Experiments with Cascading Design

Ben Kovitz

Fluid Analogies Research Group
Indiana University
512 N. Fess Av.
Bloomington, Indiana 47408 USA
bkovitz@indiana.edu

Abstract. Can interaction (“epistasis”) within a genotype make a pop-
ulation “learn” to evolve faster? Two experiments described herein show
that when fitness functions reward coordination among the parts of a
phenotype, a genotype with a “cascading design”—one that produces a
phenotype through cascades of simple elements triggering other simple
elements—can exploit non-locality in the genotype-phenotype mapping
to favor mutations that maintain valued coordinations. Cascading de-
signs tend to evolve leverage points that increase the value of single
mutations, enabling them to move quickly through a genotype space,
skipping over valleys in the fitness landscape as they move from peak to
peak.

1 Introduction

1.1 The problem of coordination

Most natural evolutionary processes successfully overcome an obstacle that frus-
trates most artificial evolutionary algorithms: greater fitness usually requires
more-complex coordination among many traits. As individuals become more fit,
changing one trait tends to destroy fitness unless all the other traits are changed
appropriately to maintain the coordination among the traits.

Here is a simple example of coordination and how it presents obstacles to
evolvability. In any good house design, the plumbing and electrical wiring con-
nect water and electricity to the devices that need them. If you change the
architectural plans for a house to move the bathroom from the northwest cor-
ner to the middle of the east wall, moving the walls and fixtures is not enough.
You must also reroute all the pipes and electrical connections. There may also
be further implications, such as required changes to the structure of the house,
placement of doorways in other rooms, placement of windows, etc. As the design
for a house becomes more refined, each new high-level change, such as where
to place a whole room, becomes dominated more by what system engineers call
“ripple”: additional changes required to maintain integrity.

If an evolutionary algorithm is designing the house, and the genotype-phenotype
mapping has a simple relationship between a change to each gene and a change
to a correspending element of the house design, then moving the bathroom across

the house requires that many mutations occur simultaneously: one mutation for
each segment of pipe that needs to move, one mutation for each doorway, etc. As
coordination becomes more complex, the probability of making all the needed
mutations simultaneously gets lower and lower.

Ripple is especially troublesome for practical evolutionary algorithms because
usually a design that lacks the needed coordination is completely worthless. For
example, plumbing that doesn’t connect to the water supply simply doesn’t work
at all. A vertebrate whose circulatory system wasn’t connected to its heart, or
that didn’t complete a full circuit back to the heart, could not survive at all.
Thus, the need for coordination induces large “valleys” in fitness landscapes:
regions that cannot be crossed by a sequence of small mutations, because any
one mutation that puts an individual into the valley ensures that the individual
will not reproduce at all. As noted in Gavrilets (1997), the fitness landscapes of
real organisms tend to be dominated by regions where nothing is viable.

Yet biological evolution seems to maintain coordination among an organ-
ism’s traits with (relative) ease. In fact, biological evolution seems to have got-
ten faster and faster as organisms have become more complex. For example,
Benton and Emerson (2007) found that the number of families of mammals has
been increasing exponentially since the K-T boundary. This suggests that it has
been becoming progressively easier for mutations to find new, beneficial, radical
changes. A simple piece of evidence is just the fact that it took 2 billion years
of mostly single-celled organisms to reach the Cambrian explosion, but in the
last 542 million years, more-complex forms of life have been varying much more
radically than Precambrian life ever did. In biology, at least, complexity seems
to favor evolvability.

Crossover enables some degree of coordinated change. Two house designs
with the bathroom in different places can “cross”, resulting in a design where
the bathroom from one house is superimposed on the design of the other house.
The resulting design might even have connected plumbing and electrical systems.
But crossover includes no mechanism to preserve relationships between traits
separately from the absolute measurements of those traits. Its main benefit is to
combine two internally coordinated subsystems without destroying either one.

