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Abstract—In this paper, we present an evaluation
method of 3D-mesh segmentation algorithms based
on a ground-truth corpus. This corpus is composed of
a set of 3D-models grouped in different classes (ani-
mals, furnitures, etc.) associated with several manual
segmentations produced by human observers. We
define a measure that quantifies the consistency
between two segmentations of a 3D-model, whatever
their granularity. Finally, we propose an objective
quality score for the automatic evaluation of 3D-mesh
segmentation algorithms based on these measures
and on the ground-truth corpus. Thus the quality
of segmentations obtained by automatic algorithms is
evaluated in a quantitative way thanks to the quality
score, and on an objective basis thanks to the ground-
truth corpus. Our approach is illustrated through
the evaluation of two recent 3D-mesh segmentation
methods.
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1. INTRODUCTION

Mesh segmentation consists in decomposing a polyg-
onal surface into different regions (i.e. connected set of
vertices or facets) of uniform properties, either from
a geometric point of view or from a semantic point
of view. This operation has become a necessary pre-
processing step for many applications such as shape
modeling [1], compression [1], deformation [2], texture
mapping [3], etc.

According to recent states-of-the-art [4], [5], mesh
segmentation techniques can be classified into two cat-
egories: surface-type (or geometric) methods and part-
type (or semantic) methods. In the first case, the al-
gorithms are based on low level geometric information
(e.g. curvature [6]) in order to define segments (i.e.
regions) with respect to geometric homogeneity, while
in the latter case, the algorithms aim at distinguishing
segments that correspond to relevant features of the
shape, by following higher level notions such as defined
in human perception theory [7]. This kind of approach
is particularly suited for object animation / deformation
and indexing applications, where the decomposition has
to be meaningful.

In the literature, there exist a huge number of seg-
mentation algorithms for both approaches (surface-type

and part-type) allowing the processing of 3D-meshes
[4], [5]. For the first approach (surface-type) some tools
exist for quantifying the quality of the segmentation
however they are linked to some specific applications
like texture mapping [8] or medical imaging [9]. The fact
is that no automatic tool has been proposed to evaluate
segmentation algorithms (especially part-type ones) in a
general purpose context, although, this task is not only
necessary for researchers to compare a new algorithm to
those already existing, but also for users so as to choose
an algorithm and fix its parameters depending on the
problem to solve.

The question of the evaluation of these part-type
segmentation algorithms is quite critical, in order to
produce better methods. Whereas compression or recog-
nition algorithms are quite easy to evaluate thanks to
compression ratio or misclassification probability, this
task is far more difficult to handle for segmentation
(and particularly semantic segmentation). Typically re-
searchers exhibit some results for several models and
just point out why their results look “good”.

Attene et al. [5] have proposed some criteria like
the aspect of the boundaries (smoothness, length), the
hierarchical / multi-scale properties, the robustness, the
complexity and the number of parameters. However
these criteria rather judge some technical points than
the real quality of the techniques themselves. As it is
raised by the authors, the main problem is that the
objective quality of a segmentation of a given model
is quite difficult to define, since it depends on the
viewer’s point of view and knowledge. Moreover many
authors argue that a segmentation quality is theoretically
impossible to evaluate objectively because it depends
only on the desired application. Indeed the desired task
is of course of importance. For instance a structural
recognition application does not need the same segmen-
tation than a mesh simplification task. An alternative
solution, which was also suggested by Attene et al. [5]
is to compare the algorithm’s results with manual seg-
mentations produced by human subjects (i.e. a ground-
truth). The objective is thus to capture the semantic and
cognitive behavior of the user regarding 3D graphics.
It is obvious that this framework will not be suited
for evaluating the segmentations within certain specific
applications (medical, texture mapping, etc.). However
for many applications (e.g. animation) researchers aim to
obtain such semantic decomposition. Thus our objective



is rather to focus on the evaluation of such semantic
(i.e. part based) methods. This kind of ground-truth-
based evaluation was investigated in the field of 2D-
image [10]. Of course, the ground-truth can depend also
on the application.

