
Streaming Compressed 3D Data on the Web using JavaScript and WebGL

Guillaume Lavoué∗

Université de Lyon, CNRS
LIRIS, INSA-Lyon

Laurent Chevalier†

VELVET
Florent Dupont‡

Université de Lyon, CNRS
LIRIS, Université Lyon 1

Abstract

With the development of Web3D technologies, the delivery and vi-
sualization of 3D models on the web is now possible and is bound
to increase both in the industry and for the general public. How-
ever the interactive remote visualization of 3D graphic data in a
web browser remains a challenging issue. Indeed, most of exist-
ing systems suffer from latency (due to the data downloading time)
and lack of adaptation to heterogeneous networks and client devices
(i.e. the lack of levels of details); these drawbacks seriously affect
the quality of user experience. This paper presents a technical solu-
tion for streaming and visualization of compressed 3D data on the
web. Our approach leans upon three strong features: (1) a dedicated
progressive compression algorithm for 3D graphic data with colors
producing a binary compressed format which allows a progressive
decompression with several levels of details; (2) the introduction
of a JavaScript halfedge data structure allowing complex geometri-
cal and topological operations on a 3D mesh; (3) the multi-thread
JavaScript / WebGL implementation of the decompression scheme
allowing 3D data streaming in a web browser. Experiments and
comparison with existing solutions show promising results in terms
of latency, adaptability and quality of user experience.

CR Categories: I.3.2 [Computer Graphics]: Graphics systems—
Remote systems I.3.6 [Computer Graphics]: Methodology and
Techniques—Graphics data structures and data types

Keywords: 3D Graphics, Web3D, WebGL, Progressive Compres-
sion, Level-of-Details, JavaScript.

1 Introduction

Technological advances in the fields of telecommunication, com-
puter graphics, and hardware design during the two last decades
have contributed to the development of a new type of multimedia:
three-dimensional (3D) graphic data. This growing 3D activity was
possible thanks to the development of hardware and software for
both professionals (especially 3D modeling tools for creation and
manipulation) and for end-users (3D graphic accelerated hardware,
new generation of mobile phones able to visualize 3D models).
Moreover, the visualization of 3D content through the web is now
possible thanks to specific formats like X3D, technologies like the
very recent WebGL specification, which makes the GPU control-

∗e-mail:glavoue@liris.cnrs.fr
†e-mail:laurent.chevalier@velvet.eu.com
‡e-mail:fdupont@liris.cnrs.fr

lable by JavaScript, and norms like HTML 5. The Web3D concept
(i.e. communicating 3D content on the web) is seen as the future of
the Web 2.0, and is supported by many organizations like the W3C
and the Web3D consortium.

Numerous application domains are directly concerned by 3D data
(some of them are illustrated in figure 1): Mechanical engineer-
ing, scientific visualization, digital entertainment (video games, se-
rious games, 3D movies), medical imaging, architecture, cultural
heritage (e.g. 3D scanning of ancient statues). In most of these
applications, 3D data are represented by polygonal meshes, which
modelize the surface of the 3D objects by a set of vertices and facets
(see the zoomed part on the right in figure 1).

This type of data is more complex to handle than other media such
as audio signals, images or videos, and thus it has brought new
challenges to the scientific community. In particular, the interactive
remote visualization of 3D graphic data in a web browser remains
a challenging issue. As observed by Di Benedetto et al. [2010], the
delivery and visualization of 3D content through the web has came
with a considerable delay with respect to other digital media such
as images and videos, mainly because of the higher requirements
of 3D graphics in terms of computational power. First systems
used Java Applets or ActiveX controls to expose 3D data on a
web browser, however recently the WebGL specification has been
introduced [Khronos 2009] and will probably boost the use of 3D
data on the web. A lot of industries have interest in providing
3D content through the web, including online video games (to
represent virtual worlds), 3D design or e-business companies.
Moreover like existing huge repositories of pictures (e.g. Flikr)
or videos (e.g. YouTube), community web 3D model repositories
are now appearing, such as Google 3D Warehouse. Like stated
in the recent study from Mouton et al. [2011], web applications
have major benefits compared to desktop applications: firstly,
web browsers are available for all mainstream platforms including
mobile devices, and secondly the deployment of web applications
is straightforward and does not require the user to install or update
softwares or libraries other than the browser. All these reasons
argue for a high increase of the use of 3D remote graphics on the
web in the near future.