1.2 Cascading design

This paper describes some experiments that explore the hypothesis that cascad-
ing designs become progressively more evolvable against fitness landscapes that
reward coordination among traits. This might explain why natural evolution is
so successful at evolving organisms with such complex forms of coordination.
A cascading design is a network of elements that each do very little on their
own, mainly triggering other elements, possibly adding some small twist of their
own to whatever triggered them. The classic example of a cascading design is
a metabolic network: each enzyme does little more than catalyze reactions that
create or consume other enzymes or speed up or slow down their activity.
Hypothesis: When fitness rewards coordination (invariant relationships among
the traits or parts of a phenotype), and a genotype is a cascading design that can

alter its structure as well as the quantitative parameters within it, the genotype
will respond to selective pressure to favor structures that are better at evolving.

The argument for the plausibility of this hypothesis is that a cascading design
can evolve “leverage points” where a single mutation will create a coordinated
change. A change to an element early in a cascade propagates through elements
later in the cascade, eventually spreading the change throughout the phenotype.
The network through which the cascade propagates thus represents relationships
within the phenotype that are preserved even as the single mutation alters the
whole phenotype.

The experiments in this paper test this hypothesis through evolutionary al-
gorithms in which a fitness function varies randomly every 20 generations, but
within some constraint so that each fitness function rewards the same type of
coordination even as it changes the absolute values that describe an optimal
phenotype. Each time the fitness function changes, we should see a “race” to-
ward the new optimum: the winners of the race should have genotypes whose
structure makes them faster at moving up the gradient of the fitness function.
Invariant forms of coordination imply some sort of common type of gradient in
all the fitness landscapes, which a well-tuned cascading structure should be able
to exploit.

2 Related work

There is a great deal of work, starting with Kauffman (1969), on NK models:
random networks of IV nodes, where the fitness of the network is the sum of the
fitnesses of each node, and each node’s fitness is a function of a number stored at
K neighboring nodes. The main result is that when K=1, the fitness landscape
is hill-shaped, and as K increases (more interactions within the network), the
fitness landscape becomes more “rugged”: small changes to the network result
in large, uncorrelated changes to fitness. Smith et al. (2002) analytically derived
the probability that a mutant will have greater fitness than its parent. As K
increases, the probability increases that a parent with above-average fitness will
produce a mutant with lower fitness. When K is high, the average fitness of the
population is likely to progress more slowly at higher levels of fitness: the lack
of correlation between nearby genotypes and nearby fitness levels means that a
small change to a high-fitness genotype is more likely to lead to a lower-fitness
genotype.

Most measures of evolvability have focused on the probability of improvement
in a single generation, deducing from a “transmission function” specifying the
probability that parents with a specified genotype and phenotype will produce
a child with a specified genotype and phenotype (Cavalli-Sforza and Feldman,
1976). “Evolution of evolvability” means evolution that increases the expected
fitness of a mutant. Altenberg (1994) describes a number of techniques to achieve
this, such as genes that affect the probability that other genes will be mutated,
and the evolution of subroutines in genetic programming.

It is generally held that better evolvability is promoted by high “locality”
in the mapping from genotype to phenotype: that is, a small change in the
genotype should produce a small change in the phenotype (Rothlauf and Oetzel,
2006), with the exception that low locality makes it easier to escape from a local
optimum.

Metabolic networks have been found to be modular: they consist of clusters
of interacting enzymes with relatively few interactions with enzymes in other
clusters. Similarly for genomes. It is not known whether modularity evolves
because of selective pressures or mutational biases (Wagner et al., 2007). Clune
et al. (2013) propose that connections are themselves costly to an organism,
creating a selective pressure to keep connections to a minimum. Kashtan and
Alon (2005) find that changing the fitness function tends to cause the creation
of modules in genotypes produced by standard evolutionary algorithms.

Kirsten and Hogeweg (2011) found in silico that a developmental difference
that makes mutations tend to preserve body structure also led to better evolv-
ability. Hogeweg (2012) explores the tendency of genotypes to integrate infor-
mation into their structure over time, producing “non-random” (that is, biased)
exploration of the genotype space and increasing evolvability. The present pa-
per explores the same line of thought, mathematically simplified and abstracted
further from biology—a further step toward isolating this aspect of evolvability
and finding a rigorous and general theory to explain it.

