
CGI2015 manuscript No.
(will be inserted by the editor)

Progressive compression of generic surface meshes

F. Caillaud1,2 · V. Vidal1,3 · F.Dupont1,3 · G. Lavoué1,2

Abstract This paper presents a progressive compres-

sion method for generic surface meshes (non-manifold

and/or polygonal). Two major contributions are pro-

posed : (1) generic edge collapse and vertex split opera-

tors allowing surface simpli�cation and re�nement of a

mesh, whatever its connectivity; (2) a distortion-aware

collapse clustering strategy that adapts the decima-

tion granularity in order to optimize the rate-distortion

tradeo�.

Keywords Progressive compression, surface mesh,

non-manifold, polygonal.

1 Introduction

The amount of data describing 3D models does not stop

increasing even though several applications (e.g. mobile

device visualization, video games) are constrained by

memory and/or processing speed. This situation may

lead to communication or visualization latencies. The

progressive compression of 3D models is a possible so-

lution to this latency problem. The principle is to com-

press the 3D mesh while enabling its progressive decom-

pression in the form of several Levels of Detail (LoD).

In contrast of the so-called single-rate compression, pro-

gressive compression allows to quickly visualize a draft

of the 3D model and then to re�ne it until the origi-

nal mesh is retrieved. This o�ers more comfort to users

and, sometimes, a quality control of the intermediate

meshes.

Existing methods for progressive compression have

mostly focused on 2-manifold and triangular meshes.

Only few methods are able to progressively compress

1Université de Lyon, CNRS
2INSA-Lyon, LIRIS UMR 5205
3Université Lyon 1

non-manifold surface meshes and none provide a generic

compression of surface meshes, whatever their mani-

foldness or their faces degree. In this context, we present

a lossless progressive compression method suited for

non-manifold and/or polygonal meshes. Our approach

is inspired by the seminal work from Popovi¢ and Hoppe

[9] and introduce generic edge collapse and vertex split

operators. The obvious additional cost of this genericity

is balanced by an e�cient local control of the distortion,

which leads to excellent results at low and medium bi-

trates.

The rest of this paper is organized as follows : we

introduce the previous work in Section 2. Then, our

approach and its features are described in Section 3.

Finally, Section 4 presents our results as well as com-

parison with the state of the art.

2 Previous work

Progressive compression of 3D models has been intro-

duced by Hoppe [3]. He proposed a simpli�cation op-

erator : the edge collapse. The main drawback of his

method is its very �ne granularity (di�erence between

two consecutive LoDs) which allows a strong control of

the distortion but penalizes the compression rate. More-

over, like most of further progressive compression ap-

proaches [1,6,4,10], it only deals with triangular man-

ifold meshes.

Only few methods are able to compress polygonal

manifold meshes. Maglo et al. [5] presents a general-

ization of the valence-based algorithm from Alliez and

Desbrun [1] for this task.

Toward the progressive compression of non-manifold

meshes, almost nothing exists in the literature. Popovi¢

and Hoppe [9] adapted [3] for this purpose. We partic-

ularly set apart tree-based methods from Gandoin and



2 F. Caillaud1,2 et al.

Fig. 1 Progressive decompression of the Tractor model (polygonal non-manifold) at 3, 5, 10 bits per vertex and lossless.

Devillers [2] and Peng and Kuo [8], which are very e�-

cient at lossless rates but generate undesired quantiza-

tion e�ects at low and medium bitrates. These tech-

niques [2,8] handle non-manifold meshes but do not

allow any local control of the decimation and thus of

the distortion. Using a di�erent bottom-up clustering

strategy, Peng et al. [7] propose a progressive approach

which provides nice low bitrate results however it does

not guarantee to retrieve the lossless version. Further-

more, these techniques [9,2,8,7] are limited to triangu-

lar meshes.

In comparison, our method (1) handles both poly-

gonal and non-manifold meshes, (2) allows a lossless re-

trieval of the mesh and (3) allows a precise local control

of the decimation leading to excellent rate-distortion

performance at low and medium bitrates.

3 Generic progressive compression

3.1 Compression pipeline

We describe, in this section, our progressive compres-

sion pipeline handling polygonal non-manifold meshes,

i.e. every surface meshes.

We start by quantizing the mesh coordinates into

Q bits. Then the mesh is simpli�ed iteratively and the

removed geometry and connectivity data are encoded

into a compressed stream. This stream is structured so

as to permit the progressive decompression and recon-

struction of the original 3D model.

The simpli�cation step is realized with a set of edge

collapses (cf. Section 3.3.1) grouped in waves (cf. Sec-

tion 3.3.2) similarly to [10]. Each wave generates a LoD

of the 3D model. The best set of edges to be removed at

each iteration is selected using a metric (cf. Section 3.2)

and its size (i.e. the number of edges to collapse) is au-

tomatically chosen. During this simpli�cation, di�erent

types of data will be generated. Each type is encoded

using a speci�c arithmetic coder.

