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ABSTRACT. This paper explicates two notions of emergence which are based on two
ways of distinguishing levels of properties for dynamical systems. Once the levels are
defined, the strategies of characterizing the relation of higher level to lower level proper-
ties asdiachronicandsynchronic emergenceare the same. In each case, the higher level
properties are said to be emergent if they are ‘novel’ or ‘irreducible’ with respect to the
lower level properties. Novelty and irreducibility are given precise meanings in terms of
the effects that the change of a bifurcation or perturbation parameter in the system has.
(The same strategy can be applied to other ways of separating levels of properties, like the
micro/macro distinction.)

The notions of emergence developed here are notions of emergence in aweaksense:
the higher level emergent properties we capture are alwaysstructural properties (or are
realized in such properties), that is, they are defined in terms of the lower level properties
and their relations. Diachronic and synchronic emergent properties are distinctionswithin
the category of structural properties.

0. INTRODUCTION

Writing in the heyday of what has come to be known as ‘British Emergen-
tism’, Samuel Alexander suggested that

the emergence of a new quality from any level of existence means that at that level there
comes into being a certain constellation or collocation of the motions belonging to that
level, and this collocation possesses a new quality distinctive of the higher-complex. [. . . ]
To adopt the ancient distinction of form and matter, the kind of existent from which the
new quality emerges is the ‘matter’ which assumes a certain complexity of configuration
and to this pattern or universal corresponds the new emergent quality. (1920, 45, 47)

This can be taken1 as characterizing a notion of an emergent property as
a property that is possessed by a whole, or configuration, of constituent
parts such that none of the parts have that property on their own and that
the property is characteristic of this (kind of) configuration. In other words,
emergent properties, on this view, appear to coincide with what more re-
cently has been called structural properties:P is astructural(higher-level)
property iffP is the property of having proper partsa1, a2, . . . ,an , such
that there are lower-level propertiesP1(a1), P2(a2), . . . , Pn(an) and the
parts stand in relationR(a1, a2, . . . ,an) (Kim 1998, 84). Such aP is ‘new’
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in the sense that none of the properties of the parts,Pi (i = 1, . . . ,n),
is identical with it;P is characteristic of the configuration of the parts
ai because it depends on the specific relationR in which the parts stand.
Furthermore,P can obviously be equipped with causal powers which are
different from the causal powers of any of thePi . Putting three 3 kg
pieces of metal together results in a configuration with the ‘new’ property
of weighing 9 kg with different causal powers than the individual pieces
had.

Emergentists, however, do not tolerate a case like this as an example of
an emergent property. Usually such a property would be labelled a ‘result-
ant’ property. How do we distinguish emergent from resultant properties?
One way is to spell out the ‘novelty’ of emergent properties as their being
unpredictable, unexplainable, or irreducible (in some sense): a description
of the lower level properties and their configuration will not be sufficient
to allow us to predict or derive the new higher-level properties, or explain
how they resulted from their bases, or reduce them to these bases. Note that
this condition, which presumably is violated in the 9 kg-case, could still be
compatible with the definition of a structural property as given. Lets call
this “weak emergence” (Bedau 1997) or the “innocent” view of emergence
(Chalmers 1996, 378, n. 41).

Emergentists have usually set the standards somewhat higher, though.
A structural property, even if we grant it to be unpredictable or irreducible
(in some sense), will still be nothing ‘over and above’ (to use a charac-
teristic emergentist phrase) the property of a set of parts configurated in a
certain way; its causal powers will not be different from the causal powers
the configuration has in virtue of the parts being configured in this way.
Thus, one could argue that emergent properties should supervene on the
structural properties of wholes such that the causal powers of the former
are different from the causal powers of the latter. This is ‘strong emer-
gence’. The trouble with strengthening the notion this far is, as Kim has
argued, that the strongly emergent properties get involved in an intolerable
causal competition with their structural base properties (e.g., Kim 1999,
31–3).

The task of this paper is to explicate a notion of weak emergence for
physical properties. I would like to show, in a first step, that we can make
good sense of a distinctionwithin resultant or structural properties: we
can differentiate those properties which are ‘novel’ from those which are
‘merely resultant’. I suggest a way of spelling out what it is that makes
the property of weighing 9 kg amerely resultantproperty of the lower-
level properties of three pieces of metal, and what makes the dynamic
behaviour of a heartnovelwith respect to the behaviour of an undamped
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harmonic oscillator and why the heart-like behaviour is not reducible to
the ideal oscillator behaviour. Thus, even if we accept the restriction to
structural properties, I argue, we can reconstruct a sense ofdiachronic
or evolutionaryemergence. In a second step I propose a reconstruction
of a notion ofsynchronic emergencealong similar lines which satisfies
many of the traditional desiderata without introducing strongly emergent
properties.

Everything here is physical; I am not trying to analyze the emergence
of non-physical properties out of a physical basis. In fact, a classic strategy
of making the notion of emergent properties less mysterious and more pal-
atable – even to logical positivists – , was to show that such properties are
actually quite common in the domain of the physical sciences (e.g., Feigl
1958, 414f.). Recently this strategy has been applied again by a number of
authors (Humphreys 1997; Newman 1996; Wimsatt 1996). I shall look at
some of these views on emergence and argue that the various requirements
set up for emergent properties – in particular, novelty and irreducibility –
can be satisfied in fairlysimpleand common systems in physical science
if we avail ourselves of some of the tools of dynamical systems theory.
My claim is that the requirements for emergent properties have natural and
fairly precise counterparts in this part of physics and that a unified account
of these requirements becomes possible.

1. LEVELS OF PHYSICAL PROPERTIES, TYPES OF EMERGENCE

The criteria for emergent properties I take from the literature as more or
less canonical are: (i) novelty of the properties in a system, (ii) that the
properties result from ‘essential interactions’ of constituent parts of a sys-
tem, and (iii) that the laws governing the properties be irreducible to laws
about lower-level properties (cf., for instance, Stephan 1992; Humphreys
1996; Kim 1999). I’ll concentrate on (i) and (iii); condition (ii) is briefly
discussed in Appendix I.