3 Data and methods

All experiments consisted of running an evolutionary algorithm implemented
in the Scala programming language. In each experiment, the fitness function
operated on “phenotypes”, which are defined to be vectors of four real numbers.

Each experiment had two parts: “direct evolution” and “cascading design”.
In direct evolution, the population consists of phenotypes; or in other words,
the genotypes and the phenotypes are identical, so variation operates by directly
modifying the phenotypes. In cascading design, the genotypes consist of directed
graphs, which map to phenotypes as described in section 3.1.

The fitness function varies once per epoch. The same fitness function is always
applied in the same epochs to both the direct and cascading-design populations.

3.1 Evolutionary algorithm

In the first epoch of each experiment, generation 1 contains randomly generated
individuals. All succeeding epochs start with a “generation 0”, which contains
the same individuals as the last generation of the previous epoch.

FEach succeeding generation is made by varying individuals from the pre-
ceding generation. There are two types of variation: mutation and crossover,
described below. Individuals are chosen for variation (one individual for muta-
tion, two individuals for crossover) by tournament selection with n = 3: three
individuals are randomly selected, and the one with the best fitness is chosen.
No two instances of the same individual are ever allowed in the same population.

Fig. 1. A directed graph representing a simple cascading design.

The cascading-design genotype Each genotype in a cascading-design popu-
lation is a directed graph containing the following:

1. A single START node.

2. A set of “phenotype nodes” P1...P4, each corresponding to an element of
the phenotype vector.

3. A set of “genotype nodes” G1...Gn, each associated with a weight and an
operation. The weight is a real number in the range [-10.0, +10.0]. The operation
is either + or x. There can be any number of genotype nodes, zero to infinity,
and they do not need to be numbered contiguously.

4. A set of directed edges from one node to another. The START node takes no
incoming edges. The phenotype nodes do not have outgoing edges. Otherwise,
for any two nodes a and b, there is either one edge from a to b, or there is no
edge from a to b.

A simple directed-graph genotype is shown in figure 1.

Genotype—phenotype mapping A directed graph as in the preceding section
maps to a phenotype vector of length n according to the following algorithm,
in which each node is assigned an activation level (a real number), or simply an
“activation” for short.

1. Let the START node have an activation of —10.0.

2. For each phenotype Pi, select the subgraph containing only the paths from
START to Pi. In the remaining steps, the only nodes and edges considered are
those within this subgraph.

3. For each genotype node Gj, assign it an activation equal to its operation
and weight applied to the sum of the activations of all of its inputs. For example,
if Gj has operation x and weight 2.0, and two incoming edges from nodes having

activations 1.0 and 2.0, then assign Gj an activation of 2.0 x (1.0 4+ 2.0) = 6.0. If
G7 has no inputs with activations, then do not assign it an activation.

4. When every phenotype node has an activation, assign Pi an activation
equal to the sum of the activations of its inputs, and continue with the next
phenotype node at step 2.

5. When all the P nodes have an activation, this yields the resulting pheno-
type: the ith element of the phenotype equals the activation of Pi. If there is no
path from START to a given node Pi, then the corresponding element of the phe-
notype does not get any number at all. Any part of a fitness function for which
that phenotype element is an argument, will contribute 0.0 to the total fitness
(see the experiments, below, for more about how the various fitness functions
are calculated).

The directed graph thus defines a set of single-argument functions, com-
posed of the simple functions specified by each genotype node. Applying each
of these functions to the argument —10.0 yields the phenotype; or in symbols,
x; = fi(—10.0) where x; is the ith element of the phenotype.

