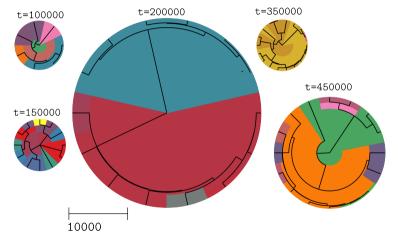
CONTINUOUS CHANGE IN LINE OF DESCENT

◆□ ◆ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆

Background	Model Overview	OBSERVATIONS	Conclusions	Acknowledgements
0		00000		

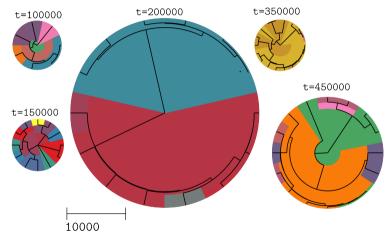
METABOLISMS IN FLUX

even though organisms quickly learn to exploit all metabolites, metabolism network remains in flux.


sustained flux in constant environment

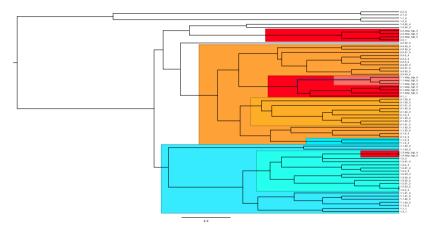
driven by external HGT

<ロト < 同 ト < 三 ト < 三 ト 三 の < ○</p>


Background 0	Model Overview	Observations 000000	Conclusions	Acknowledgements

WITHIN POPULATION DIVERSITY

WITHIN POPULATION DIVERSITY


different metabolic types coexist at intermediate evolutionary time scales

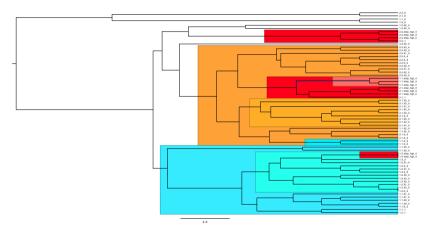
BACKGROUND MODEL OVERVIEW

Observations 0000€0 CONCLUSIONS

Acknowledgements

BETWEEN POPULATION METABOLIC DIVERSITY

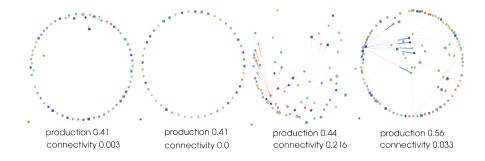
◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ● ◆○◆


BACKGROUND MODEL OVERVIEW

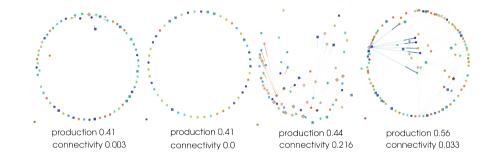
OBSERVATIONS

CONCLUSIONS

ACKNOWLEDGEMENTS


BETWEEN POPULATION METABOLIC DIVERSITY

strong evolutionary contingency in evolving metabolisms


Background 0	Model Overview	Observations ○○○○●	Conclusions	ACKNOWLEDGEMENTS

WHAT ABOUT REGULATION?

Background	Model Overview	OBSERVATIONS	Conclusions	ACKNOWLEDGEMENTS
0		000000		

WHAT ABOUT REGULATION?

highly variable between evolutionary runs maintenance depends on environmental change

CONCLUSIONS

- microbes quickly evolve metabolic networks
- despite strong selection due to toxicity, high metabolic variation
- ► metabolisms in flux over evolutionary time
- continuous evolution of population diversity
- strong contingency of evolutionary trajectories

Background o	Model Overview	Observations 000000	Conclusions	ACKNOWLEDGEMENTS

ACKNOWLEDGEMENTS

- ► Paulien Hogeweg
- ► Bram van Dijk
- ► all members of the evoevo
- ► ECAL organizers