3.2 Edge selection

As explained above, each simpli�cation step decimates

the mesh by a set of edge collapses. The edges to be

collapsed are selected using a priority queue ordered

by a weight we associated to each edge e. The priority

queue is updated after each collapse. Our idea here is to

(1) select edge collapses that produce the less geomet-

ric error, (2) minimize the creation of dangling edges

(i.e. edges without incident faces) because they cause

losses of areas and (3) minimize the collapses of dan-

gling edges because they may lead to a drastic reduc-

tion of the bounding box. For that purpose, if e is a

dangling edge (case 3 above), we = diag + length(e),

if the collapse of e creates a dangling edge (case 2),

we = 2×diag+area(e), otherwise (case 1), we = dH(e).

diag is the bounding box diagonal length, area(e) is the

area loss ratio caused by the hypothetical collapse of e

and dH(e) is the symmetric Hausdor� distance between

the mesh before and after the hypothetical collapse.

This way, we give priority to case 1, then 2, then 3.

The number of edges to be collapsed in each wave

is critical. Indeed, if we select a very high number, then

a large distortion could be introduced. To adapt this

wave size, at the beginning of a wave we compute the

weights of all edges. Then we determine a threshold as

the average weight of these edges. Edges with weights

superior than this threshold are not collapsed in this

wave. This simple yet e�cient rule provides excellent

rate-distortion tradeo�s.

In order to avoid con�ict between two collapses dur-

ing the same wave, edges included in the patch (set of

incident faces) of an already selected edge, during the

current wave, cannot be selected afterwards.

3.3 Progressive encoding

3.3.1 Generic Edge Collapse

The mesh simpli�cation (resp. re�nement) is realized by

our edge collapse (resp. vertex split) operator on each

selected edge e. We introduce a generalisation of these



Progressive compression of generic surface meshes 3

operators to handle polygonal non-manifold local con-

�gurations. The edge collapse starts by removing the

triangular incident faces of e (Figure 2-a). It removes

Fig. 2 Di�erent steps of the generic edge collapse of an edge
e.

e (Figure 2-b), which reduces the degree of polygonal

incident faces of e. The operator then merges v and v′

(incident vertices of the removed edge e) in v without

forgetting to solve the now duplicated edges and faces

around v (Figure 2-c). Finally, v is displaced to the mid-

dle of the removed edge e.This new position is chosen

as we only need one displacement vector to deduct the

previous position of v and v′ (Figure 2-c).

3.3.2 Walk on mesh

Each simpli�cation wave is decomposed in two parts.

Firstly, edges are collapsed, in the order of the priority

queue, until the weight threshold is reached. After each

collapse, the priority queue is updated. Secondly, after

having collapsed all the edges of the current wave, a

spanning tree is build over each connected component

of the mesh, using a lexicographic order. Each spanning

tree starts on a �xed vertex. This vertex is randomly

chosen once on the original mesh since this choice does

not a�ect the simpli�cation. Each �xed vertex stays

during all the simpli�cation and, therefore, cannot be

removed (its incident edges can be collapsed anyway).

This walk on the mesh provides an ordering of the edge

collapses, thus an ordering of the vertex splits during

re�nement, for each simpli�cation wave.

This iteration is repeated until each connected com-

ponent is compound by only one vertex. This vertex is

the �xed vertex of the corresponding connected compo-

nent. This wave strategy avoid us to specify explicitly

the edges to collapse (in contrast to [9]) , which drasti-

cally reduce the generated information.

3.3.3 Connectivity and geometry encoding

In order to provides the needed information for the

mesh reconstruction, during each edge collapse, con-

nectivity and geometry information will be generated.

Firstly, the connectivity around e (i.e. its adjacent

faces and edges) is represented according to a general-

v’

v

e

v’

v

e

v’

v

e

v’

v

e

v’

v

e

v’

v

e

v’

v

e

v’

v

e

1.0 1.21.1 1.3

2.0 2.1 2.2 2.3

(a)

(b)

(c)

0 1 2 3

Fig. 3 Possible con�gurations around an edge e. (a) shows
the generated codes, (b) edges con�gurations and (c) faces
con�gurations.

ization of the connectivity cases from [9] (Figure 3). Ac-

tually, the di�erent con�gurations are coded the same

way (except for polygonal case 2.3) using the same

topological constraints to reduce redundancy.

Secondly, in order to preserve the face orientations

at reconstruction, if they cannot be determined, we en-

code the orientation of the removed faces using one bit.

Thirdly, in order to e�ciently encode the displace-

ment vector of v, we use its representation into a local

Frenet frame. This representation is not especially op-

timal for local non-manifold con�gurations, but consid-

ering that most con�gurations are locally manifold, it

still remains e�cient.