Before the requirements can be implemented, we need to specify the
way in which a hierarchy of levels of properties is to be identified such
that we can extend talk of, e.g., biological or psychological properties – as
higher-level properties – being emergent with respect to physical – lower-
level – properties, to properties within the physical realm alone. Most
frequently levels of physical properties have been distinguished accord-
ing to mereological relations; among the possibilities in this domain, the
most common one is to separate amacrophysical (higher) level from a
microphysical (lower) level.
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The mereological level distinction is relevant for the case ofsynchronic
emergence of properties; I will later adopt a version of it – a separation
of system and sub-systems – in Section 3. Fordiachronic emergence,
however, the relevant distinction is between the properties of a system at
one time and those at a later time. The system at a time I describe by
the variables used in dynamical systems theory: some set of ‘generalized
coordinates’ – position and momentum – , which take on a sequence of
values as time passes, a sequence represented as a trajectory in the sys-
tem’s phase space portrait. In addition to the coordinates we need one
or more ‘control parameters’ which specify features of the system, like
friction, which are not assumed to be determined by the system’s internal
dynamics. The phase space trajectories express thebehaviourof the sys-
tem. For instance, a behavioural property of a damped oscillator is that its
motion gradually winds down and ends in a rest state while an undamped
oscillator has the property of continuing its motion indefinitely. We could
express things perhaps more precisely as follows: The property of having
its motion wind down (call it ‘N ’, a second-order property) can be ‘func-
tionalized’ as the property of a system showing such and such long-term
behaviour, given such and such input; we then find a structural (first-order)
property which ‘realizes’N , namely, the property of being a system with
its variables and parameters arranged in the way characteristic of a damped
harmonic oscillator.2 We can say that the behaviour of the system at a time
is emergent with respect to the system at an earlier time if some para-
meter in the base has changed its value slightly during the time interval
and the later behaviour is ‘novel’ compared to the behaviour of the old
system and irreducible to it. This is evolutionary or diachronic emergence
of properties. The general strategy in developing this notion within the
framework of dynamical systems theory is to compare two systems which
are connected through a small change in the base properties such that the
‘old’ system is an unperturbed version of the ‘new’, perturbed system, and
find out whether thisquantitativelysmall perturbation of the base leads to
qualitativelynew behavioural properties.

In Section 3, in order to reconstruct a notion of synchronic emergence,
I will apply the same strategy to a system atone time, now dividing the
levels mereologiclly into properties of the whole system and properties of
sub-systems.
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2. DIACHRONIC EMERGENCE IN A DYNAMICAL SYSTEM

2.1. Novelty

Novelty is probably the most common as well as the most elusive of
the conditions for emergent properties. That a property should be novel
in order to count as emergent is usually motivated by pointing out that,
e.g., acquiring a new value for a property like ‘weighing 10 kg’ instead
of ‘weighing 9 kg’, is not enough for this ‘new’ property to qualify as
emergent. The property of having mass, the determinable, has been there
all along; only its determinates changed. ‘Novelty of propertyP in object
x’ is thus contrasted with ‘P is a determinate of a determinablep such
that the constituent parts ofx have determinates ofp different fromP ’. I
will illustrate with the following example which will serve throughout as a
paradigmatic case of the application of dynamical systems theory.

Consider as our system a damped nonlinear oscillator, realized, for
instance, by a triode circuit involving a nonlinear resistor with a cubic
voltage-current characteristic. Let the amplitude of the oscillations,x(t),
be given by van der Pol’s equation

x′′ − η(1− x2)x′ + x = 0(1)

with x′ = dx/dt andη is a parameter measuring the strength of the damp-
ing term−(1− x2)x′. For large amplitudesx this factor becomes positive,
thus keeping the oscillations bounded; for small amplitudes the term is
negative (‘negative friction’) and thereby excites the oscillatory movement.
Systems described by equations of the van der Pol type are therefore some-
times called ‘self-exciting’, even though ‘negative friction’, of course,
means the injection of energy from outside the system.3 Equation (1) is
equivalent to a system of first-order differential equations:

x′1 = x2(2a)

x′2 = η(1− x2
1)x2− x1(2b)

which are convenient for constructing phase space portraits of the system
with x1 andx2 as phase space coordinates.

Suppose the damping could be reduced to zero (η = 0). We would then
have an undamped harmonic oscillator with the familiar phase portrait of
a system of concentric ellipses (Figure 1).

From whatever initial conditionsx1, x2), you start the system, it will
oscillate such that it periodically passes through these same conditions. In
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Figure 1.

Figure 2.

the language of dynamical systems theory: the system has as its equilib-
rium point a ‘center’ at the origin (x1 = 0, x2 = 0). If we gradually turn
on the damping, the system will still show oscillations (Figure 2).

Now, however, the oscillations have a ‘limit cycle’, that is, from
wherever you start the oscillator (arbitrary initial conditionsα andβ, ex-
cluding the rest statex1 = x2 = 0)), the system will tend towards a unique
periodic behaviour, the cycle shown in the figure as a dashed closed curve.
Such limit cycle behaviour is characteristic of many systems in nature, and
one of the early applications of the van der Pol equation was in modelling
the limit cycle behaviour of the heart.

Clearly, this system has the same basic determinables in the undamped
and in the damped regime, in particular, position(x1) and momentum (x2).
Only the succession of values which these determinables take on changes.
The fact that the damping increases from zero to a finite value must not
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be taken as indication that a new determinable (viz., damping) has been
introduced into the system. Nothing hangs on the particular value of zero
for η. The kind of qualitative change in behaviour we are interested in
occurs in general at a ‘critical value’ of a parameter, whether this is zero or
some other value. Although no new determinables have been introduced
into the set of base properties of the system compared to the base with
η = 0, the limit cycle behaviour of the oscillator in the damped regime is
a novelproperty, a feature which distinguishes the system with damping
qualitativelyfrom the system without damping.

