
Remote scientific visualization of progressive 3D meshes with X3D

Adrien Maglo∗

MAS - Ecole Centrale Paris
Guillaume Lavoué†

Université de Lyon, CNRS
INSA-Lyon, LIRIS

Céline Hudelot‡

MAS - Ecole Centrale Paris

Ho Lee§

Universite de Lyon, CNRS
Université Lyon 1, LIRIS

Christophe Mouton¶

EDF R&D
Florent Dupont‖

Université de Lyon, CNRS
Université Lyon 1, LIRIS

Figure 1: Progressive decompression of the radiator model (16002 vertices). Its original X3D size is 953 KB.

Abstract

This paper presents a framework, integrated into the X3D file for-
mat, for the streaming of 3D content in the context of remote sci-
entific visualization; a progressive mesh compression method is
proposed that can handle 3D objects associated with attributes like
colors, while producing high quality intermediate Levels Of Detail
(LOD). Efficient adaptation mechanisms are also proposed so as to
optimize the LOD management of the 3D scene according to dif-
ferent constraints like the network bandwidth, the device graphic
capability, the display resolution and the user preferences. Experi-
ments demonstrate the efficiency of our approach in scientific visu-
alization scenarii.

CR Categories: I.3.2 [Computer Graphics]: Graphics systems—
Remote systems I.3.6 [Computer Graphics]: Methodology and
Techniques—Graphics data structures and data types

Keywords: 3D adaptation, progressive meshes, scientific visual-
ization.

1 Introduction

∗e-mail: adrien.maglo@ecp.fr
†e-mail: guillaume.lavoue@liris.cnrs.fr
‡e-mail: celine.hudelot@ecp.fr
§e-mail: ho.lee@liris.cnrs.fr
¶e-mail: christophe.mouton@edf.fr
‖e-mail: florent.dupont@liris.cnrs.fr

Increasing needs for precision and quality in scientific simulation
lead to an important increase in the complexity of 3D data sets.
For instance, the number of mesh elements used in finite element
resolution methods can now reach about one billion. Moreover,
these data are nowadays produced in high performance computing
centers and have to be analysed by teams of scientists and engi-
neers who are more and more often geographically distant. Nev-
ertheless, even with the increase of available network bandwidth
together with the available computational power resources, remote
visualization of large 3D scientific datasets still suffers from sev-
eral shortcomings among which the downloading time, the lack of
interactivity and the management of different transmission, visual-
ization and user constraints. Therefore, the idea of providing an
efficient and fast remote access to large 3D scientific data has mo-
tivated three related research and engineering areas in these twenty
last years: 3D mesh streaming, 3D mesh compression and 3D data
adaptation.

3D mesh streaming can be defined as the continuous and real-time
delivery of 3D content over network connections in order to: (1) en-
able user interactions without a full download of the data; (2) pro-
vide a visual quality as if the data were stored locally. 3D stream-
ing approaches can be classified into three categories according to
the nature of the data that are transmitted: image-based streaming,
openGL- based streaming and geometry streaming which is by far
the most relevant since it allows full 3D interactions. In particular,
progressive geometry streaming enables an incremental rendering
of the whole models with increasing details, hence it is directly
related with progressive 3D compression. Non progressive geom-
etry streaming [Isenburg and Lindstrom 2005] also exists however
the objective is different, it aims at providing an efficient offline
mesh format so as to facilitate out-of-core processings of gigan-
tic meshes. In this paper, we only focus on progressive geometry
streaming.

Mesh compression techniques can be distinguished in two cate-
gories: single-rate techniques, where the mesh data is compressed
as a whole and can only be decompressed after receiving the entire



file, and progressive techniques, where the mesh is simplified in a
set of levels of detail (LOD) from lossless to coarse, allowing the
progressive decompression of the file. In other words, progressive
compression permits to transmit different levels of detail (LOD) in
a coarse-to-fine way. This functionality is particularly useful in the
case of remote visualization since it allows to adapt the level of de-
tail to the power of the client device, the network bandwidth and to
the user needs.

3D data adaptation consists in automatically selecting the best set
of 3D objects, and their optimal levels of detail in order to propose
the best visualization experience to the remote user according to
various network characteristics, device capabilities and user prefer-
ences. Such adaptation mechanism allows to accurately drive the
decoding of some progressively compressed models so as to pro-
duce an optimal streaming of the 3D scene.