This question of objective evaluation of segmentation
is the main motivation of this paper, which introduces
three main contributions. Firstly, we propose a ground-
truth corpus, composed of a set of 3D-models associated
with several manual segmentations produced by human
observers. Secondly, we propose some objective dissimi-
larity measures which provide a quantitative comparison
between two segmentations of a 3D-model. Thirdly,
we define an automatic protocol for the calculation of
an objective quality score for the evaluation of 3D-
mesh segmentation algorithms based on these objective
measures and on the ground-truth corpus.

This work is done within the framework of the
MADRAS project (3D Models And Dynamic models
Representation And Segmentation) supported by the
French Government Research Department. The ground-
truth corpus is available for download for the scientific
community, on the project website1.

This paper is organized as follows. In section 2, we
provide a review of the state-of-the-art of segmentation
evaluation. In section 3, we detail the construction of the
ground-truth corpus. In section 4, we define two mea-
sures that compute the discrepancy (i.e. the dissimilarity)
between two segmentations of a same object: a ground-
truth segmentation and that obtained by an algorithm
to evaluate, for instance, then we define an objective
segmentation algorithm quality score. In section 5, our
objective measures are firstly validated using the ground-
truth corpus, then we demonstrate the usability of our
whole evaluation protocol through the evaluation of
two recent segmentation methods [6], [11]. Section 6
concludes the paper.

2. STATE-OF-THE-ART OF SEGMENTATION
EVALUATION

Whereas almost nothing has been done by the scien-
tific community regarding 3D-mesh segmentation eval-
uation, several advanced works exist for the quality
assessment of 2D-image segmentation.

2.1 Evaluation of 2D-image segmentation

Zhang [12] offers a study on the different methods
proposed so far for evaluation of 2D-image segmenta-
tion. According to Zhang, the different methods can be
classified into three groups:
• Analytical methods: they directly treat the seg-

mentation algorithms themselves by taking into
account principles, requirements, utilities, complex-
ity, etc., of algorithms. Using analytical methods to
evaluate segmentation algorithm avoids a concrete

1http://www-rech.telecom-lille1.eu/madras/

implementation of the algorithm. However, the real
quality of these algorithms cannot be obtained by
a simple analytical study.

• Empirical goodness methods: they evaluate the per-
formance of the algorithms by judging the quality
of the segmented images themselves. To achieve
this task, a set of quality criteria has to be defined.
These criteria are established according to human
intuition about what conditions should be satisfied
by an ideal segmentation. However it seems dif-
ficult to establish quantitatively the quality of a
segmentation only by using such a priori criteria.

• Empirical discrepancy methods: in this kind of
methods, a set of reference images presenting the
ideal segmentation is first of all built. This set
of images which can be manually segmented by
experts of the domain, constitutes a ground-truth.
The purpose is to measure the discrepancy between
the reference segmentation and that obtained by
an algorithm to be evaluated. So, these methods
try to determine how far a segmented image ob-
tained by an algorithm is from one or several
reference images. A large discrepancy involves a
large segmentation error and thus this indicates a
low performance of the considered segmentation
algorithm.

The empirical discrepancy methods are the most pop-
ular for 2D-image segmentation evaluation [10], [13],
indeed they seem to be the most suited for a quantitative
evaluation as the measures of quality can be numerically
computed, and for an objective evaluation thanks to the
ground-truth.

Martin et al. [10] have proposed such a method to
evaluate image segmentation algorithms. They built a
public database containing ground-truth segmentations
produced by human volunteers for images of a wide
variety of natural scenes. They also defined a measure
based on the computation of refinement error of a
pixel between two segments (i.e. regions) containing this
pixel.