This feature of novelty of a property is a traditional ingredient in the
notion of emergent properties and is captured in our framework by the
fact that the phase space portraits in Figures 1 and 2 are ‘topologically
inequivalent’: no smooth deformation will transform the set of trajectories
of Figure 1 into those of Figure 2, even though, for small enough damping,
the trajectories of the damped system can bequantitativelyvery close to
those of the undamped system. In other words, the oscillator is ‘structur-
ally unstable’ around the critical value of the control parameterη; small
variations of the parameter (perturbations of the system) will lead toqual-
itativelydifferent behaviour. At the critical value ofη the system undergoes
a ‘bifurcation’. Conversely, if the phase space portrait stays qualitatively
the same under perturbations of the dynamics, i.e., small variations in the
value of the control parameter, the system is ‘structurally stable’.4

We then have, in the language of dynamical systems theory, the fol-
lowing picture for what happens when a ‘novel’ property appears in the
diachroniccase (Rueger, manuscript):

A system with base properties A, characterized by a value of a control
parameterp, under slight variation of the parameter around its bifurcation
value, turns into a system with base propertiesA∗, which shows qualit-
atively different behaviourB∗ than the original system with behaviourial
characteristicB. The original system with{A,B} I call the reference sys-
temfor the system with{A∗, B∗}. A propertyb ∈ B∗ in a system{A∗, B∗}
is ‘novel’ if

(1) reference systems{A, B} with basesA different fromA∗ only in
the value of the control parameterp, do not haveb; and
(2) the behaviour of{A∗, B∗} in which b manifests itself (in the
phase space portrait) is qualitatively different from, or topologically
inequivalent to, the behaviour of{A,B}.

Thus, the novel property of the van der Pol oscillator withη > 0
considered above would be ‘having a limit cycle’, a feature missing from
the oscillator withη = 0. Contrast the evolution of the system fromη =
0 to a slightly different, positive value forη with the evolution of the
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system in a different parameter regime, say fromη = 0.5 to a slightly
higher value: There is a clear sense in which the first parameter change
(around the bifurcation value) is accompanied by novel behaviour even
though, of course, the behaviour of the system does change through the
second parameter modification as well (the period of the limit cycle, for
instance, will change slightly). Although the behaviour in each case can be
regarded as a structural property of the system (or as supervening on such
a property), it is obvious that the second change leads to a merely resultant
property while the first transition generates a novel property.

Note that the notion of novelty is defined as a relation – novelty with
respect to a reference system – and that it is a relation between systems
at different times ({A,B} and {A∗, B∗}) rather than a relation between
properties of a system at one time. It is also important to note that even
though the relation of being topologically inequivalent, or qualitatively
different, is symmetric, the symmetry is broken by choosing one system
as a reference system.

A related way of phrasing requirements for novelty – or, in this case,
emergence – is Wimsatt’s condition of ‘violations of aggregativity’ (Wim-
satt 1976, 1996; Bechtel and Richardson 1992). This notion is supposed
to capture the intuition that “the whole is more than the sum of its parts”
without making any claims, according to Wimsatt, about the properties
of the whole not being reducible to properties of, and laws about, the con-
stituent parts. An emergent property, for Wimsatt, is a property of a system
which is dependent on the mode of organization of the system’s parts, how
they are aggregated into the whole. Properties which are invariant against
(small) changes in the modes of aggregation are non-emergent. In order
for a system propertyP to count as emergent,P has to violate some or all
of the following conditions of aggregativity:

(i) P is invariant under rearrangements of parts of the system or replace-
ments with “relevantly equivalent” parts;

(ii) P is “qualitatively similar” to the property exhibited by the system
when parts are added or subtracted;

(iii) P is invariant under decomposition and reaggregation of parts;
(iv) there are no “cooperative or inhibitory interactions” involvingP

among the parts of the system.

It should be clear how the notion of structural stability is able to capture
Wimsatt’s robustness or invariance against modifications in the mode of
aggregation of the system’s parts. If we choose, for instance, according to
condition (i), in the van der Pol oscillator case as control parameter the
damping, we can consider small variations of the parameter as a result
of parts of the system (resistor, capacitance, etc.) being replaced by similar
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parts. If the system’s phase space portrait stays qualitatively the same under
such perturbations, the system’s property under consideration satisfies the
aggregativity condition (i). Failure of structural stability means violation
of aggregativity and hence emergence (in Wimsatt’s sense) of some novel
property in the system. What our framework adds to Wimsatt’s – besides
greater generality – is a criterion for qualitative similarity, that is, a way
of telling when a system property, represented in the system’s phase space
portrait, is invariant or not.5

2.2. Nonreducibility

The appearance of novel properties in a dynamic system can be shown
to be connected with a sense of nonreducibility of the new property to
the properties of the reference system. Non-reducibility, besides novelty,
has been another traditional ingredient in notions of emergence. The ques-
tion of reducibility will be phrased in terms of descriptions of, or theories
about, the properties of the systems and a notion of reduction as a relation
between such descriptions or theories has to be chosen. We take a fairly
liberal approach, not as demanding as deducibility of one theory from
another (as in Nagel-type reductions). We use a notion of reduction that, as
Nickles put it, is common to “physicists and mathematicians, in contrast
to most philosophers” (Nickles 1973, 182) who usually have focussed on
deriving the less general from the more general theory, thereby ‘reducing’
(in the philosopher’s sense) the former to the latter. The physicist’s sense of
reduction, labelled ‘reduction2’ by Nickles, is the inverse: the more general
theory is said to reduce to the less general theory in the limit of a certain
parameter. Thus, a theory or theory part which we assume to be formulated
as a function of variable(s)x and parameter(s)p, 2′(x; p), reduces to
another theory or theory part2(x; p = 0) if

lim
p→0

2′(x;p) = 2(x;p = 0),

under an appropriate choice of parameterp for the limit andfor all val-
ues ofx (for which 2′ is defined). More precisely, the solutions to the
equations of motions of2′, in the limit of p → 0 (or some other suitable
value), shouldconverge uniformly(not just pointwise) to the solutions of
the equations of2, where we setp = 0. Special Relativity Theory (2′),
for example, is reducible in this sense to Classical Mechanics (2) because
2′ goes smoothly over into2 in the limit of ‘small velocities’,(v/c)2→ 0
(cf. in particular Batterman 1995, 1997; Berry 1994; Primas 1983, ch. 6).
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Thus, the expression for relativistic momentum reduces uniformly to the
formula for classical momentum:

lim
ν2

c2
→0

m0ν√
1− ν

2

c2

= m0ν

wherem0 is the rest mass. Note that if2′ is not reducible to2 in this
way, then there will also be a failure of (Nagel-) reduction in the sense of
a deduction of2 from2′.