In this paper, we present a streaming framework for remote scien-
tific visualization of 3D meshes from finite element computation
methods. In our specific case, the targeted representations are sur-
facic and color values representing scalar fields are linked to the
vertices of the meshes and are of prime importance for the visu-
alization and the analysis. Our framework is based on a progres-
sive compression scheme providing high quality intermediate color
meshes and efficient adaptation mechanisms dealing with differ-
ent constraints (network bandwidth, display capability, etc.). We
provide also a solution to embed this framework into the X3D file
format.

This paper is organized as follows: Section 2 details the existing
work on progressive mesh compression, 3D streaming and adapta-
tion, particularly in the context of the X3D file format. Then sec-
tions 3 and 4 respectively present our progressive encoding method,
the proposed adaptation mechanisms and the integration of them in
the X3D format. Finally Section 5 illustrates some results of our
framework.

2 Previous work

2.1 Progressive Mesh Compression

We provide here a brief review of progressive compression tech-
niques; an extensive state-of-the-art can be found in [Peng et al.
2005].

The concept of progressive compression was introduced for the first
time by Hoppe [Hoppe 1996]; in his work, the mesh is iteratively
simplified by performing a sequence of edge collapses, whose re-
verse operation is the vertex split. The edge collapse merges two
connected vertices, together with their connectivity. The progres-
sivity is achieved at a high cost, since the positions of the split ver-
tices are explicitly encoded. A bunch of methods were then in-
troduced (like [Taubin et al. 1998; Pajarola and Rossignac 2000])
so as to improve the compression ratio by applying the collapse/s-
plit operations on sets of independent vertices. Vertex decimation
techniques further improved compression ratios. They consist in
removing a vertex and retriangulating the hole left by the deletion
at no cost [Cohen-Or et al. 1999; Alliez and Desbrun 2001].

All the progressive algorithms described above are connectivity-
driven algorithms, meaning that the priority is given to the connec-
tivity coding. Observing that the mesh’s geometry data is larger
than the connectivity data, more recent research has focused on
geometry-driven compression algorithms. Gandoin and Devillers
[Gandoin and Devillers 2002] proposed the first geometry-driven
approach based on the kd-tree space subdivision. Then Peng and
Kuo [Peng and Kuo 2005] proposed a more efficient geometry-
guided technique by using the octree cell subdivision. These

Figure 2: Original Bunny model and results of progressive decod-
ing at similar bitrates for our algorithm and Peng and Kuo’s one.

geometry-driven algorithms outperform connectivity-driven algo-
rithms in terms of lossless compression ratio, however they provide
quite poor results at intermediate resolutions, hence they are not
fully efficient for progressive transmission. This is clearly illus-
trated in figure 2 which illustrates two intermediate levels of detail
corresponding to both kinds of algorithms and for the same bitrate
(≈ 4 bits-per-vertex). The connectivity-driven algorithm provides
a much nicer result.

The compression of mesh associated properties, like colors, plays a
secondary role in state of the art compression schemes. However,
mesh properties can often be of greater size than the other data flows
of a mesh and can carry a great part of the relevant information, in
particular in scientific visualization. Basically very few progressive
mesh coders allow the encoding of color information; Cai et al. [Cai
et al. 2007] and Cirio et al. [Cirio et al. 2010] recently proposed
two geometry-based methods (respectively based on octree and kd-
tree decompositions) that handle colors; however these methods are
limited by the poor quality of the intermediate models.

2.2 Progressive mesh compression and X3D

As X3D is the ISO standard XML-based file format for 3D data de-
livery, mechanisms have been proposed in X3D to take into account
progressive mesh compression and streaming. Works addressing
these topics have also been proposed in the context of MPEG-4.
First, as it is not always needed to render the finest representation
of an object, particularly when it is far from the user viewpoint, the
X3D specification includes an adaptation mechanism called LOD1.
This mechanism enables the manual specification, by the scene de-
signer, of multiple alternatives (e.g. for instance the entire mesh
in different level of resolutions) for an object together with a set of
distance ranges indicating when alternatives have to be rendered. In
[Pasman and Jansen 2002], a similar idea has been proposed based
on imposters, accuracy curves describing the minimal amount of
resources required to reach an accuracy and a slight extension of
the VRML node specification.