A fully worked example will clarify the process, especially regarding the way
cycles in the graph affect the results. The four tables below show each iteration
involved in calculating the activation of each of the four P nodes in the directed
graph of figure 1.

iteration START x—0.165 +5.892 P1
1 —10.0 none none none
2 —10.0 1.650 none none
3 —10.0 3.028 7.542 10.570

Note that the x—0.165 counted into the final sum for P1 twice because of
the cycle and because once it had an activation, it took two iterations to get
activations in all the genotype nodes.

iteration START x—0.165 P2
1 —10.0 none none
2 —10.0 1.650 1.650

This time, x—0.165 only counted into the final sum once, because +5.892 is
not on the path from START to P2.

iteration START P3
1 —10.0 none

The node x—3.788 does not count toward P3 at all, because x—3.788 is not
on the path from START to P3. Since there is no path at all from START to P3,
P3 gets no activation at all.

iteration START x—0.165 +5.892 P4
1 —10.0 none none none
2 —10.0 1.650 none none
3 —10.0 3.028 7.542 7.542

Note that even though node x—0.165 was assigned a new activation on the
last iteration, as in the calculation for P1, the new activation did not figure into

the activation for P4. This is because P4 only has one input, and only the current
activation counts.

Mutation For direct evolution, mutation is simple: a randomly chosen element
of the phenotype has a random number in the range [-0.2, +0.2] added to it.
The random number is uniformly distributed.

For cascading design, there are six possible mutations, shown in Table 1. The
probabilities are chosen to make it easier to exploit an existing cascade than to
make a new one. If the hypothesis is correct, it should be possible to evolve very
efficiently by making small quantitative adjustments—turning “knobs” —than by
modifying the structure of the genotype. But mutations to modify the structure
of the genotype are still possible, so populations can respond to selective pressure
favoring one kind of structure over another.

Because each mutation in direct evolution changes the phenotype only a small
amount, the number of mutations made to an individual in direct evolution is
randomly chosen to be from 1 to the number of elements in the phenotype
(uniformly distributed). In cascading design, however, only a single mutation
separates a parent from each of its offspring.

Table 1. Mutations to cascading designs and their probability weights.

Weight Name Description
8 jiggleRandomNode Add uniformly distributed random
number in [—0.2, 4+0.2] to randomly
chosen genotype node.

4 moveEdge Move an edge from one place in the
graph to another.

1 addEdge Add an edge where one does not
already exist.

1 removeEdge Remove an existing edge.

1 addNode Add a new node and give it one

incoming edge and one outgoing edge
to connect it with other, existing
nodes. Choose + or x randomly and
assign weight randomly, with uniform
distribution.

1 removeNode Remove a randomly chosen genotype
node.

Crossover For direct evolution, crossover consists of choosing each phenotype
element with 50% probability from each of the parents.

For cascading design, crossover works as follows. For each genotype id (G1,
G2, etc.), the offspring gets a copy with equal probability from either parent. All

Fig. 2. The a(z,a;r) function rewards matching a target number, but only within a
radius of sensitivity r.

edges from the parents are copied to the offspring, subject to the restriction that
their source and destination nodes must also exist in the offspring.

The A function Several fitness functions in the experiments below make use
of a special “inverted-U” function, plotted in figure 2. This function is defined
as:

0 if |lg—a|>r

Alz,a;r) = rejo—al\2

(T) if|x—al<r
where x is the number to be tested, a is a target number, and r is a radius of
sensitivity. Since the plot of the function looks more like an inverted V than an
inverted U, it has the name a. It rewards an exact match of the target, falls away
sharply for inexact matches, and gives no reward at all for numbers further than
r away from the target.

3.2 Experiment 1: Coordination gateway

In the first experiment, populations are subjected to a fitness function with a
“gateway”: if one condition is met (or nearly met), then points are awarded
for meeting the second condition. If the first condition is not met (or nearly
met), then no points are awarded for the second condition, even if the individual
meets that condition. Parameters affecting the absolute values needed to meet
the second condition change from epoch to epoch, but the first condition specifies
only a ratio and a range for the first two elements of the phenotype vector. Each
phenotype vector is four elements long.