An efficient system for interactive remote visualization of large 3D
datasets needs to tackle the following technical issues:

1. Removing the latency; in most of existing systems, 3D data
are fully loaded in an uncompressed form. Therefore, there is
latency before visualization. This latency is particularly criti-
cal for web applications.

2. Allowing the adaptation of the levels of details to different
transmission networks and client hardwares, in order to allow
a good frame-rate even in case of low-power devices such as
smartphones.

These issues can be resolved by the use of progressive compression
techniques [Peng et al. 2005]. Indeed, progressive compression al-
lows to achieve high compression ratio (and thus fast transmission)
and also to produce different levels of details (LoD), allowing to
adapt the complexity of the data to the remote device by stopping
the transmission when a sufficient LoD is reached. Moreover, users



Figure 1: Several 3D graphical models illustrating different application domains. From left to right: Neptune (250k vertices - cultural
heritage) , Venus (100k vertices - cultural heritage), Casting (5k vertices - mechanical engineering), Monkey (50k vertices - digital entertain-
ment) and Tank (160k vertices - scientific visualization) which represents a nuclear power plant tank with temperature information (provided
by R&D division of EDF).

are able to quickly visualize a coarse version of the 3D data first,
instead of waiting for full objects to be downloaded before they can
be displayed. Figure 2 illustrates different levels of details for the
power plant tank 3D model. These functionalities are able to neu-
tralize the time latency even for huge data and make possible real-
time interactions (i.e. high frame rate) even for mobile devices.

We introduce a technical solution for web-based remote 3D stream-
ing and visualization, which tackles the two issues mentioned
above. Our system runs natively in a web browser without any
plug-in installation and leans upon three strong features: (1) a dedi-
cated progressive compression algorithm for 3D graphics data with
colors, producing a binary compressed .P3DW file which allows
a progressive decompression with several levels of details; (2) the
introduction of Polyhedron HalfEdge.js, a JavaScript halfedge data
structure allowing geometrical and topological operations on a 3D
mesh; (3) the multi-thread JavaScript implementation of the asso-
ciated decompression scheme, using Polyhedron HalfEdge.js and
WebGL, allowing 3D data streaming in a web browser. The next
section details the state of the art about 3D object compression and
web-based 3D data delivery and visualization; then section 3 details
our progressive compression algorithm while section 4 presents our
JavaScript halfedge data structure and the implementation of the de-
compression. Finally section 5 illustrates several compression and
streaming experiments and comparisons with state of the art, while
section 6 concludes the paper.

2 State of the art

2.1 Progressive compression

The main idea of progressive (or multi-resolution) compression is
to represent the 3D data by a simple coarse model (low resolution)
followed by a refinement sequence permitting an incremental re-
finement of the 3D model until the highest resolution (see figure
2, from left to right). This functionality is particularly useful in
the case of remote visualization since it allows adapting the level

of details to the capacity of the visualization device, the network
bandwidth and the user needs.
Most of existing approaches consist of decimating the 3D mesh
(vertex/edge suppressions) while storing the information necessary
for the process inversion, i.e. the refinement (vertex/edge inser-
tions during the decoding). The existing approaches differ in the
way they decimate the mesh and store the refinement information
(where and how to refine?).
Since the pioneer work of Hoppe [1996], a lot of methods have been
introduced [Taubin and Rossignac 1998; Pajarola and Rossignac
2000; Alliez and Desbrun 2001; Gandoin and Devillers 2002; Peng
and Kuo 2005; Valette et al. 2009; Peng et al. 2010; Lee et al. 2012],
however most of them are not adapted for remote visualization, in-
deed some critical issues have been almost totally ignored by the
scientific community:

• Most of existing progressive compression techniques have
concentrated their efforts on optimizing the compression ra-
tio; however in a remote visualization scenario, improving the
quality of the levels of details (see figure 2) is more important
than gaining a few bits on the size of the whole compressed
stream. Only some very recent methods have tried to focus
on the quality of the levels of details [Tian and AlRegib 2008;
Peng et al. 2010; Lee et al. 2012].