2.2 Evaluation of 3D-mesh segmentation

In the literature there exist some works proposing the
assessment of segmentation in a specific context. In the
MRI (Magnetic Resonance Imaging) field for example,
Gerig et al. [9] propose a tool that quantifies the segmen-
tation quality of 3D-images (volumetric images) includ-
ing different shape distance metrics such as maximum
Hausdorff distance, and mean/median absolute distance
between object surfaces. For texture mapping, Sander
et al. [8] introduce a metric based on the texture stretch
induced by the parametrization of the segmented regions
and allowing the evaluation of the segmentation quality.
More recently a set of technical criteria was proposed
by Attene et al. [5] but they rather fall in the empirical
goodness methods. Lastly, Berretti et al. [14] have
presented some experimental results which are based
on a ground-truth to validate their own segmentation
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algorithm. However, the ground-truth is not available on-
line and according to the authors it contains very simple
3D-models (surfaces of revolution, vases, etc.). Their
measure to compare two segmentations of a 3D-mesh
is also a simple one. It is based on the area of regions
and is not tolerant to refinement. Indeed the tolerance
to refinement is an important property since it allows
to distinguish between consistent and non-consistent
segmentations. We can notice that the proposed solutions
are either depending on the application context or do
not reflect the real quality of the techniques themselves.
Hence, the importance to propose a generic framework
allowing an objective evaluation of segmentation algo-
rithms.

3. GROUND-TRUTH CORPUS

We have created a ground-truth corpus available on-
line2 for 3D-mesh segmentation evaluation. This cor-
pus contains twenty 3D-models (as polygonal meshes)
grouped in five classes, namely animal, furniture, hand,
human and few-vertices. Each class contains four models
as illustrated in figure 1.

Fig. 1. From top to bottom line: animal, human, furniture, few-
vertices and hand classes.

The models come from the GAMMA3 database from
INRIA and from the Princeton Shape Benchmark [15],
which are both public 3D-model databases.

2http://www-rech.telecom-lille1.eu/madras/?page id=108
3http://www-c.inria.fr/gamma/disclaimer.php

Note that it was crucial for our corpus, to present a
high variety of models so as to be able to study properly
the different segmentation algorithm’s behaviors while
avoiding to privilege certain algorithms over others.

We have then conducted a large campaign of manual
segmentation with human subjects.

3.1 Tool for manual segmentation

In order to easily collect manual segmentations from
a wide range of people, we have used the MeshLab4

application; this software allows the processing of 3D-
meshes, providing a set of tools for editing, filtering,
inspecting, rendering and converting them. In particular
it allows an explicit segmentation of models using
colors.

Indeed, a virtual brush allows a human observer to
colorize each vertex of the mesh to segment. Each
segment (a set of vertices) is then distinguished from
others by its associated color.

Using this application, anyone can segment models
without having any prior skills in computer graphics.
Moreover to accelerate the coloring process (which
could be fastidious for complex models) and to make
it easier, we have developed a color propagation algo-
rithm allowing the user to only indicate the different
boundaries between the different segments; the whole
segments are then automatically filled by colors (see
figure 2). Basically with this tool, between 5 and 10
minutes are necessary for an observer to segment a 3D-
model.

Fig. 2. Automatic propagation of colors on the baby model. The
user just need to color the boundaries of the regions that he wants to
separate (left), our algorithm then automatically complete the coloring
(right).

3.2 Segmentation protocol

In order to obtain a lot of ground-truth segmentations
for the model corpus, we have made a large call to
volunteers. They have freely segmented the models and
no condition was imposed on the manner with which
they had to do this task. The models were randomly
assigned to each volunteer with a bias towards models
that had been already segmented several times. Figure 3
illustrates some models with one of their associated
ground-truth segmentation.

4http://meshlab.sourceforge.net/
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Fig. 3. Some ground-truth segmented models.

This ground-truth corpus is in a constant evolution in
terms of number of models and number of segmentations
per model. Having more than one segmentation per
mesh is very important since two observers do not
necessarily share the same opinion on the segmentation
of a model. This is due to the lack of rules that define
how to decompose an object into sub-objects: thus
each observer can segment at different granularities for
instance. Figure 4 illustrates an example of a 3D-model
segmented by two different persons. One can notice
that the first segmentation (on the left side) is nearly
a refinement of the second one (on the right side).