These X3D/VRML specifications do not fit yet to the constraints
and challenges of remote scientific visualization: (1) the proposed
specifications need the complete description of each alternative and
thus does not enable progressive representation; (2) the specifica-
tions do not define strategies related to the transmission and stream-
ing part, i.e. intelligent transmission of the different alternatives; (3)
the LOD techniques are more bounded to the 3D scene and not to
the interaction of the user.

1http://www.web3d.org/x3d/specifications/
ISO-IEC-19775-1.2-X3D-AbstractSpecification/
index.html



Related to the first issue, approaches based on a client-server ar-
chitecture have been proposed [Fogel et al. 2001; Guéziec et al.
1998]. In [Guéziec et al. 1998], the authors propose their own pro-
gressive mesh representation where an external file, downloaded on
demand, holds the LOD data. [Fogel et al. 2001] extends the VRM-
L/X3D language with two nodes: progIndexedTriSet which extends
the node IndexedFaceSet and ProgLOD which holds the LOD data
(triangle index, coordinates, normal, etc.). An alternative is also the
specification of URLs of external files which contain the different
binary compressed representations of the data. Both approaches do
not specify how to use the progressive representation for progres-
sive download and rendering.

Related to the other issues, the basic transmission strategy consists
in downloading the entire scene and in rendering it. In [Arikawa
and al 1996], this issue is tackled by the proposition of a dynamic
LOD VRML extension and a client server architecture enabling
user-dependent LOD streaming and rendering. Nevertheless, this
approach does not use progressive representation of meshes. Be-
sides, it is much designed for remote walkthrough and not for re-
mote scientific visualization.

2.3 3D streaming and adaptation

Two kinds of approaches exist related to adaptive 3D streaming.
On the one hand, works have been proposed to stream efficiently
progressive meshes with a view-dependent way [Southern et al.
2001; Cheng and Ooi 2008], by optimizing the rendering percep-
tion [Chen and Nishita 2002] or packetization [Cheng et al. 2007].
On the other hand, the rendering of progressive 3D models tak-
ing into account device capabilities and user perception have also
been studied in [Funkhouser and Séquin 1993; Gobbetti and Bou-
vier 1999; Pasman and Jansen 2002]. However, these two prob-
lems have not been much studied together, i.e. for the case when
3D models are rendered over networks. The framework built in
[Jessl et al. 2005] delivers progressive meshes over networks us-
ing subdivision-surface wavelets. Fixed thresholds, related to the
transmission and the visualization, are used to drive the transmis-
sion. In [Schneider and Martin 1999] the authors propose a client
server architecture to deliver 3D model at interactive frame rates
over networks. Their approach optimizes trade-offs between all the
constraints (networks, device capabilities, user preferences). They
use benchmarks to measure the environment characteristics. Mar-
tin [Martin 2000] describes a framework dedicated to the automatic
selection of the best representation modality for objects in a scene.
Their performance model takes into account, for each modality, the
estimated delivery time, the quality of the representation and the
degree of interaction it supports. In [Deb and Narayanan 2004],
an adaptive framework for remote walkthrough applications is pro-
posed. In [Ngoc et al. 2002], a QoS framework for the delivery of
3d content over network is built. The authors define a benefit, cost
optimization problem solved by using heuristics. PSNR is used as
the quality metric of rendered models. As far as we know, no work
have been proposed addressing the particular case of adaptive re-
mote 3D scientific visualization.

3 Progressive encoding method

Our progressive encoding algorithm is described in detail in [Lee
et al. 2010]. It is based on the valence-driven progressive approach
proposed by Alliez and Desbrun [Alliez and Desbrun 2001]. This
approach iteratively decimates a set of vertices by combining dec-
imation and cleansing conquests to get different levels of detail
(LOD). Decimation conquest consists in removing vertices patch
by patch using a gate-based traversal, and then retriangulating the
holes left (see fig.3.b); then, a cleansing conquest removes vertices

Figure 3: One iteration of the progressive encoding algorithm. (a)
original mesh, (b) intermediate result after decimation and (c) final
result after cleansing.