The purpose of a gateway function is to simulate, in the simplest possible
way, an organism’s need to maintain a certain relation between some of its
traits while it seeks optimal absolute values for those traits as well as others. To
take a cartoonish example, it helps if your legs are the same length. Changing
environments may reward longer or shorter legs, but legs of unequal length
frustrate coordination so much that it’s impossible to make use of your other

capabilities to thrive, regardless of the environment. But having equal-length legs
is certainly not enough: your other traits—tooth size, intestine length, etc.—also
need to be able to evolve in response to selective pressure, without undermining
equal leg length.

Suppose that the environment rewards longer legs than the organism has. A
mutation that lengthens one leg without changing the length of the other would
be strongly selected against, because unequal leg length is strongly penalized.
Since such an organism would likely not be viable, there would be no opportunity
in a future generation to get a second mutation, and therefore no opportunity
to bring the other leg up to the same length as the first.

So, organisms that are able to change the lengths of both legs equally by
a single mutation will be much more evolvable than organisms that organisms
whose genomes are structured so that changing the length of each leg requires a
separate mutation. These organisms are always generating offspring with longer
legs as well as offspring with shorter legs, so, as the environment changes to
sometimes favor longer, sometimes shorter legs, some of the offspring will have
an advantage. These organisms will also be able to take advantage of other
variations in the environment as they come, if their genomes are set up to vary
other traits while leaving leg length unchanged.

Number of runs: 80; epochs per run: 40; generations per epoch: 20; population
size: 40; mutation/crossover: 90%/10%.

Fitness function The exact fitness function applied in this experiment is as
follows. Each epoch, two constants, c¢12 and cs4, are randomly chosen in the range
[+1.0, +10.0]. The total fitness is calculated from two partial fitness functions,
wy and ws, explained below.

wy = A(|zy — 22],0;0.1) +
s(xy —1) + s(x2 — 1)

where 1 and x5 are the first two elements of the phenotype, A is the function
defined in section 3.1, and s is a sigmoid function with slope of 10.0 at x = 0.
Thus w; is a measure of how closely x; and x5 equal each other. Since the radius
of sensitivity is 1.0, no points are awarded for equality if |27 — 22| > 0.1. Each
s function awards up to 1 point for the phenotype element being greater than
1.0. So, wy falls in the range [0.0, 3.0].

wg = 10a(|z1 — ¢12/,0;6.0) +
10a(]z2 — ¢12],0;6.0) +
10a(|zz — (c34 — 2)],0;6.0) +
10A(|z4 — c34],0;6.0)
In words, wy rewards up to 10 points for each of x; and zo approximating cio
and up to 10 points for each of x3 and x4 approximating cs4, except that the

target for zg is always 2 less than x4. The radius on the a function is 6.0, so
even very inaccurate values are rewarded.

The total fitness is:
w = A(wy,3.0;1.0) - wy

So, the total fitness is between 0.0 and ws, depending on how close wy is to
its maximum. Because the radius of sensitivity is 1.0, if w; < 2.0 then w = 0.

3.3 Experiment 2: Invariant ratio

In this experiment, a target phenotype is randomly chosen each epoch, with the
restriction that the ratio between each element and the next is always 2. For
example, a possible target phenotype in this experiment is [1.07,2.14, 4.28, 8.56].

The closeness of a given element of the phenotype is measured by the a

function:

K3
where z; is the ith element of the phenotype and y; is the ith element of the
target. So, fitnesses are always within [0.0,4.0].

The fourth element of the target phenotype, y4, is always chosen to fall within
the range [5.0, 10.0]. This ensures that the first two elements aren’t indistinguish-
ably close to zero.

Number of runs: 80; epochs per run: 40; generations per epoch: 20; population
size: 40; mutation/crossover: 100%/0%.

4 Results

4.1 Experiment 1: Coordination gateway

As figure 3 shows, the best fitnesses of the last generation of each epoch progres-
sively increased for roughly the first 12 epochs. The variance in the best fitness
decreased up to epoch 40.