It is sometimes claimed that the limit-notion of reduction is applicable
only to theories within the same level – ‘intralevel reductions’ – while
the model fails to account for ‘interlevel reductions’, e.g., the reduction
of Thermodynamics (macro-level) to Statistical Mechanics (micro-level)
(cf. Wimsatt 1976, 216f.). I think this is mistaken. Although, given the
micro-macro-level hierarchy, the example of Special Relativity Theory
and Classical Mechanics would count as a case of intralevel reduction,
the interlevel relation between Thermodynamics and Statistical Mechanics
can just as well be fruitfully studied with the limit-notion. In fact, the
usual treatment of the relation is in terms of the ‘thermodynamic limit’
of Statistical Mechanics, a singular limit, which allows at least a partial
understanding of how thermodynamic properties ‘emerge’ from Statistical
Mechanics in the limit.6

The cases I discuss, a damped nonlinear oscillator and the undamped
harmonic oscillator, would be classified as intralevel rather than interlevel.
The ‘direction’ of emergence is therefore not given by the micro-macro
hierarchy of levels but rather has to be determined by other means: in the
case of diachronic emergence, the direction is given by the direction of
time; for synchronic emergence (Section 3, below) the direction will be
determined by the decomposition of a given system into subsystems. In
either case the more general theory describes novel properties compared
to the less general theory; starting with the undamped harmonic oscillator
(either as the temporally earlier system or as the subsystem of a given sys-
tem) we see the emergence of a novel property upon varying the damping
parameter slightly.

The question of reducibility in the case of diachronic emergence takes
on the form: Can a description of the system{A∗, B∗} (corresponding to
2′) be reduced to a description of the reference system{A,B} (corres-
ponding to2), i.e., does2′ smoothly go over into2 in the appropriate
limit of the control parameter?
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2.2.1. The lightly damped van der Pol oscillator
The van der Pol oscillator, described by Equation (1), serves again as our
example of a dynamical system. Forη = 0,van der Pol’s equation reduces
to the equation for a simple harmonic oscillator (see Figure 1) which is
easy to solve. We could expect that forsmalldamping we could describe
the system by ‘perturbing’ theη = 0 solution, that is, adding ‘small’ cor-
rections to the simple harmonic oscillator such that the general solution
would be an expansion around the (η = 0)-solution,xη=0(t), in powers of
η:

x(t) = xη=0(t)+ ηξ1(t)+ η2ξ2(t)+ · · ·(3)

If this could be done, i.e., if the van der Pol oscillator could be treated as a
‘regular perturbation’ of the simple harmonic oscillator, we would have

lim
η→0

(solution forη� 1) = (solution forη = 0)(4)

for all values of the independent variablet , and our condition for reducib-
ility, a uniform limit relation between the solutions, would be satisfied.

Inserting the expansion (3) into Equation (1), however, leads to a power
series expansion forx(t) which is asymptotic for fixedt as η → 0
(i.e., the difference between the function-to-be-approximated and each
partial sum of the series is smaller than the last term included in the
sum, for small enoughη), but which breaks down for large enough t. We
arrive at an expansion for the amplitude of the formx(t) = cosωt +
constη(t cosωt) + · · ·, where the first term is the solution for the un-
damped harmonic oscillator with frequencyω; the second term, however,
is unbounded fort → ∞ and thus destroys the asymptoticness of the
expansion.7 The appearance of such ‘secular’ terms is due to the non-
linearity of the system: the frequency of the oscillations of the nonlinear
problem depends on the amplitude while there is no such dependence in the
linear (undamped harmonic oscillator) problem. Expanding the solution
around the linear solution imposes the amplitude-independent frequency
on the system while in fact the nonlinear friction will slowly change the
frequency.

Condition (4) thus cannot be satisfied in this case; theη-limit is not
uniform – the case turns out to be a ‘singular perturbation’ problem. The
theory of the lightly damped van der Pol oscillator cannot be reduced to
the theory of the undamped case. The property of having a limit cycle
therefore is novel in the sense defined above as well as irreducible to the
properties possessed by the reference systems, the undamped oscillators.



308 ALEXANDER RUEGER

We can see here an important correspondence between the notion of
novelty as structural instability and the notion of irreducibility as singular
limit relation: The radically different behaviour of the perturbed system
compared to the behaviour of the unperturbed system, which gives rise to
the singular limit relation between the two, is nothing but an expression
of the fact that the unpertubed system is structurally unstable; any slight
perturbation of this system will lead to systems which behave qualitatively
differently. Thus, the regular perturbation approach breaks down in these
cases; we have irreducibility of the perturbed to the unperturbed system. In
short,every singular perturbation problem implies a structurally unstable
(unperturbed) systemand thus a transition to ‘novel’ behaviour (of the per-
turbed system) (cf., for instance, Guckenheimer and Holmes 1983, ch. 4).
In the following I will therefore no longer explicitly distinguish between
irreducibility and novelty.

We have the following result for the lightly damped van der Pol oscil-
lator: The behaviour of the system just past the bifurcation value of the
damping parameter is ‘novel’ in the sense defined above; furthermore the
description of this qualitatively new behaviour is not reducible, in the sense
defined above, to the description of the behaviour of the pre-bifurcation
system (the reference system). As a further illustration of the notion of
emergence suggested here I mention the case ofphase transitions, e.g.,
from gaseous to liquid in non-ideal gases or from the paramagnetic to
the ferromagnetic phase in ferromagnets. Around the critical (or bifurc-
ation) value of the control parameter (here the temperature), very small
variations in the parameter value lead to qualitatively different behaviour
and properties of the system (cf. Rueger, manuscript).