Figure 4: Format of the encoded stream. Each part of the stream
contains geometry (G), connectivity (C) and color (Cl) data needed
for mesh refinement.

of valence 3 so as to regularize the simplified mesh (see fig.3.c).
Our method [Lee et al. 2010] extends the base algorithm from Al-
liez and Desbrun [Alliez and Desbrun 2001] in two ways: first,
instead of applying a global and uniform quantization to the co-
ordinates of the mesh vertices before starting the decimation, our
method automatically adapts the quantization for each intermedi-
ate mesh so as to obtain a better rate-distorsion performance (more
details are given in [Lee et al. 2009]); second, our method is able
to handle colors associated to vertices by introducing an accurate
prediction scheme. Hence during encoding, the mesh is iteratively
simplified (decimation + cleansing) and at each simplification step,
the connectivity, geometry and color information necessary for the
inverse operation (i.e. refinement) are encoded; for the connectiv-
ity, only the valences of the removed vertices are necessary, and for
geometry and color, the 3D position and the color of each removed
vertex is predicted according to its neighbors and only the residues
are written in the stream. Figure 4 presents the compressed stream;
this stream is naturally decomposed into several parts, each stand-
ing for a certain level of detail and each containing connectivity (C),
geometry (G) and color (Cl) information. The first part is the base
mesh (usually several dozens of vertices) which is encoded using a
standard mono-resolution compression technique; then each part of
the stream, together with the already decompressed level, allows to
build the next level of detail. At the end of the stream decoding the
original object is retrieved (lossless compression).

4 LOD adaptation and streaming framework
with X3D

In this section, we define our adaptation framework for 3D scientific
visualization over networks. We use a basic client-server architec-
ture.

4.1 The adaptation parameters

Our adaptation framework takes into account constraints coming
from the network, the device graphic capabilities and the user view-
point and preferences. The algorithm aims to maintain the follow-
ing metrics below their threshold (experimentally set for a first pur-
pose):

• Tdl(M), the total time spent to download successively levels
of a mesh M . The download of new level is halted when



Tdl(M) overtakes Tdlmax.

• Q, the total quantity of memory taken by all the LOD data.
New level downloading is stopped when Q is above Qmax.

• Tr , the rendering time of an image which measures the dif-
ficulty for a device to render a 3D scene. If Tr is above the
threshold Trmax, then the scene complexity must be reduced.

• FED(Mi, R, P ), the element distinction metric, where i is
the current level index of M . As the visualization devices
have not the same resolution, our adaptation framework tries
to find the best level of a mesh M to render for a given view-
point P and a screen resolution R. FED represents the ability
for a user to well distinguish the mesh cells. We compute
FED by randomly extracting a set of triangles of Mi (about
10%) and using the following formula:

FED(Mi, R, P ) =
n1

n2

where n1 is the number of pixels of the lines when the trian-
gles are rendered in line mode and n2 is the number of pixels
of the triangles when they are rendered in filled mode. These
two renderings are done with no lighting and anti-aliasing fil-
ters and with uniform colors distinct from the background (see
Figure 5).

If FED is near 0, it means that the mesh elements can be well dis-
tinguished in the screen space. On the contrary, the more it is far
from 0 the more the elements are small and cannot be easily distin-
guished. FED has to stay below FEDmax.
The size of the randomly extracted triangle set is important. It sets
the accuracy of the metric for the current viewpoint. Indeed, if all
the faces are rendered with a depth test, only the visible faces are
taken into account in the metric computation. However, this is done
at the expense of the computation time. As the following section
describes it, we benefit from the inactivity of the computational re-
sources, when the user has found the viewpoint he is interested in,
to compute this metric and ask, if needed, for refinements. In our
current implementation, we extract 10% of the triangles to compute
FED . For the highest levels, the computation time is approximately
half of the rendering time.

4.2 The adaptation algorithm

Our adaptation framework is view-dependent and triggered by
events. An event can be: an addition of a new mesh into the scene,
a first rendering after a mesh refinement, a first rendering after a
mesh coarsening, a changing visibility of one object or a changing
view-point. Note that the adaptation algorithm is run when the user
has found his interest view-point and does not move anymore. The
adaptation algorithm computation time does not impact the frame
rate during transient moves.
L is the set of the meshes from the scene that the user has selected
to be visible. After each event the adaptation algorithm is launched,
it basically chooses among these three choices:

• do nothing,

• if Tr > Trmax ∗ (1 + r), coarse the mesh M of L with the
highest FED(Mi, R, P ),

• if Tr < Trmax, refine a mesh M of L given by the find-
Mesh() function.