Finally, during each simpli�cation step, the span-

ning tree(s) allows to order this information so that the

decompression has the corresponding data for each ver-

tex to split. Obviously, we also need to specify which

vertices will be split along the tree(s). For this purpose,

during the construction, we encode a 1 if the visited

vertex is resulting of an edge collapse, otherwise we en-

code a 0. As we forbid edge collapse con�ict, we do not

encode a 0 if, at this state, we already encode a 1 for

an adjacent vertex.

4 Results

We compare our generic progressive compression algo-

rithm (GPC) with [8] (PK05) and [7] (PHK10).

Table 1 shows the mean error given by METRO

for di�erent meshes of various complexity (both man-

ifold and non-manifold). The data given by GPC are

compared with the available data of PK05 and PHK10

(computed from the models provided by the authors).

"N/A" values are due to early termination.

Figure 4 describes rate-distortion curves obtained

with GPC, PK05 and PHK10 for the Horse and Rabbit

models (triangular manifold) using MRMS metric. De-

spite a bit overhead due to the genericity of our method,



4 F. Caillaud1,2 et al.

Mesh(#v) Meth. 1.0 2.0 4.0 8.0 12.0 16.0

GPC 20.2 9.3 4.1 1.6 1.0 0.5
Horse PK05 31.9 19.4 10.2 3.3 0.9 N/A

(19,851) PHK10 19.0 12.8 5.1 3.3 1.6 1.1
GPC 5.3 2.4 1.1 0.6 0.3 0.2

Rabbit PK05 18.9 10.2 8.3 2.2 0.6 N/A
(67,039) PHK10 5.5 4.2 2.1 1.7 1.0 0.5

Tractor GPC 31.2 26.3 14.5 6.2 3.8 2.0
(27,251)

Skeleton GPC 19.0 11.9 10.6 7.3 5.5 3.8
(6,308)

Table 1 Table of comparison between GPC, PK05 and
PHK10 for di�erent bitrates. The mean error values are scaled
by 104.

the strong distortion control of GPC allows to obtain

very competitive results at low and medium bitrates.

Fig. 4 Rate-distortion curves of Horse and Rabbit measured
with MRMS metric. The MRMS values are scaled by 104.

We show, in Figure 1, di�erent LoDs of the Tractor

model to demonstrate the bene�t of our edge selection

strategy. Furthermore, we visually compare three LoDs

of the Skeleton model obtained with GPC, PK05 and

PHK10 at the same bitrate (Figure 5).

5 Conclusion

We have proposed a generic method for the progressive

compression of arbitrary surface meshes. This generic-

Fig. 5 LoDs of the Skeleton model at 8 bpv using PK05,
PHK10 and GPC compared to the original.

ity involves an additional cost in the case of lossless

compression. However, the strong distortion control al-

lowed by our edge selection strategy makes our algo-

rithm competitive at low and medium bitrates. As fu-

ture works, we plan to investigate a more perceptual

distortion control. We also plan to integrate progres-

sive texture encoding in our pipeline.

References

1. Alliez, P., Desbrun, M.: Progressive compression for loss-
less transmission of triangle meshes. In: ACM SIG-
GRAPH, pp. 195�202 (2001)

2. Gandoin, P.M., Devillers, O.: Progressive lossless com-
pression of arbitrary simplicial complexes. In: ACM SIG-
GRAPH, pp. 372�379 (2002)

3. Hoppe, H.: Progressive meshes. In: ACM SIGGRAPH,
pp. 79�93 (1996)

4. Karni, Z., Bogomjakov, A., Gotsman, C.: E�cient com-
pression and rendering of multi-resolution meshes. In:
IEEE Visualization, pp. 347�354 (2002)

5. Maglo, A., Courbet, C., Alliez, P., Hudelot, C.: Progres-
sive compression of manifold polygon meshes. Computers
& Graphics 36(5), 349�359 (2012)

6. Pajarola, R., Rossignac, J.: Compressed progressive
meshes. IEEE Transactions on Visualization and Com-
puter Graphics 6(1), 79�93 (2000)

7. Peng, J., Huang, Y., Kuo, C.C.J., Eckstein, I., Gopi, M.:
Feature oriented progressive lossless mesh coding. In:
Computer Graphics Forum, vol. 29, pp. 2029�2038 (2010)

8. Peng, J., Kuo, C.C.J.: Geometry-guided progressive loss-
less 3d mesh coding with octree (ot) decomposition. In:
ACM SIGGRAPH, pp. 609�616 (2005)

9. Popovi¢, J., Hoppe, H.: Progressive simplicial complexes.
In: ACM SIGGRAPH, pp. 217�224 (1997)

10. Taubin, G., Guéziec, A., Horn, W., Lazarus, F.: Progres-
sive forest split compression. In: ACM SIGGRAPH, pp.
123�132 (1998)