• Only few existing techniques [Tian and AlRegib 2008; Lee
et al. 2012] allow the progressive compression of attributes
like color, texture or other information attached to the 3D
data. The level of details management of these attributes is
particularly important with regards to their influence on the
perceptual quality of the visualized object.

• One of the main objectives of progressive compression is to
speed up the transmission of the 3D data by decreasing the
size of the content to transmit. However if the decompression
time is too long, then the user has lost all the benefit of the
compression since even if the transmission is fast, a long de-
compression time will induce a latency for the user. Therefore



Figure 2: Progressive decoding of the compressed P3DW file corresponding to the Tank model (with and without wireframe). From left
to right : 12%, 28%, 56% and 100% of the stream are respectively decoded. Such progressive decoding allows to stream the data in order
to obtain very quickly a good approximation of the model. Moreover, it allows an adaptation to the client device hardware (for a high
performance workstation the full resolution model can be loaded and visualized interactively but in case of a smartphone, a low resolution
version has to be preferred). The original ASCII OFF file size is 12762 kB.

a critical issue for a compression scheme is to optimize the de-
compression time by relying on simple yet efficient schemes.
However at present very few progressive compression algo-
rithms have focused on optimizing and simplifying this step.
Our objective is to focus on that point to take full advantage
of the gain in transmission time provided by the small size
of the compressed stream. Such a simplified decoding algo-
rithm would also make possible its transcription in JavaScript
for a full web integration using WebGL. This time issue is of
major importance for a realistic industrial use of progressive
compression.

In our system, we propose an adaptation of the recent progres-
sive compression algorithm from Lee et al. [2012] which ful-
fills these requirements (quality of the LoD, color handling, de-
compression simplicity). Our algorithm produces a binary com-
pressed file (.P3DW) that allows a fast and simple progressive
decompression. We have selected the algorithm from Lee et al.
[2012] since it produces among the best state of the art results
regarding rate-distortion performance and it is publicly available
in the MEsh Processing Platform (MEPP) [Lavoué et al. 2012]
(http://liris.cnrs.fr/mepp/).

2.2 Remote 3D visualization on the web

Like stated in the introduction, the delivery and visualization of 3D
content through the web has came with a huge delay with respect to
other digital media, mainly because of the higher requirements of
3D graphics in terms of computational power. Some web solutions
exist, like ParaViewWeb [Jomier et al. 2011], that compute the 3D
rendering on the server side and then transmit only 2D images to

the client. However we focus this state-of-the-art on client side
rendering solutions where the full 3D data are transmitted.
Many works on web-based remote visualization of 3D data have
been conducted for remote collaborative scientific visualization for
which an overview has recently been conducted by Mouton et al.
[2011]. ShareX3D [Jourdain et al. 2008] provides a web-based
remote visualization of 3D data; the web rendering is based on
Java. The COVISE (COllaborative VIsualization and Simulation
Environment) platform, in its last version [Niebling and Kopecki
2010], offers a web client implemented using JavaScript and
WebGL. However these systems, like most of existing ones, make
use of XML-based ASCII format such as VRML or X3D [Jourdain
et al. 2008] or JavaScript vertex arrays [Niebling and Kopecki
2010] to exchange the 3D data, which involves a significant latency
due to the large file size.
To resolve this latency issue, some compression methods have been
proposed. A simple binary encoder (X3Db) has been introduced
for the X3D format, however it produces poor compression rates
(around 1:5 regarding the original ASCII X3D size). Isenburg
and Snoeyink [2003] propose a compression method integrated
to the VRML/X3D format however the decompression needs a
dedicated Java client. Recently, several interesting compression
methods, allowing decompression in the web browser, have
been proposed: Google introduces webgl-loader [Chun 2012]
(http://code.google.com/p/webgl-loader/), a WebGL-based com-
pression algorithm for 3D meshes in the context of the Google
Body project [Blume et al. 2011]; it is based on UTF-8 coding,
delta prediction and GZIP and produces compression ratio around
5 bytes/triangle (for encoding coordinates, connectivity and
normals). Behr et al. [2012] propose to use images as binary
containers for mesh geometry within the X3DOM framework;