Fig. 4. Manual segmentations of the horse done by two different
persons.

The results presented in this paper have been gener-
ated using our current version of the ground-truth corpus
including 60 segmentations, 3 per model, done by 25
different subjects (staff members and PhD students from
University of Lille and Insa-Lyon).

4. FROM DISSIMILARITY MEASURES TO OBJECTIVE
QUALITY SCORE

The objective of such measures is to evaluate existing
and future segmentation algorithms in a quantitative
way and on an objective basis. This objective can be
achieved by measuring the dissimilarity between the
segmentations obtained by algorithms to evaluate and
those of the associated ground-truth.

4.1 Segmentation dissimilarity measures

As mentioned in the state-of-the-art section, in the
field of 2D-image, Martin et al. [10] have defined two
measures based on the computation of refinement error
of a pixel between two segments containing this pixel;
they have then applied them to evaluate the performance
of 2D-segmentation algorithms and have shown the
relevance of the obtained results.

Hence we have generalized their dissimilarity mea-
sures for 3D-mesh segmentation evaluation.

First of all, we formally define what is a segmentation
of a 3D-mesh.

According to Shamir [4], let M be a 3D-mesh, and
R the set of mesh elements; in our case these elements
are the vertices vi of M . A segmentation S of M is the
set of sub-meshes S = {M0, ...,Mk−1} induced by the
partitioning of R into k disjoint sub-sets of vertices.

Similarly to the 2D measure from Martin et al. [10],
we define the 3D local refinement error L3D. Let
S1 and S2 be two segmentations of a 3D-mesh M .
L3D(S1, S2, vi) is the local refinement error of a vertex
vi between S1 and S2 defined as:

L3D(S1, S2, vi) =
|R(S1, vi)\R(S2, vi)|

|R(S1, vi)|
(1)

Where the operator \ denotes the set differencing ,
|x| the cardinality of the set x, and R(S, vi) the region
in segmentation S that contains the vertex vi, i.e. the
subset of vertices corresponding to a sub-mesh Mj of
S containing vi.

This local refinement error produces a positive real
valued output that presents the ratio of the number of
vertices not shared between the first segment and the
second one.

The L3D is asymmetrically tolerant to refinement
since the error is null when segment S1 is a subset
(refinement) of segment S2.

We have to precise here that our measure consider
that a segmented region is a set of vertices. We could
have considered a segmented region as a set of facets
(indeed, both definitions exist). We have chosen this kind
of partitioning since it seems preponderant in the litera-
ture [4]. However, our measure could be easily adapted
to face-based methods; in that case the set differencing
operator (equation 1) should take into account some kind
of surfacic difference.

Given this L3D, there exist two ways to combine it
for all vertices into a global measure for the entire 3D-
mesh [10]: the Global Consistency Error (GCE) and the
Local Consistency Error (LCE).

The Global Consistency Error (GCE) forces all local
refinements to be in the same direction and is defined
as:
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GCE(S1, S2) =
1
N

min{
∑

i

L3D(S1, S2, vi),∑
i

L3D(S2, S1, vi)}
(2)

The Local Consistency Error (LCE) allows for differ-
ent directions of refinement in different segments of the
3D-mesh:

LCE(S1, S2) =
1
N

∑
i

min{L3D(S1, S2, vi),

L3D(S2, S1, vi)}
(3)

Where N is the number of vertices. For both the GCE
and the LCE, a value of 0 indicates a complete similarity,
whereas a value of 1 indicates a maximum deviation
between the two segmentations being compared. It is
clear that the GCE is a tougher measure than LCE since
LCE ≤ GCE.

It is important to note that these measures are based
on vertices and thus depend on the surface sampling.
Indeed, the regions that have a high number of vertices
will have a high effect on the consistency error whatever
their area. However we do not consider this surface
sampling dependence as a drawback since we suppose
that in a correctly modelized object, the number of
vertices well reflects the significance of the region.