A hysteresis thresholding (introduced by the r parameter experi-
mentally set) avoids jumps between levels because of Tr varying
arround Trmax. It allows Tr to overtake Trmax without spawning
detail reduction.

Figure 5: Computation of metric FED . 1) The object with its visu-
alization attributes is shown. 2) 10% of the triangles are rendered
in filled mode. n2 is obtained by counting grey pixels. 3) The same
triangles are rendered in line mode. n1 is obtained by counting
black pixels.

if Tr < Trmax then
M = findMesh()
if M exists then

if Mi+1 is not in memory then
start downloading Mi+1 and store it in memory

end if
replace Mi by Mi+1

end if
else if Tr > Trmax ∗ (1 + r) then

select the visible mesh M with the highest FED(Mi, R, P )
replace Mi by Mi−1

end if

Figure 6: The adaptation algorithm. The first rendering after a
mesh refining or coarsening triggers a new run of the adaptation
procedure.

The findMesh() function returns the mesh with the minimal
FED(Mi, R, P ) which satisfies all the following constraints:

• Q < Qmax,

• Tdl(M) < Tdlmax,

• and FED(Mi, R, P ) < FEDmax.

Figure 6 presents our whole adaptation algorithm.

As the user may be interested in visualizing the highest level of de-
tail of a certain mesh M of the scene, he can force the rendering
of its highest level Mn even if it can not be achieved at an interac-
tive frame rate. In this case, all the levels are downloaded and Mn

is rendered without taking into account the results of the previous
adaptation algorithm.

4.3 Streaming LOD in X3D

At the client side, the resources in terms of network bandwidth
to the Internet, device capabilities (CPU, RAM, graphic computa-
tional power, etc.) are limited while the resources at the server side



<P r o g r T r i S e t>
<ProgrLOD l e v e l =” 0 ”

u r l =” h t t p : / / c o l l a v i z . o rg / l od0 . ps ” />
<ProgrLOD l e v e l =” 1 ”

u r l =” h t t p : / / c o l l a v i z . o rg / l od1 . ps ” />
<ProgrLOD l e v e l =” 2 ”

u r l =” h t t p : / / c o l l a v i z . o rg / l od2 . ps ” />
<ProgrLOD l e v e l =” 3 ”

u r l =” h t t p : / / c o l l a v i z . o rg / l od3 . ps ” />
. . .

</ P r o g r T r i S e t>

Figure 7: The integration of our progressive compressed remote
mesh representation in X3D. ’.ps’ files correspond to the binary
LOD data generated by our progressive mesh encoding scheme.

Figure 8: Our streaming architecture for progressive 3D meshes.
Using the HTTP(S) protocol, we are able to pass through most of
proxy servers and firewalls.

can be managed. Therefore, we use a client-server architecture to
stream the progressive meshes. We integrate our framework to the
X3D language with the same approach as in [Fogel et al. 2001]. The
3D scene is described in a X3D file which contains a ProgrTriSet
node for each object. ProgrLOD nodes receive the URL indicat-
ing where to download the LOD data (see Figure 7). When a client
requests a mesh, it receives this X3D file. Then, it can start down-
loading the levels according to the previously described adaptation
strategy.

Our client asks for new levels of detail using HTTP requests. The
server responds by delivering the mesh LOD data that have been
already computed off-line by our progressive compression scheme.
Once the client has received a new level, it restarts the adaptation
procedure in order to maximize the user experience and maintain
the metrics below their thresholds. Using the HTTP(S) protocol
with its standard TCP/IP port, the proposed traffic can pass through
most of the firewalls and proxy servers deployed in companies for
their connection to the Internet.

5 Experiments

5.1 The progressive encoding scheme

Our progressive compression method was tested on several 3D
models coming from post-processings (cutting-plane, isosurfacing)
applied on volumetric scientific simulation results (Fluid Dynamics
and geophysics). These six models (see figure 9) are X3D
ASCII files and all contain color information on vertices except
radiator Iso.