they obtain compression ratio around 6 bytes/triangle in the best
configuration. These two latter approaches produce interesting
compression ratio and a fast decoding mostly on the GPU. However
they are single-resolution hence they do not allow streaming or
level of details selection.
Some authors have proposed solutions for 3D data streaming;
Di Benedetto et al. [2010], in their JavaScript library SpiderGL
(which leans upon WebGL), propose a structure for managing
levels of details however it is only suited for adaptive rendering
since no streaming or compressed format is associated. In the
context of remote scientific visualization, Maglo et al. [2010]
propose a remote 3D data streaming framework based on a
progressive compression algorithm; however they need a dedicated
desktop client (Java and C++) to decompress the binary stream. A
similar early version of this latter work was proposed by Chen and
Nishita [2002] who consider an older and less efficient progressive
compression scheme. Some works on 3D streaming have also
been conducted in the context of online gaming and virtual world,
Marvie et al. [2011] present a streaming scheme for 3D data
based on a X3D extension. Their work is based on the progressive
mesh representation introduced by Hoppe [1996] and thus allows
streaming and level of details selection. However this progressive
representation is not really compressed, moreover once again a
dedicated desktop client is needed to visualize the data (no web
integration). Finally, very recently, Gobbetti et al. [2012] propose a
nice multi-resolution structure dedicated to the rapid visualization
of large 3D objects on the web, however it requires complex
preprocessing steps (parameterization and remeshing) and cannot
handle arbitrary meshes.

In our system, we consider a compressed representation of the 3D
data (in the form of a P3DW file) which provides good compression
ratio: around 1:10 equivalent to roughly 3 bytes/triangle, when
encoding coordinates and connectivity. This compressed format
allows a progressive decompression and streaming. The whole
decompression process is implemented in JavaScript and WebGL
hence the 3D streaming works directly on a web browser without
need of plug-in.

3 Web-based progressive compression

Like stated above, we need a simple decompression scheme to
make possible a JavaScript/WebGL implementation providing rea-
sonable processing time. For this purpose we have made a web-
based adaptation of the progressive algorithm from Lee et al. [2012]
which is based on the valence-driven progressive connectivity en-
coding proposed by Alliez and Desbrun [2001]. During the en-
coding, the mesh is iteratively simplified into several levels of de-
tails until reaching a base mesh (around a hundred vertices). At
each simplification iteration, the information necessary for the re-
finement is recorded; it contains connectivity, geometry and color
data. The encoding process and data are presented below.

3.1 Iterative simplification

The encoding process is based on the iterative simplification algo-
rithm introduced by Alliez and Desbrun [2001]. At each iteration,
the algorithm decimates a set of vertices by combining decimation
and cleansing conquests to get different levels of details (these two
steps are illustrated in figure 3). The decimation conquest con-
sists in removing a set of independent vertices using a patch-based
traversal, and then retriangulating the holes left (see fig.3.b). Then,
the cleansing conquest removes vertices of valence 3 in order to
regularize the simplified mesh (see fig.3.c). For regular meshes,

the combination of these two conquests performs the inverse
√
3

subdivision. For non-regular meshes, the retriangulation follows a
deterministic rule so that the mesh connectivity is kept as regular as
possible during the simplification process. These iterative simplifi-
cation steps are applied until reaching a coarse base mesh.