3. SYNCHRONIC EMERGENCE

If we retain the basic constraint on our discussion – that the weakly emer-
gent properties supervene on structural properties and can be functional-
ized – how can we modify the account of diachronic (weak) emergence
into a reconstruction of synchronic (weak) emergence? I suggest distin-
guishing two levels of properties, a higher and a lower, such that the
candidates for weakly emergent property status supervene on the higher
level properties, which in turn are to be understood as structural properties,
i.e., they are properties which a configuration of lower-level properties has
in virtue of the fact that these properties (or their carriers) are configurated
in a specific way. We can say, in functionalist fashion, that some property
N supervening on the higher level properties is ‘realized’ by them.N is
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emergent if it is novel or irreducible, in the sense defined above, with
respect to the properties at the lower level.

Frequently, at least in philosophical discussions, the property levels
are distinguished as macro and micro levels.N , a property carried by the
macro level, is emergent if the description of the system at the micro level
does not have the description of the system at the macro level as a uniform
limit (with some suitable parameter), that is, if the macro realization of
N is not reducible to the micro level. In line with the illustrations used
so far, however, I shall not employ the micro/macro level distinction but
rather introduce a different kind of distinction which is also used widely
in science. The almost exclusive focus of philosophical discussions on
micro and macro levels I believe to be a prejudice because there are other,
scientifically equally important strategies of separating levels in a system
which deserve some attention. I shall come back briefly, however, to the
traditional micro/macro case in Section 4.

Suppose we have a theory which describes the behaviour of a sys-
tem with the property of interest,N . We take this theory as describing
a realization, at the higher level, of that property. Now suppose further
that the theory is subjected to a perturbation expansion like in Equation
(3): we decompose the full solutionsx(t) of the equations of the theory,
for small values of a perturbation parameterη, into a main contribution
from an unperturbed sub-system and disturbances, of (hopefully) decreas-
ing magnitude, of this main contribution from other factors present in the
system:

x(t) = xη=0(t)+ ηξ1(t)+ η2ξ2(t)+ · · ·
The ξi(t), besides the sub-systemxη=0(t), define the lower level of the
property hierarchy. The system, described at the higher level byx(t), is
decomposed into a configuration of sub-systems at the lower level which
all contribute, more or less, to the higher level behaviour.

Taking a system’s actual behaviour, the higher-level properties, and
analyzing it as the result of the behaviour of an unperturbed system –
the lower-level properties – together with the influence of ‘small perturb-
ations’ onto this behaviour, is not an unusual or arbitrary choice of a way
of decomposing a system into levels. In fact, there have been claims that
this way of analyzing systems is the typical research strategy of modern
science since Galileo (Cartwright 1989; cf. Rueger and Sharp 1998). How-
ever exaggarated such claims may be, what Galileo called the ‘resolutive’
approach in many contexts characterizes what we mean by ‘understanding’
how a system works. In the perturbation approach, we abstract away the
‘core’ from the ‘total’ behaviour of a system.8 The knowledge of such core
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factors we then use in our attempts to account for the behaviour of other
systems with different total behaviour: we try to find different arrange-
ments of the factors which will reproduce the observed behaviour of these
systems.

What significance does it have if the higher and lower level (descrip-
tions) of a system – system and sub-systems – are related in the way in
which theories are related insingular perturbation problems? Recall the
discusson of diachronic emergence: there we analyzed the case where a
description of a later state of the system does not reduce to a description
of an earlier state. Now, for synchronic emergence, we have to study the
case where a description of the system at the higher level does not reduce
to a description at the lower level. That means, we have to distinguish
those systems where limη→0 x(t) = xη=0(t), uniformly for all t , or, more
explicitly, limt→0 limη→0 x(t) = limη→0 lim t→0 x(t), from those systems
where these limit relations between the levels do not hold. Only in the
former case (theregular case) can we assume that the behaviour of the
full systemx(t) will not stray far from the behaviourxη=0(t) for any t ,
that is, thatxη=0(t), the main factor at the lower level, is a uniformly valid
approximation ofx(t) which can be improved upon by considering more
terms in the perturbation expansion. When the uniform limit relations are
violated (the singular case),x(t) can be very different fromxη=0(t) in
some range oft-values and the lower-level main factor cannot be said
to uniformly approximate the full behaviour of the system. In the latter
case, we have synchronically emergent properties at the higher level, in
the former merely resultant properties.

For instance, if we take Special Relativity Theory to be the description
of the system at the higher level, the realization of the property of having
relativistic momentum would be described bym0v(1 − v2/c2)−1/2. We
can expand this expression, for ‘small velocities’, in a power series in the
parameter(v/c)2 < 1; the first term in this expansion is the description in
terms of Classical Mechanics,m0v. On this way of distinguishing levels,
the relativistic system has a ‘classical sub-system’ at the lower level. As
we know, the descriptions satisfy the uniform limit condition and therefore
m0v is (in the specified parameter regime) a uniform approximation of the
full relativistic system. (In systems in which(v/c)2 is not ‘small’, classical
momentum, of course, will no longer be a ‘core realization’ of relativistic
momentum. The realization relation, in our reconstruction, thus turns out
to be ‘structure-specific’, restricted to systems which are in the appropriate
regime of the perturbation parameter.9)

For synchronic emergence we consider the relation, at a given time,
between the behaviour of the ‘main part’ of the system, if it were operating
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Figure 3.

on its own, isolated from the rest of the system (the perturbations), and the
behaviour of thetotal system, main part and perturbations together, i.e., the
actual behaviour. If the latter is novel (in our sense) compared to the main-
part behaviour and hence non-reducible (in our sense) to this behaviour,
we have synchronic emergence. Examples of this type of emergence are,
of course, provided again by the van der Pol oscillator discussed above.
In the small damping regime, for instance, the main sub-system would be
the undamped harmonic oscillator withxη=0(t), the behaviour of which is
not a qualitatively good approximation to the limit-cycle behaviour of the
full system. With respect to the perturbation decomposition of the system
into levels, the limit-cycle behaviour would qualify as a a synchronically
emergent property.

3.1. The heavily damped van der Pol oscillator

We now take the van der Pol oscillator in the regime of heavy damping
(η � 1). If we increase the damping strength, the oscillations of the system
become jerky or ‘almost discontinuous’ (Figure 3).