Another important point to note is that there are two
degenerative segmentations that achieve a GCE and a
LCE score of zero: one vertex per segment, and one
segment for the entire mesh. This is due to the tolerance
of the measure toward refinement. However in prac-
tice, as further experiments demonstrate, this measure
has a quite good behavior, since we never meet such
degenerate cases in standard 3D-mesh segmentation
algorithms. Actually, the segmentations to be compared
must have numbers of segments sharing the same orders
of magnitude.

4.2 Quality score of a segmentation algorithm

GCE and LCE are dissimilarity measures between
two segmentation results of a same object. Using these
two measures, together with the ground-truth corpus, we
now define two quality measures for automatically rating
segmentation algorithms. These two metrics reflect the
global quality of the considered segmentation algorithm
when comparing its segmentation results to the whole
ground-truth corpus.

Let GCEM (gi, S) be the Global Consistency Error
applied to a model M between a ground-truth segmen-
tation gi and the corresponding segmentation S obtained
by an automatic algorithm to evaluate. The per-model
Global Consistency Error of a model M regarding a
certain segmentation algorithm is then:

GCEM =
1
n

∑
i

GCEM (gi, S) (4)

Where n is the number of ground-truth segmentations
associated to the model M .

Similarly, the per-model Local Consistency Error of
a model M is:

LCEM =
1
n

∑
i

LCEM (gi, S) (5)

Given these two measures (GCEM and LCEM ),
we define the Global Consistency Score (GCS) for the
algorithm to evaluate, that takes into account the N
models from the ground-truth:

GCS = 1− (
1
N

∑
i

GCEM ) (6)

And the Local Consistency Score (LCS):

LCS = 1− (
1
N

∑
i

LCEM ) (7)

Both of these Scores quantify the global similarity
between the results of the segmentation algorithm to
evaluate and the ground-truth rather than dissimilarity.
Hence they quantify the quality of the segmentation
algorithms. They lie in the range [0, 1] with value of 1
indicating a perfect quality and a value of 0 indicating
no correlation with the ground-truth.

5. EXPERIMENTS

We begin this section by validating our objective
measures using the ground-truth corpus, then we present
two segmentation algorithms [6], [11] and evaluate them
using our whole evaluation protocol.

5.1 Validation of segmentation dissimilarity measures

One way to attest the validity of our 3D segmentation
dissimilarity measures, is to show that they provide low
values when comparing ground-truth segmentations of
a same object – namely consistent segmentations – and
high values when comparing random segmentations of
a same object. Hence we have compared the GCEM

and the LCEM distributions between these two kinds
of segmentation pairs, consistent and random.

For each model of the corpus, two random seg-
mentations were generated by a simple and automatic
algorithm: n seed vertices were randomly chosen on
the object, then n connected regions were obtained by
a simple region growing mechanism. Figure 5 shows
some 3D-models of the corpus on which the random
segmentation algorithm was applied.

Figure 6 illustrates the GCEM and the LCEM dis-
tributions of each model of the corpus for both kinds of
segmentation (consistent and random). To compute the
GCEM and the LCEM for the consistent segmentations
and, in order to be in agreement with our definitions
of the GCEM and the LCEM , we considered the first
ground-truth associated to a given model as an automatic
segmentation. Similarly, for the random segmentations,
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Fig. 5. Random segmentations of some 3D-models of the corpus.

we therefore considered, the first random segmentation
as an automatic segmentation and the second one as a
ground-truth segmentation.

(a)

(b)

Fig. 6. Distributions of the GCEM (a) and the LCEM (b) for both
segmentation pairs (consistent in red color and random in blue color)
over all 3D-models corpus (20 3D-models).