Figure 3: One iteration of the progressive encoding algorithm. (a)
Original mesh, (b) intermediate result after decimation (red ver-
tices are removed) and (c) final result after cleansing (blue vertices
are removed).

3.2 Encoded information

As presented above, during the encoding the mesh is iteratively
simplified (decimation + cleansing). At each simplification step,
the connectivity, geometry and color information of each removed
vertex are written in the compressed stream, to allow the refinement
at the decoding.

For the connectivity, like proposed in [Alliez and Desbrun 2001],
our algorithm only encodes the valences of the removed vertices,
plus some null patch codes when vertices were not able to
be simplified for irregular connectivity reasons. This valence
information is sufficient for the connectivity refinement at the
decoding. In [Alliez and Desbrun 2001] the valence values are
fed to an arithmetic coder. In our algorithm, we wish to avoid a
complex arithmetic decoding in JavaScript, hence we consider a
straightforward binary encoding. We use 3 bits per valence value
and null patch code, this gives an average of 10 bits/vertex for
the connectivity.

For the geometry, Alliez and Desbrun [2001] first apply a global
and uniform quantization to the mesh vertex coordinates. When
a vertex is removed, its position is predicted from the average
position of its 1-ring neighboring vertices and only the prediction
residue is encoded (once again using arithmetic coding). Lee et
al. [2012] improve this geometry encoding by introducing an
optimal adaptation of the quantization precision for each level of
details. In our web-based algorithm, we consider a global uniform
quantization (on Q bits) of the (x,y,z) coordinates and then we
simply binary encode them (without any prediction nor entropy
coding).

For the color, Lee et al. [2012] first transform the RGB color
components into the CIE L*a*b* representation which is more
decorrelated than the RGB space; thus it is more appropriate for
data compression. In [Lee et al. 2012], the L*a*b* components
are then quantized adaptively according to the level of details, and
predicted using a color-specific rule. The authors also introduce a
color metric to prevent the removal of visually important vertices
during the simplification. In our algorithm we also use this metric.
However, like for connectivity and geometry, the color encoding
is simplified: we apply a 8 bits quantization and a simple binary
encoding of the L*a*b* components (no prediction, nor entropy



coding).

In practice, for Q = 12 bits of geometric quantization, without
color information, a 3D model is compressed using 46 bits/vertex
(≈ 2.9 bytes/triangle). Basically we have made the choice of losing
a part of the compression performance to decrease the complexity
and the decompression time.

Figure 4 presents the compressed stream. This stream is naturally
decomposed into several parts, each standing for a certain level of
detail and each containing connectivity (C), geometry (G) and color
(Cl) information. The first part is the base mesh (usually around a
hundred vertices) which is encoded in a simple binary form. Then,
each part of the stream, together with the already decompressed
level, allows building the next level of details. At the end of the
stream decoding, the original object is retrieved (lossless compres-
sion).

Figure 4: Format of the encoded stream. Each part of the stream
contains geometry (G), connectivity (C) and color (Cl) data needed
for mesh refinement.

4 Web integration using WebGL and
JavaScript

4.1 An halfedge data structure in JavaScript

The decompression mechanism is basically the following: first the
base mesh is decoded, and then each layer of the compressed stream
provides connectivity, geometry and color information to construct
the next level of details. This mesh refinement corresponds to
steps (c) → (b) and (b) → (a) from figure 3 and thus needs
quite complex topological operations on the current 3D mesh like
vertex insertion, face merging, etc. These topological operations
need an efficient data structure for representing the mesh and al-
lowing fast adjacency queries. In classical compiled C++ Com-
puter Graphics applications, the most widespread structure is the
halfedge data structure (see figure 5), like used in the CGAL library
(http://www.cgal.org). It is an edge-centered data structure
capable of maintaining incidence information of vertices, edges and
faces. As illustrated in figure 5, each edge is decomposed into two
halfedges with opposite orientations. The halfedges that border a
face form a circular linked list around it. Each halfedge stores point-
ers to its incident face, its incident vertex and it’s previous, next and
opposite halfedges. Every faces and vertices store a pointer to their
incident halfedge. This data structure is able to answer local adja-
cency queries in constant time.