As expected, direct evolution did not improve from epoch to epoch. Direct
evolution often reached the last generation of an epoch with a best fitness of
0.0, because it never got the first two phenotype elements to equal (“both legs
the same length”). Consequently, it often saw little or no fitness gradient. When
it did happen upon a phenotype with 1 = zs, it was able to hill-climb, but
not very quickly or steadily. Many generations had a lower best fitness than the
previous generation.

After a few epochs, cascading design was able to consistently “pass through”
the gateway and hill-climb x1, 22 without destroying the relationship between
them, and also hill-climb 3, z4 without undermining x, xz5. For cascading de-
sign, the first generation of nearly every epoch (after the first few) began mostly
with graphs that made phenotypes with z; = x5. So, cascading design started
in the sweet spot of the fitness landscape, which otherwise must be searched
for without benefit of a gradient. For the first few epochs of each run, though,
cascading design often produced graphs with zero fitness in every generation.
But once a cascading-design population found graphs that generated xz; = x5,

40 T T T T T T T

casl
o 30} T =
oS T T
£
E3 20 A -
8 L/
35 /
® 10+ 4
0_ 1 1 1 1 1 1
5 10 15 20 25 30 35 40
epoch
40 T T T T T T Idirect
o 30 4
(I)N
85
E% 20| -
—_ O
n C
[ONO]
o0
® 10| 4
0
5 10 15 20 25 30 35 40
epoch

Fig. 3. Best fitnesses in the last generation of each epoch of the “coordination gateway”
experiment. Error bars show one standard deviation above and below the fitness.

most populations from that point on consisted mostly of graphs that preserved
that property. Very few generations had a best fitness worse than the previous
one.

Figure 4 shows a directed graph from epoch 38, generation 20 of one run,
when the fitness function had ¢19=>5.554, ¢34,=8.572. It generates the phenotype
[5.496, 5.496, 6.586, 8.804] and has a fitness of 38.813, the best of its generation.

Note that since P1 and P2 both take their only input from the same node,
varying any number in the genotype will leave P1 and P2 equal. Most geno-
types that evolve after a few epochs in the “coordination gateway” experiment
have this property. Most beneficial mutations in this experiment varied all four
phenotype elements but left P1 and P2 equal.

Note also that varying the node x-5.701 adjusts the relationship between
P3 and P4, while varying any of the four genotype nodes above it modifies all
four phenotype nodes but preserves the relationship between P3 and P4.

The more-complex graph in figure 5 has similar properties. This occurred in
epoch 15, generation 11 of the same run. In that epoch, the fitness function had

Fig. 4. A directed graph from the “coordination gateway” experiment. Varying any
number leaves P1 = P2.

¢12=1.077, c34=3.818. The resulting phenotype is [13.790, 13.790, 1.649, —3.349],
with a fitness of 9.444, 30th (out of 40) in its generation.

The graph in figure 5 illustrates a common feature of many graphs that
evolved in both experiments: genotype nodes occur in chains or well-connected
communities that provide many mutation targets, each of which varies the same
“global” parameter of the phenotype nodes of direct relevance to the fitness
function. Thus, the probability is very high that any mutation will preserve
coordinations that have proven crucial in previous evolution.

Crossover tended to be valuable in early epochs, but in later epochs tended
to produce catastrophic results. Cartesian Genetic Programming (CGP) often
uses mutation exclusively, because crossover tends to be disruptive (Miller, 2011,
pp. 29-30). CGP programs are cascading designs quite similar to the directed
graphs used in the experiments described in this paper.

4.2 Experiment 2: Invariant ratio

Similarly to Experiment 1, cascading design became progressively better at
evolving until leveling off around epoch 15; see figure 6. As expected, direct
evolution did not improve from epoch to epoch.

The graphs generated by cascading design often had about twice as many
nodes in them as in Experiment 1, but about half of the nodes were inactive;
see figure 7. This graph comes from epoch 40, generation 20 of a run (the last
generation of the last epoch), when the target phenotype was [1.049, 2.097, 4.194,
8.389]. It generates a phenotype of [1.145, 2.130, 3.892, 8.370], with a fitness of
3.575, the best of its generation.