Figure 9: Our corpus of 3D models. first row: radiator, radi-
ator Iso and velocity. Second row: tank, vistcurb CP and veloc-
ity CP.

Name Original (KB) Compressed (KB) Ratio
velocity CP 7739 227.9 2.94%

velocity 2979 83.4 2.80%
radiator 953 27.0 2.83%

radiator Iso 713 19.6 2.75%
vistcurb CP 354 16.0 4.51%

tank 10065 266.0 2.64%

Table 1: Lossless compression results for several objects from sci-
entific simulations.

Table 1 presents respectively the original sizes of the models (X3D
ASCII file format) and the sizes of the compressed streams corre-
sponding to a lossless compression (all levels of detail) with 11 bits
precision. The compression ratios are very good (between 2.75%
and 4.51%); for comparison a binary encoding method like gzip
provide compression ratios between 15% and 20%. The whole de-
compression times (all levels) are between 0.14 and 6,015 seconds,
respectively for vistcurb (4.3Kvertices) and tank (123Kvertices) on
a 2Ghz processor. The number of levels is automatically deter-
mined so as to obtain a base mesh of around a hundred vertices,
it goes from 10 (vistcurb) to 26 (tank); this number of levels de-
pends on both the number of vertices and the shape complexity of
the model. Our method presents a very good compression perfor-
mance but its very strong point is its capability to produce high
quality intermediate levels of detail.

Figure 1 illustrates several levels of detail from the progressive de-
coding of the radiator model; even after decoding only a very small
amount of data (eg. 4.3KB, corresponding to a decompression time
of 30ms) the resulting models are nevertheless visually correct al-
lowing the client to be able to visualize a nice model even through
a very low bandwidth channel.
These levels of detail also allow to adapt the resolution of the scene
to the processing capacity of the display device; figure 10 illustrates
several levels of detail of the radiator Iso model. If only a small
part of the stream is decoded then the resulting model owns only a
small number of triangles allowing an efficient rendering even on
low capacity devices. As it is shown in the next experiments, these
properties combined to our adaptation algorithm will allow a very
efficient streaming framework.



Figure 10: Progressive decompression of the radiator Iso model.

Figure 11: Snapshots taken during our test of progressive down-
load and rendering of our model with different viewpoints. Our
adaptation framework adapts the LOD to the viewpoint.

5.2 The whole streaming framework

We have tested our whole framework by simulating a remote sci-
entific visualization session with a mesh coming from a real study
case [Rupp I. Oct. 2008] of 460192 facets. All the LOD data were
stored on an HTTP server. Our adaptation framework has succes-
sively downloaded and rendered them. We did two experiments
which are described below.

The first experiment consisted in studying the effects of our adap-
tation framework when the user changed the view point. After
each change, we waited for the data requested by our adaptation
algorithm to be completely downloaded before taking snapshots of
the new rendering. Then, we compared these snapshots with their
equivalent taken with the full model by computing the PSNR. The
results of this experiment are presented in table 2. Snapshots of
the viewpoints used during the experiment can be seen on Figure
11. The experiment ran on a station with 2,8 Ghz processor and
a NVIDIA Quadro FX 580. We computed the FED metrics by ex-
tracting 10% of the triangles for each level; it took a maximum time
of 110ms for the finest level of detail.
Results demonstrate that our framework permits to achieve a good
visualization quality and interactive frame rates for a global view-
point by downloading a low amount of data (see Figure 11.1). In-
deed for this level of detail only 27% of the data need to be down-
loaded and only 50K vertices have to be displayed. Then when the
user zooms on a specific part of the model, more data are down-
loaded and the LOD increases.

The second experiment consisted in studying the effects of our
adaptation framework when considering a single viewpoint (see
figure 12) but using three different screen resolutions: one of a

Point of view (figure 11) 1 2 3
Level of detail 29/34 32/34 34/34
Nb of triangles 50412 150650 460192

% of downloaded data 26.6 52.1 100
Tr (ms) 45 230 266

PSNR (dB) 35.83 37.80 -

Table 2: Results of our test of progressive download and render-
ing of our model with different viewpoints with FEDmax = 1.8,
Trmax = 200 and r = 0, 5.