We have implemented the Polyhedron HalfEdge.js library which
describes a complete halfedge data structure in JavaScript. This
library allows to represent vertices, edges, faces and color attributes
and it provides access to all incidence relations of these primitives
(e.g. all incident faces from a given vertex). Moreover some
complex topological operations have been implemented like
create center vertex which adds a vertex to the barycenter
of a face and connect it with its neighbors (see step (c) → (b)
in figure 3), join facets which merges two facets into a
single one of higher degree, split face , split vertex,
fill hole, etc.

Figure 5: The halfedge data structure. Reprinted from [Kettner
1999].

Our library relies on the Three.js library
(https://github.com/mrdoob/three.js) for the
representation of basic geometrical primitives (vertex, faces, 3D
positions); Three.js is actually one of the most popular JavaScript
libraries for WebGL.

4.2 Implementation of the decompression

Basically five main components have been implemented in
JavaScript to allow the 3D data streaming:

• A binary reader which decodes the connectivity, geome-
try and color information from the binary P3DW file, in a
streamed way (i.e. level by level). For the streaming, noth-
ing is implemented in the server side; we just make one single
XMLHttpRequest. We use the responseText property of the
XHR to read the stream progressively. The maximum size
of a level (see figure 4) is estimated using the number of al-
ready decompressed vertices. The corresponding refinement
is launched as soon as enough data are available. In future im-
plementations, we plan to add a header at the beginning of the
compressed stream with the sizes of all levels, to read exactly
the necessary numbers of bytes. A minimal implementation
on the server side could also bring some interesting features;
for instance we could imagine authorizing the transmission of
the first levels of details in a free basis, and authorizing the
next ones after payment (like in online image libraries).

• The base mesh initializer which constructs the base mesh
(usually several dozens of vertices).

• The LoD decompressor which constructs the next level of
details, starting from an already decompressed level of de-
tails and using the decoded connectivity, geometry and color
information. This component computes the necessary geo-
metrical and topological operations (steps (c) → (b) and
(b) → (a) from figure 3). It is mostly based on our Poly-
hedron HalfEdge.js library presented above.

• The rendering and user interaction management, which are
mostly based on functions from the Three.js library.

• An efficient multi-thread implementation which enables user
interactions while decompressing the levels of details, hence
yielding an improved quality of user experience. JavaScript
owns the important limitation of being executable only in one
single thread. HTML5 has very recently provided a solu-
tion, the Web Workers, which allow to run scripts in back-
ground threads. The problem is that these Workers do not
have access to the DOM (Document Object Model) hence
they have to constantly communicate their data to the main



thread. Fortunately the Array Buffers have been very recently
introduced (September 2011) and allow a zero-copy transfer
between threads (like a pass-by-reference). In our implemen-
tation the decompression runs as background thread and we
use this brand new Array Buffer technology to quickly send
the decoded information to the main thread.

Note that an important effort of implementation was dedicated to
the minimization of the garbage collection. Indeed the garbage
collector is particularly harmful in JavaScript applications. It may
induce very visible pauses (half second or more). This fact is
particularly true for our refinement algorithms which allocate and
destroy of lot of elements (vertices, faces, halfedges) during the
topological operations with a naive implementation. Therefore we
have optimized the object recycling; no object is destroyed in our
current implementation.

All the features presented above are integrated into a web platform
illustrated in figure 6. Once the user has chosen a remote P3DW
file, the levels of details are streamed and visualized interactively,
as illustrated in the accompanying video that shows a live recording
of the streaming.

Figure 6: Illustration of our web page for streaming compressed
3D data.