We can notice that for the GCEM (figure 6(a)), the
distances between consistent segmentations are close to
zero. However, the random segmentation distances are
localized around 0.4. Thus the error between segmen-
tations produced by volunteers for a same 3D-model is
significatively lower than the ones obtained between ran-
dom segmentations. More precisely, the GCEM mean
for the consistent segmentations is 0.081 against 0.43
for the random segmentations. These results clearly
validate the accuracy of the GCE measure for assessing
segmentation dissimilarity, since they provide results

agreeing with the human opinion (the ground-truth).
However, figure 6(b) shows that the LCE measure fails
to distinguish clearly between random and consistent
segmentations as some models share the same values
of LCEM for both types (consistent and random).

5.2 Evaluation of two segmentation algorithms

We apply here the quality metrics defined in section 4
to evaluate two recent segmentation algorithms [6], [11]
of the state-of-the-art.

Tierny et al. [11] have proposed a part-type hierar-
chical segmentation method based on the extraction of
an enhanced topological skeleton. Globally, the skeleton
is used to delimit the object core and to identify the
junction surfaces. The result of this operation is a coarse
segmentation which is refined following a hierarchical
scheme defined with regard to the topology of the model.

In figure 7(a), each node of the skeleton denotes a
segment of the mesh. Each segment is distinguished
by a color resulting in an over-segmentation of the
object (figure 7(b)). A region merging algorithm based
on the notions of core and junction areas is then applied
to provide a hierarchical segmentation as illustrated in
figure 7(c, d).

(a) (b) (c) (d)

Fig. 7. Hierarchical segmentation process proposed by Tierny et
al. [11]: original skeleton graph (a), over-segmentation (b), coarse
segmentation (c) and fine segmentation (d)) (from [11]).

Lavoué et al. [6] have rather proposed a surface-type
segmentation method using a region growing algorithm.
The curvature is first calculated for all vertices of the
mesh, and classified into several clusters. A region
growing mechanism then extracts connected regions
(associated with similar curvature), starting from several
seed-facets. Figure 8 illustrates some typical examples
of results from this algorithm which is rather dedicated
to CAD models.

To ensure a relevant comparison between these al-
gorithms, we compute the GCEM and the LCEM for
every 3D-model of the corpus and each segmentation
algorithm, and then their GCS and LCS.

The first experiment for the evaluation of the algo-
rithms is illustrated in figure 9 that shows the GCEM
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Fig. 8. Several segmentation results using the algorithm of Lavoué
et al. [6] (from [6]).

and the LCEM for each model of the corpus for each al-
gorithm and also for random segmentations. The values
are sorted in increasing order for each algorithm, hence
the jth model may not be the same across algorithms.
This kind of graph was already applied for segmentation
evaluation in the field of 2D-image [13].

(a)

(b)

Fig. 9. GCEM (a) and LCEM (b) sorted in increasing order over
all the corpus models.

The graph in figure 9(a) demonstrates that algorithms
from Tierny et al. [11] and Lavoué et al. [6] are
both significatively better than the random segmentation
regarding their ability to produce segmentations that are
consistent with the ground-truth. It is interesting to see
that the GCE measure is able to well differentiate the
different methods: Tierny, coarse segmentation is clearly
better than Lavoué. This discriminating capacity is much
weaker in the case of the LCE (see figure 9(b)).

The second experiment consists in comparing, for the

different algorithms, the global and per-class GCS and
LCS. Tables 1, 2, 3 confirm that the algorithm which
gives the best results is the one proposed by Tierny et
al. [11], more precisely the coarse segmentation since it
has the highest values for both GCS and LCS. However,
once again, except the random segmentation, LCS scores
(see table 3) are very close to each other, that confirms
that this measure owns a quite low discriminating power.
Besides, the GCS scores are close to 1, we can conclude
that the segmentations obtained by both automatic algo-
rithms are of accurate quality.

Class Tierny, coarse Tierny, fine Lavoué Random
Animal 0.80 0.79 0.76 0.60
Human 0.82 0.75 0.75 0.60
Furniture 0.89 0.88 0.88 0.59
Few-
vertices

0.86 0.85 0.83 0.50

Hand 0.81 0.80 0.75 0.53

TABLE 1
SUMMARY OF THE PER-CLASS GCS OF EACH ALGORITHM.