Figure 12: Snapshot of the viewpoint used during our test of pro-
gressive download and rendering of our model with different screen
resolutions. Our adaptation framework adapts the LOD to the res-
olution.

mobile device (640x480), one of a standard notebook computer
(1280x800) and one (1882x932) which can be reached on a pow-
erful graphic station with a 24 inches monitor. For each screen
resolution, our algorithm automatically adapted the LOD of the 3D
model. Like in the previous experiment we compared, using the
PSNR, the snapshots obtained with the LOD selected by the frame-
work with the snapshots taken with the full mesh; the results are
given in table 3 and attest the efficiency of our adaptation algorithm
since the PSNR values remain quite high.

Resolution 640x480 1280x800 1882x932
Level of detail 30/34 32/34 33/34
Nb of triangles 70862 150650 238720

% of downloaded data 31.5 52.1 70.1
PSNR (dB) 35.61 40.64 44.13

Table 3: Results of our test of progressive download and rendering
of our model with a common viewpoint and different screen resolu-
tions with FEDmax = 1.8, Trmax = 200 and r = 0, 5.

6 Conclusion

In this paper, we have proposed an adaptive and progressive stream-
ing framework dedicated to remote scientific visualization. Tar-
geted data are surfacic representations of 3D meshes computed with
finite elements methods. Due to the importance of the scalar fields
linked to the vertices of the meshes for the visualization and the
analysis, we have first proposed a progressive encoding method
which handles adaptive quantization and colors. Then a frame-
work based on efficient adaptation mechanisms has been proposed
to tackle different constraints: network bandwidth, device capabil-
ity and user preferences. Based on previous works on X3D, our
proposed framework is also X3D-compliant. Our first results on 3D
scientific models are encouraging. Future work will be dedicated to
the improvement of the adaptation part by taking into account more
complex constraints.



7 Acknowledgement

This work has been founded by French National Research Agency
(ANR) through COSINUS program (project COLLAVIZ n◦ANR-
08-COSI-003).

References

ALLIEZ, P., AND DESBRUN, M. 2001. Progressive encoding for
lossless transmission of 3D meshes. In ACM Siggraph, 198–205.

ARIKAWA, M., AND AL. 1996. Dynamic lod for qos management
in the next generation vrml. In ICMCS ’96: Proceedings of the
1996 International Conference on Multimedia Computing and
Systems, IEEE Computer Society, Washington, DC, USA, 24–
27.

CAI, S., QI, Y., AND SHEN, X. 2007. 3d data codec and trans-
mission over the internet. In Web3D ’07: Proceedings of the
twelfth international conference on 3D web technology, ACM,
New York, NY, USA, 53–56.

CHEN, B.-Y., AND NISHITA, T. 2002. Multiresolution streaming
mesh with shape preserving and qos-like controlling. In Web3D
’02: Proceedings of the seventh international conference on 3D
Web technology, ACM, New York, NY, USA, 35–42.

CHENG, W., AND OOI, W. T. 2008. Receiver-driven view-
dependent streaming of progressive mesh. In NOSSDAV ’08:
Proceedings of the 18th International Workshop on Network and
Operating Systems Support for Digital Audio and Video, ACM,
New York, NY, USA, 9–14.

CHENG, W., OOI, W. T., MONDET, S., GRIGORAS, R., AND
MORIN, G. 2007. An analytical model for progressive mesh
streaming. In MULTIMEDIA ’07: Proceedings of the 15th inter-
national conference on Multimedia, ACM, New York, NY, USA,
737–746.

CIRIO, G., LAVOUE, G., AND DUPONT, F. 2010. A frame-
work for data-driven progressive mesh compression. In Interna-
tional Conference on Computer Graphics Theory and Applica-
tions (GRAPP), Lecture Notes on Computer Science, Springer.

COHEN-OR, D., LEVIN, D., AND REMEZ, O. 1999. Progressive
compression of arbitrary triangular meshes. In IEEE Visualiza-
tion, 67–72.

DEB, S., AND NARAYANAN, P. 2004. Design of a geometry
streaming system. In Proc. ICVGIP, Citeseer, 296–301.

FOGEL, E., COHEN-OR, D., IRONI, R., AND ZVI, T. 2001. A web
architecture for progressive delivery of 3d content. In Web3D
’01: Proceedings of the sixth international conference on 3D
Web technology, ACM, New York, NY, USA, 35–41.