5 Experiments and comparisons

5.1 Compression ratio

We have conducted experiments using the objects presented in fig-
ure 1. Table 1 presents respectively the original sizes of the 3D
models (OFF ASCII file format) and the sizes of the compressed
streams corresponding to a lossless compression (all levels of de-
tails). The geometry quantization precision Q was fixed between
11 bits and 13 bits according to the model, so as to obtain no per-
ceptible difference with the uncompressed version. We can observe
that the compression ratios are very good (around 1:10), which is
between 2 and 3 times better than a ZIP compression.

Table 2 illustrates a comparison with concurrent state of the
art methods: Google webgl-loader [Chun 2012] (UTF8 codec)
and the X3DOM’s image geometry approach [Behr et al. 2012]
(SIG codec). For a fair comparison, we have taken two models

Name (#vertices) OFF ZIP P3DW
Neptune (250k) 19,184 6,788 (2.8) 1,509 (12.7)
Tank (160k) 12,762 2,980 (4,3) 1,390 (9.2)
Venus (100k) 7,182 2,701 (2.7) 609 (11.8)
Monkey (50k) 5,105 1,856 (2.8) 430 (11.9)
Casting (5k) 332 112 (3) 28 (11.9)

Table 1: Baseline evaluation of the compression rates: file size
(kB) and associated reduction factor (in parenthesis) of our com-
pressed format (P3DW) against standard ASCII format (OFF) and
ZIP compression (ZIP), for the test models from figure 1.

considered by these methods and we have reproduced exactly the
parameters: 16 bits quantization (for position and normals) for
the Bunny (as the X3DOM’s approach), and 11 bits for position
and 8 bits for normal for the Happy Buddha (as the webgl-loader
approach). We usually not consider the compression of normals in
our approach, but we have included them for these comparisons.
For the X3DOM SIG approach we have selected the best setting
(SIG with PNG compression). We also include results from the
X3Db codec provided in [Behr et al. 2012]. We can observe
that our compression rate is quite similar to these two recent
concurrent approaches. Such compression factor will obviously
fasten the transmission time and thus reduce the latency for remote
visualization. However the main feature of our compressed P3DW
format is that it allows a progressive decoding and therefore yields
to very quickly visualize a coarse version of the 3D data (then
progressively refined) instead of waiting for the full object to be
downloaded before it can be displayed.

5.2 Quality of the levels of details

Figure 7 illustrates the geometric error associated with the differ-
ent levels of details according to the percentage of decoded ver-
tices/facets, for the Venus model. We can easily see than the visual
appearance of the decoded model becomes very quickly correct. In-
deed, after decoding only 10% of the elements (this corresponds ba-
sically to decoding 10% of the P3DW file, which represents around
1% of the original ASCII file size) we already have a nice approxi-
mation of the object.

Figure 7: Maximum Root Mean Squared error vs percentage of
decoded elements for the Venus model.



Name (#vert.) OFF ZIP P3DW X3Db X3DOM UTF8 GZIP UTF8
Bunny (35k) 2,448 860 462 937 406 NA NA
Happy Buddha (540k) 41,623 10,132 4,523 NA NA 6.789 2.849

Table 2: Comparison with X3Db, Google webgl-loader [Chun 2012] (UTF8 codec) and the X3DOM’s image geometry approach [Behr
et al. 2012] (SIG PNG codec). File sizes are given in kB.

5.3 Decompression time

Like stated in the introduction, the decompression time is of great
importance for the usability of the method. Table 3 illustrates the
decompression times for our web platform using the Mozilla Fire-
fox browser on a 2GHz laptop. The data are downloaded/streamed
from a remote server using a high speed connection in order to
make the downloading time negligible. The table shows that
the decoding time has a linear behavior regarding the number of
decoded elements. On average our platform is able to decode
between 20k and 30k vertices per second. This timing is very
good for a JavaScript implementation and allows bringing a very
significant gain in a remote visualization scenario, in term of
quality of experience. Even if the whole decompression may take
several seconds for large objects, it is interesting to see that what-
ever the original size of the data, we obtain very quickly several
thousands of vertices, hence a very nice approximation. Note that
these results correspond to the multi-thread implementation, the
mono-thread version is around 25% faster (but the user cannot
interact with the object until it is fully decompressed).