Class Tierny, coarse Tierny, fine Lavoué Random
Animal 0.85 0.84 0.84 0.69
Human 0.86 0.84 0.87 0.72
Furniture 0.92 0.92 0.93 0.69
Few-
vertices

0.88 0.89 0.86 0.62

Hand 0.87 0.86 0.83 0.67

TABLE 2
SUMMARY OF THE PER-CLASS LCS OF EACH ALGORITHM.

Algorithm GCS LCS
Tierny [11], coarse 0.83 0.88
Tierny [11], fine 0.81 0.87
Lavoué [6] 0.79 0.87
Random 0.57 0.68

TABLE 3
SUMMARY OF THE GLOBAL GCS AND LCS.

To explain the difference between Tierny et al. [11]
and Lavoué et al. [6] algorithms, we present in figure 10
two models of the corpus with their segmentations
obtained by both algorithms and one of their associated
ground-truth.

From a global point of view, the obtained segmenta-
tions are correct for both algorithms since they basically
follow the ground-truth. However, it is clear that if we
take into account the detail of each segment and the
continuity of its boundaries, then Tierny et al. [11] al-
gorithm gives the best segmentation for the hand model
while Lavoué et al. [6] algorithm is better for the table
model. This segmentation difference is straight since
the algorithms belong to different segmentation classes:
part-type for Tierny and surface-type for Lavoué. It is
interesting to observe that this class difference appears
on the per-class GCS results (see table 1): segmentation
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Fig. 10. Different segmentations of the table and hand models. From
left to right: Tierny et al. [11] coarse version, Tierny et al. [11] fine
version, Lavoué et al. [6] and the ground-truth.

results from Lavoué et al. [6] algorithm are very good
for the furniture and few-vertices classes which contain
mechanical or non-organic pieces which are rather seg-
mented in a geometric manner (i.e. surface-type) by the
human observers. On the other hand, results from Tierny
et al. [11] algorithm are significatively better for human,
hand and animal classes which are rather segmented in
a semantic way by the observers.

6. CONCLUSION AND FUTURE WORK

In this paper, we presented a fully automatic protocol
for the quantitative evaluation of 3D-mesh segmentation
algorithms. The protocol is based on a ground-truth
corpus, allowing an objective evaluation. We made the
following contributions: (1) We built a ground-truth cor-
pus available on-line. This corpus is composed of a set
of 3D-models associated with several manual segmen-
tations produced by human observers. (2) We proposed
two measures that quantify the consistency between two
segmentations of a 3D-model. These measures are based
on the computing of the refinement error of a vertex
between two segments containing this vertex, similarly
to the work of Martin et al. [10] for 2D segmentation
evaluation. (3) Based on these measures and on the
ground-truth corpus, we proposed an objective score that
reflects the global quality of an automatic segmentation
algorithm.

To demonstrate the usability of this evaluation frame-
work, we performed a detailed comparison between
two recent segmentation algorithms: Tierny et al. [11]
algorithm and Lavoué et al. [6] algorithm.

Currently, we are still working on the enlargement of
the corpus in terms of number of models and ground-
truth. We also plan to integrate the results of other
segmentation algorithms applied to this corpus to offer a
wealthier comparison and a more relevant analysis. Our
objective is that the corpus and the evaluation methods
become a valuable tool for the scientific community.

We also would like to define new measures according
to the family of shapes (CAD-CAM shapes or natural

shapes) and for a given application context such as
segmenting for partial indexing for instance. Moreover,
an interesting property that such measures would possess
is the robustness to surface sampling in order to allow
a valid comparison between segmentations of a same
object with different sampling.

An other interesting point will be to integrate the
user’s opinion to judge which segmentation is the best,
then compare this subjective evaluation of the observer
to our evaluation protocol.
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