FUNKHOUSER, T. A., AND SÉQUIN, C. H. 1993. Adaptive dis-
play algorithm for interactive frame rates during visualization of
complex virtual environments. In SIGGRAPH ’93: Proceedings
of the 20th annual conference on Computer graphics and inter-
active techniques, ACM, New York, NY, USA, 247–254.

GANDOIN, P.-M., AND DEVILLERS, O. 2002. Progressive loss-
less compression of arbitrary simplicial complexes. In ACM Sig-
graph, 372–379.

GOBBETTI, E., AND BOUVIER, E. 1999. Time-critical multires-
olution scene rendering. In VIS ’99: Proceedings of the con-
ference on Visualization ’99, IEEE Computer Society Press, Los
Alamitos, CA, USA, 123–130.

GUÉZIEC, A., TAUBIN, G., LAZARUS, F., AND HORN, W. 1998.
Simplicial maps for progressive transmission of polygonal sur-
faces. In VRML ’98: Proceedings of the third symposium on
Virtual reality modeling language, ACM, New York, NY, USA,
25–31.

HOPPE, H. 1996. Progressive meshes. In ACM Siggraph, 99–108.

ISENBURG, M., AND LINDSTROM, P. 2005. Streaming meshes.
IEEE Visualization, 2005. VIS 05, 231–238.

JESSL, J., BERTRAM, M., AND HAGEN, H. 2005. Web-based
progressive geometry transmission using subdivision-surface
wavelets. In Web3D ’05: Proceedings of the tenth international
conference on 3D Web technology, ACM, New York, NY, USA,
29–35.

LEE, H., LAVOUÉ, G., AND DUPONT, F. 2009. Adaptive coarse-
to-fine quantization for optimizing rate-distortion of progressive
mesh compression. In Vision, Modeling, and Visualization Work-
shop.

LEE, H., LAVOUÉ, G., AND DUPONT, F. 2010. New methods for
progressive compression of colored 3D Mesh. In International
Conference on Computer Graphics, Visualization and Computer
Vision (WSCG).

MARTIN, I. 2000. Adaptive rendering of 3d models over networks
using multiple modalities. IBM research report.

NGOC, N., VAN RAEMDONCK, W., LAFRUIT, G., DECONINCK,
G., AND LAUWEREINS, R. 2002. A qos framework for inter-
active 3d applications. In The 10-th International Conference on
Computer Graphics and Visualization ’2002, Citeseer, 317–324.

PAJAROLA, R., AND ROSSIGNAC, J. 2000. Compressed progres-
sive meshes. IEEE Visualization and Computer Graphics 6, 1,
79–93.

PASMAN, W., AND JANSEN, F. W. 2002. Scheduling level of detail
with guaranteed quality and cost. In Web3D ’02: Proceedings
of the seventh international conference on 3D Web technology,
ACM, New York, NY, USA, 43–51.

PENG, J., AND KUO, C.-C. J. 2005. Geometry-guided progressive
lossless 3d mesh coding with octree (ot) decomposition. In SIG-
GRAPH ’05: ACM SIGGRAPH 2005 Papers, ACM, New York,
NY, USA, 609–616.

PENG, J., KIM, C.-S., AND KUO, C.-C. J. 2005. Technologies
for 3D mesh compression: A survey. Journal of Visual Commu-
nication and Image Representation 16, 6, 688–733.

RUPP I., PENIGUEL C., T.-M. M. Oct. 2008. Large scale finite
element thermal analysis of bolts of a french pwr core internal
baffle structure. In 7th I. Topical Meeting on Nuclear Reactor
Thermal Hydraulics, Operation and Safety NUTHOS-7.

SCHNEIDER, B., AND MARTIN, I. 1999. An adaptive framework
for 3D graphics over networks. Computers & Graphics 23, 6,
867–874.

SOUTHERN, R., PERKINS, S., STEYN, B., MULLER, A.,
MARAIS, P., AND BLAKE, E. 2001. A stateless client for pro-
gressive view-dependent transmission. In Web3D ’01: Proceed-
ings of the sixth international conference on 3D Web technology,
ACM, New York, NY, USA, 43–50.

TAUBIN, G., GUÉZIEC, A., HORN, W., AND LAZARUS, F. 1998.
Progressive forest split compression. In ACM Siggraph, 123–
132.