While we have, for small damping, oscillations that are quantitatively
close to the behaviour of an undamped harmonic oscillator, large damping
generates a very different type of behaviour, characterized by an alterna-
tion of ‘slow’ motion of the system along BC, DA, . . . and ‘fast’ motion
along CD, AB, .. . . . It is as if the system builds up tension for a while
and then suddenly relaxes (‘relaxation oscillations’). For largeη we can-
not treat the damping as a small perturbation of the undamped behaviour.
Equation (1) has to be transformed in order to apply a perturbative method
of solving it (cf. Grasman 1987, 55ff. or Mishchenko and Rozov 1980, ch.
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Figure 4.

1). Define a new parameterε = 1/η2 � 1, change the time variablet in
Equation (1) toτ = t/η, and write

εx′′ − (1− x2)x′ + x = 0(5)

wherex′ now denotesdx/dτ . The equivalent first-order equations become

x′1 = x2(6a)

εx′2− (1− x2
1)x2 − x1 = 0(6b)

This will give us the description of the oscillator forε → 0, corresponding
to η→∞. Call it theory2. The caseε = 0, i.e.,

x′1 = x2(7a)

(1− x2
1)x2− x1 = 0(7b)

is the case of purely ‘slow’ motion, the description of the ‘slow’ sub-
system. Call it theory2′. The phase portrait in the large damping regime
looks like Figure 4 (with letters corresponding to letters in Figure 3).

Without actually solving the equations we can see that the condition
for reducibility, limη→02 = 2′, cannot be expected to be satisfied; the
solutions of Equations (7a,b), i.e., forε = 0, will in general be different
from the solutions of Equations (6a,b) in the limitε → 0 (but 6= 0). This is
so because the original Equation (5) is a second-order differential equation
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which turns into a first-order equation forε = 0; solutions of the latter
can, for instance, satisfy only one initial condition, not the two conditions
required for the second-order equation. In fact, the solutions forε = 0 give
us the ‘slow’ trajectories of the system in phase space along DA and CB
which are not periodic. Forε > 0 (but� 1) the solutions are radically
different since they describe periodic motion with a change between ‘fast’
and ‘slow’ sections. The slow sub-system, described by2′, is not a regular
or continuous limit of the system described by2; 2′ is a singular limit of
2. We cannot analyze2, for ε → 0, as2′ plus small corrections as we do
in the case of the regular limit of Special Relativity Theory, i.e., Classical
Mechanics. The system’s behaviour cannot be reduced to the behaviour of
the slow sub-system.

What happens at pointsA and C where the actual phase trajectory
leaves the slow manifold DACB and switches to fast motion almost parallel
to the x1-axis? Consider the point A withx2-coordinatex∗2. If we take
x2 as the control parameter, we can see thatA is a bifurcation point: for
x2 < x∗2 there aretwo equilibrium points for the system (i.e., points at
which εx′2 = 0; cf. Equation (6b)), a stable one on DA and an unstable
one on AC; atx2 = x∗2 (point A) the two equilibria merge into one, and
for x2 > x∗2 no equilibria exist. This change in the number of equilibrium
points when the system passes throughA constitutes a switch to a qual-
itatively different evolution: lacking a stable equilibrium aroundA, the
system ‘jumps’ to the available stable equilibrium point forx2 = x∗2 atB.
The bifurcation point corresponds to the point where the system switches
from slow to fast motion.

One could object at this point that in asingular perturbation problem,
like the van der Pol oscillator in both damping regimes, we just have
to reject the decomposition of the full system according to the regular
perturbation expansion ofx(t); that is, that the system has not been de-
composed correctly and that an improved analysis will identify a main
sub-system which will be different from the undamped harmonic oscillator
or the ‘purely slow’ sub-system (7a,b) and which will satisfy the uniform
limit condition. To what extent and at what costs this can be done, I shall
discuss in the next section.

4. LEVELS OF DESCRIPTION

In order to find the structure underlying the ‘full theory’ in a singular
perturbation problem, e.g., the van der Pol equation in a certain regime
of damping, we can use refined perturbative approaches which allow us
to trace the emergence of those features in the higher level (‘full’) de-
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scriptions which are novel with respect to the features of the lower level
(‘reduced’) descriptions.

Due to the mathematical complexity of the van der Pol case, it is
easier to see the main point in an example involving an algebraic equation
rather than the differential equations we have been discussing. Consider
the quadratic equation (Hinch 1991, 4f.):

εx2+ x − 1= 0,(8)

with two distinct solutions or roots,x(1) andx(2), which we can write in
expanded form as

x(1) = (1/2ε)[−1+ (1+ 4ε)1/2] = 1− ε + 2ε2− · · · ,
and

x(2) = (1/2ε)[−1− (1+ 4ε)1/2] = 1/ε − 1+ ε − 2ε2 + · · ·
Suppose we don’t have these solutions and we therefore treat (8) for small
ε as a perturbation problem. Our expectation is to find the approximate
solutions of (8) as corrections of the solutionx0 of the ‘unperturbed’ (or
reduced) problem, i.e.,x − 1= 0:

x = x0 + εx1+ ε2x2 + · · ·(9)

The reduced equation, however, has onlyonesolution,x0 = 1, and hence
the expansion (9) will approximate onlyx(1). Thus, we have a singular
perturbation problem because limε→0 x

(2) 6= x0. Taking the limit to the
reduced problem causes the loss of one solution,x(2), which, for ε = 0,
“evaporates off” tox = ∞. (This loss of a solution is similar to what
happens when the order of a differential equation drops in going toε = 0,
like in the case of the heavily damped van der Pol oscillator, Equations (6)
and (7) above.)

What happens is that only forx(1) is the εx2 -term in (8) of ‘small’
influence and we are justified in neglecting it. The other solution,x(2),
is of a different order of magnitude such that for it theεx2 -term cannot
be ignored. To recover this second root, therefore, we introduce a new
variable, or rather, a different ‘scale’ for the variablex; we transform

x = x∗/ε,
which means that, asε → 0, the new variable ‘shrinks’ in comparison with
the old variable:x∗/x → 0. This introduction of a new, larger scale forx
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allows us, so to speak, to catch the second solution before it evaporates off
to infinity. Forx∗, the original Equation (8) becomes

x∗2 + x∗ − ε = 0,

which can now be treated as a regular perturbation problem for smallε.
The solution isx∗ = −1−ε+· · ·, or, in the old variable,x = −1/ε−1+· · ·.
We have recovered the lost rootx(2).