Fig. 5. A more-complex directed graph from the “coordination gateway” experiment.

“

This graph displays a structure typical of most successful graphs in the “in-
variant ratio” experiment: most genotype nodes affect all phenotype nodes si-
multaneously, but the number of interacting genotype nodes tends to increase a
little bit from left to right.

The cluster of highly connected active genotype nodes is easy to explain:
it embodies the invariant ratio of 2.0 between successive elements in all target
phenotypes. Changing a genotype node will tend to alter all four phenotype
nodes while preserving the ratios between them.

5 Conclusions

The results establish that cascading designs respond to an indirect selective
pressure to favor structures that evolve faster, when exposed to a variety of
fitness functions that reward an invariant kind of coordination in the phenotype.

In effect, the structures of the genotypes, as opposed to the numbers in the
genotype nodes, serve as a memory of previous fitness functions. The mathe-
matical structure of the fitness-function space leaves a mark on the structure of
the surviving genotypes, distinct from the constants that vary from one fitness
function to the next.

Contrary to the usual difficulties with non-locality in a genotype-phenotype
mapping, the cascading designs ezxploited non-locality to move more quickly and
more directly through the phenotype space than is possible by hill-climbing the
phenotypes directly.

Contrary to the behavior usually found in NK models, the fitness landscape
appeared to become less rugged for the cascading designs.

best fitness
at generation 20

0 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40
epoch
4 T T T T T T |direCt
3+ .

best fitness
at generation 20

0 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40

epoch

Fig. 6. Best fitnesses in the last generation of each epoch of the “invariant ratio”
experiment. Error bars show one standard deviation above and below the fitness.

Fig. 7. A directed graph from the “invariant ratio” experiment.

Bibliography

Altenberg, L. (1994). The evolution of evolvability in genetic programming.
Advances in genetic programming 3, 47-74.

Benton, M. J. and B. C. Emerson (2007). How did life become so diverse?
the dynamics of diversification according to the fossil record and molecular
phylogenetics. Palaeontology 50(1), 23-40.

Cavalli-Sforza, L. L. and M. W. Feldman (1976). Evolution of continuous varia-
tion: Direct approach through joint distribution of genotypes and phenotypes.
Proceedings of the National Academy of Sciences 73(5), 1689-1692.

Clune, J., J.-B. Mouret, and H. Lipson (2013). The evolutionary origins of
modularity. Proceedings of the Royal Society b: Biological sciences 280(1755),
20122863.

Gavrilets, S. (1997). Evolution and speciation on holey adaptive landscapes.
Trends in ecology & evolution 12(8), 307-312.

Hogeweg, P. (2012). Toward a theory of multilevel evolution: long-term informa-
tion integration shapes the mutational landscape and enhances evolvability.
In Evolutionary Systems Biology, pp. 195-224. Springer.

Kashtan, N. and U. Alon (2005). Spontaneous evolution of modularity and
network motifs. Proceedings of the National Academy of Sciences of the United
States of America 102(39), 13773-13778.

Kauffman, S. A. (1969). Metabolic stability and epigenesis in randomly con-
structed genetic nets. Journal of Theoretical Biology 22(3), 437-467.

Kirsten, H. and P. Hogeweg (2011). Evolution of networks for body plan pattern-
ing; interplay of modularity, robustness and evolvability. PLoS computational
biology 7(10), €1002208.

Miller, J. F. (2011). Cartesian genetic programming. Springer.

Rothlauf, F. and M. Oetzel (2006). On the locality of grammatical evolution.
Springer.

Smith, T., P. Husbands, P. Layzell, and M. O’Shea (2002, March). Fitness
landscapes and evolvability. Fvol. Comput. 10(1), 1-34.

Wagner, G. P., M. Pavlicev, and J. M. Cheverud (2007). The road to modularity.
Nature Reviews Genetics 8(12), 921-931.