What is novel at the level of the full Equation (8), compared to the fea-
tures of the reduced Equation (9), is the existence of the second solution.
It is ‘invisible’ if we approach the full equation in terms of the (small)
scale characteristic of the reduced equation. A new (large) scale is neces-
sary to ‘see’ the novel feature. No single scale of variable is sufficient
to characterize completely the solution of the problem. Both scales, the
‘small’ x-scale and the ‘large’x∗-scale, are necessary. This is typical of
singular perturbation problems which often are approached with ‘multiple
scales’. To return to our main example: In the case of the van der Pol
oscillator with small damping, we need (at least) two scales for the time-
variable, a ‘fast’ time which characterizes the oscillations (the variablet

in the original equations), and a ‘slow’ time (a variableT = ηt) which
describes the scale on which the amplitude gradually changes under the
influence of the nonlinear damping, that is, the time scale on which the
system approaches the limit cycle (Hinch 1991, 116ff.). Two processes are
operating simultaneously at different time scales and the regular perturb-
ation approach (which leads to a breakdown of the asymptotic expansion
for the amplitude) is not able to identify and discriminate these processes.
In the heavy damping regime of the van der Pol oscillator, two different
time scales, fast and slow, were also obvious and can be used to generate
asymptotic solutions to the dynamical equations (Hinch 1991, 97ff.).

Thus, if we were to reject, as mentioned at the end of the last section, the
regular perturbation expansion of the solutions of the van der Pol equation
for small damping as leading to a misidentification of the main sub-system
and adopt instead a multiple scale expansion, we find a structure underly-
ing the full equation which is different from the ideal harmonic oscillator
structure identified through the regular perturbation expansion. But the
new structure is characterized bytwo scales at which the dynamics of the
system unfolds while the regular perturbation expansion used thesame
time scale (t) for all sub-systemsxη=0(t), ξ1(t), etc. This means, using
the multiple scale approach will not allow us to characterize the higher
level features in terms of lower level properties of the system; applying
the multiscale expansion, we are unable to remain within the lower level
(characterized by time scalet) alone. The singular perturbation approach
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generates, on its own, different levels of descriptions. Our aim, to correctly
identify the main sub-system of the van der Pol oscillator atone level
below the full system, has not been achieved. We have to conclude, as
before, that the higher level properties are synchronically emergent with
respect to the lower level properties.

In the cases considered so far, the scales needed for the asymptotic
analysis were generated by the singular perturbation analysis of the dif-
ferential (or algebraic) equations themselves. If we consider examples
of micro-macro-level relations, we encounter again, as mentioned above,
singular limits which require asympotic analyses along the lines just
discussed. Now, however, the scales of interest are specified by ‘the geo-
metry’, that is, by the way we distinguish micro and macro according to
their typical sizes (cf. Hinch 1991, 126). Assuming that we are dealing
with solid macroscopic bodies that have micro structures in the form of
periodic arrangements of molecules, the problem can be posed as follows:

If the period of the structure is small compared to the size of the region in which the system
is to be studied, then an asymptotic analysis is called for: to obtain an asymptotic expansion
of the solution in terms of a small parameterε which is the ratio of the period of the
structure to a typical length in the region. In other words, to obtain by systematic expansion
procedures the passage from amicroscopicdescription to amacroscopicdescription of the
behaviour of the system. (Bensoussan et al. 1978, v)

Introducing the macro scale will reveal the characteristic features of mac-
roscopic bodies, e.g., the ‘effective’ properties like elasticity of a medium
with a specific micro structure like a periodic lattice of atoms.

This is of relevance for a famous example in the philosophical dis-
cussions of functionalism, Putnam’s case of the round peg of 1 inch
diameter which does not fit through a square hole in a board of 1 inch
diagonal extension (Putnam 1975, 295ff.; slightly modified). Putnam com-
pares two possible explanations of this fact, a microscopic one in terms of
the arrangement of molecules in peg and board, etc. (‘the microstructural
deduction’), and a macroscopic one in terms of the geometrical relations
between the macroscopic objects involved. The interesting observation to
be made is that the ‘microstructural deduction’ is an instance of the kind
of asymptotic analysis considered above. We can expect a singular limit
relation between the micro and macro descriptions and thus the emergence
of novel features at the higher (macro) level which require the introduction
of a new scale into the lower level (micro) description.

The nonuniformity of the limit is the real reason for why the macro
description tells us ‘something different’ than the micro description, and
for why the former is not reducible to the latter – the macro description
is not a straightforward special case of the more general micro view. One
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extremely important service that the asymptotic expansion of the micro
description in terms of two different scales does for us is to make it clear
to what extent the macro description, the behaviour of the system at the
macro scale, is independent of, or insensitive to, the details of the system’s
behaviour at the micro scale. For instance, in calculating the effective
elastic moduli of a medium, it may turn out that these quantities, in a first
approximation, do not depend on the micro scale variables but only on
the macro variables. In the terms that are familiar from the philosophical
discussion: the ‘multiple realizability’ of the macro description, which Put-
nam mentions as its main advantage over the micro story, is an immediate
outcome of the asymptotic procedure described.10

5. CONCLUSION

I have explicated two notions of emergence which are based on two ways
of distinguishing levels of properties for dynamical systems. Once the
levels are defined, the strategy of characterizing the relation of higher
level to lower level properties as diachronic or synchronic emergence is the
same. In the diachronic case we simply compare the behavioural properties
of the system at a time (lower level) with those at a later time (higher
level). In the synchronic case we decompose the system (or, rather, its
behaviour: the higher level) into a combination of lower level sub-systems
(or, rather, the behaviour generated by them) which are identified through
a perturbation analysis of the full system. In each case, the higher level
properties are said to be emergent if they are ‘novel’ or ‘irreducible’ with
respect to the lower level properties. Novelty and irreducibility are given
precise meanings in terms of the effects that the change of a (bifurca-
tion or perturbation) parameter in the system has. (The same strategy can
also be applied to other ways of separating levels of properties, like the
micro/macro distinction.)

The notions of emergence developed here are notions of emergence in
a weaksense: the higher level emergent properties we capture are always
structural properties (or are realized in such properties), that is, they are
defined in terms of the lower level properties and their relations. Dia-
chronic and synchronic emergent properties are distinctionswithin the
category of structural properties. They do not describe properties with
causal powers ‘over and above’ the causal powers structural properties
have in virtue of being configurations of their lower level constituents.11

Emergentists may find such weak emergence pointless (cf. O’Connor
1994). But weak emergence, I believe, is all we get if we try to explicate
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a notion of emergence that is neither so strong that it has no application at
all, nor so weak that it renders more or less every property emergent.

APPENDIX I: ESSENTIAL INTERACTION

Emergent properties are often supposed to result from ‘essential interac-
tions’ of constituents of a system, not from the mere fact of having the
constituents collected in a heap (cf. Humphreys 1996, or Wimsatt’s con-
dition (iv) above). This condition for emergent properties can be given
an intuitively appealing interpretation within the framework of dynamical
systems theory – at first glance, at least.

A dynamical system withN degrees of freedom (which needs 2N gen-
eralized coordinates to describe it) is said to be (completely)integrableif
it hasN ‘first integrals of motion’ for all initial conditions and parameter
values. Intuitively this means that if a system is integrable, we can always
find a representation of it (by transforming the original description of the
system) that describes a collection ofN non-interactingor uncoupledcon-
stituent systems. Thus, we could define an interaction of components of
a system asnot essentialif there is a way of transforming the description
of the system into the description of a system of ‘free’ components which
change independently of each other, i.e., without interacting.Essential in-
teractionoccurs in a system if the actually interacting components cannot
be replaced by an equivalent system of non-interacting parts.

Note that on this suggestion, essential interaction is not as closely
connected to nonlinearity of a system as is sometimes thought: there
are nonlinear systems which are integrable and hence would lack essen-
tial interaction. (Non-integrability of a dynamical system, however, is a
necessary, though not sufficient condition for the occurrence of chaotic
behaviour in a system.) The problem with this proposal is that the notion
of integrability has several quite distinct meanings which I suppressed in
the characterization above. Traditionally, integrability was defined only for
Hamiltonian systems, that is, dissipative systems would automatically be
excluded from the range of applicability of the concept. Such a restriction
would obviously not be useful in capturing the intuitive sense of essen-
tial interaction. More recently, integrability has been applied (along the
lines of the above definition) to dynamical system in general, dissipative
or not; furthermore, degrees of integrability have been distinguished from
complete integrability. The coordinate transformations that are admissibile
under such wider notions of integrability include ‘nonlocal’ transform-
ations which are, for our purposes, somewhat opaque because it is not
clear in what sense a nonlocal coordinate transformation does not impli-
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citly involve interaction between components. The question, therefore, is
whether there are technical senses of integrability which are neither too
restrictive nor too wide in order to capture the intuitive notion of essential
interaction.12

APPENDIX II: STRUCTURAL STABILITY

We say that a dynamical system6, considered as the transformationssp:
D→ D on the system’s phase space of initial conditionsx at some initial
time into solutionssp(x) of the dynamical equations at other times, istopo-
logically equivalentto another system6∗ with sp:D∗ → D∗ if there exists
a homeomorphismh (a one-to-one mapping continuous in both directions)
of the phase space trajectories of the first system onto the trajectories of
the second such that the diagram

Sp
D −→ D

h

∣∣∣∣ ∣∣∣∣ h

D∗ −→ D∗
Sp∗

commutes, that is:

h[sp(x)] = sp∗ [h(x)].

In other words: two systems are equivalent in this sense if the change from
sp to sp∗ , introduced by the variation of the control parameter p, can be
compensated by a transformation (h) of the coordinates. A system6 is
structurally stableif every system ‘close’ to6 is topologically equivalent
to6. (The notion of closeness has to be spelled out in whatever topology is
imposed on the phase spaces. Usually one postulates that a mapf is close
to a mapg if g belongs to anε-neighbourhood off such that every map
in that neighbourhood agrees withf and its derivatives up toε > 0.)13

In the van der Pol case, the corresponding diagram would not commute
if 6 were the system without damping (η = 0) because in any neighbour-
hood of6 (η slightly different from 0) there will be systems which are
topologically inequivalent to6 because they have limit cycle behaviour,
a pattern of trajectories which cannot be generated from the phase space
portrait of6 by a mere transformation of coordinates.14
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NOTES

1 But there is controversy about this: see O’Connor 1994; McLaughlin 1992; Stephan
1992.
2 On how to think of properties in physics, cf. Wilson 1993, 75ff., and Wilson 1985 for
further critical discussion of functional properties.
3 For an overview of the applications of van der Pol’s equation as well as for methods of
solving it, see Grasman 1987, ch. 1.
4 For an informal introduction to structural stability, see, e.g., Saunders 1980, 17–21. A
somewhat more technical description is given in Appendix II.
5 For a proposal of how failure of structural stability is connected to failure of explain-
ability, that is, for how the unexplainability requirement for emergent properties can be
reconstructed in the present framework, see Rueger (manuscript).
6 Cf. Liu 1998; for the singular limits of wave optics and of Quantum Mechanics, see
Batterman 1995.
7 Even though, for anyfixedt , the expansion converges. Cf. Hinch 1991, 116.
8 In a recent paper on the bifurcation behaviour of equations modelling lasers, for in-
stance, the authors perform a (singular) perturbation analysis of the full set of equations,
labelling the (ε = 0)-equations as describing “a fast subsystem” of the whole system
(Khibink et al. (1998, 298)).
9 This is similar to the notion of ‘structure-restricted realization’ in Kim 1992, 5–8.
10 More on this in Batterman (forthcoming).
11 Cf. similar remarks in Bedau 1997, 394f., although Bedau’s notion of weak emergence
is quite different from mine.
12 For an overview of the various senses and applications of integrability, see Tabor 1989,
especially ch. 8.
13 Adapted from Arnold 1983, ch. 3; cf. also Guckenheimer and Holmes (1983, 38f.).
14 For helpful comments on earlier versions of this paper I thank R. W. Batterman, A.
Hüttemann, M. Matthen, J. Oltean, N. Shanks, and W. D. Sharp.
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