Name 10% 20% 50% 100%
Neptune 1.0 (25k) 1.8 (50k) 4.6 (125k)) 11.2 (250k)
Tank 1.1 (16k) 1.6 (32k) 4.0 (80k) 8.8 (160k)
Venus 0.4 (10k) 0.8 (20k) 1.5 (50k)) 3.2 (100k)
Monkey 0.3 (5k) 0.4 (10k) 0.9 (25k)) 1.8 (50k)
Casting 0.1 (0.5k) 0.1 (1k) 0.1 (2.5K)) 0.2 (5k)

Table 3: Decompression time (in seconds, for a 2GHz laptop) and
associated numbers of vertices (in parenthesis) according to the
percentage of decoded elements, for the test models from figure 1.

5.4 Remote 3D streaming results

We have conducted some experiments and comparisons in order to
evaluate the gain, in term of quality of experience, of our web 3D
streaming technical solution compared with concurrent approaches.

5.4.1 Baseline results

In this first experiment, we have considered the remote visualiza-
tion of the Neptune and Venus 3D models through a good ADSL
Internet access (10 Mbit/s), and have compared our results with the
transmission in uncompressed form and the transmission after ZIP
compression.
The latency (i.e. the time the user will wait before seeing anything)
in the case of the transmission/visualization in uncompressed form
is respectively 6.7 seconds for Venus (5.9s for transmission and 0.8s
for loading the .OBJ file) and 18.5 seconds for Neptune (15.7s for
transmission and 2.8s for loading the .OBJ file). If we consider the
transmission of ZIP files, the latency is then 3s and 8.3s for Venus
and Neptune respectively. In comparison, with our system, the user
immediately (0.3s) starts to see coarse versions of the models. After
0.5s he visualizes the Neptune and Venus models with respectively
5% and 10% of elements (around 10K vertices), which constitute

already very good approximations. Figure 8 and 9 illustrate the per-
centage of decoded elements in function of the time the user wait.
The levels of details corresponding to 10% elements are illustrated.
The curves corresponding to uncompressed representation and ZIP
compression are also shown.
The accompanying video shows the live results for these two mod-
els.

Figure 8: Percentage of decoded elements according to the time
latency starting from the selection of the Venus model on the
web page. The dotted lines represent the scenarios of transmis-
sion/visualization in uncompressed ASCII form (red) and ZIP for-
mat (green).

Figure 9: Percentage of decoded elements according to the time
latency starting from the selection of the Neptune model on the
web page. The dotted lines represent the scenarios of transmis-
sion/visualization in uncompressed ASCII form (red) and ZIP for-
mat (green).

5.4.2 Comparison with concurrent state of the art

We have tested our web platform for the remote visualization of
the Happy Buddha model (500K vertices) using a 5 Mbit/s Internet
access (a typical 3G+ bandwidth). We have compared the results



against the Google webgl-loader (Happy Buddha available here1)
and the X3DOM’s image geometry approach (Happy Buddha avail-
able here2), under the same conditions (same PC, same bandwidth,
same browser). Of course the servers are not the same, since we
used the servers from the owners of the solutions. However the
server owns a tiny influence on the results which mostly depend on
the PC and bandwidth. Figure 10 illustrates some screenshots of the
visualization for these three approaches, after respectively 800ms,
1.5s, 3s and 6s after launching the loading of the web pages. The
live results are available in the accompanying video.
We can easily see the benefit of our streaming approach in this low
bandwidth case. Indeed, after 800ms, we already have a coarse
but illustrative model (1.5K vertices) which is then refined progres-
sively: 16k vertices after 1.5s, 38K vertices after 3s and 92K ver-
tices after 6s. On the other hand, for the single rate approaches, the
user has to wait around 10s to see the whole 3D model. Our ap-
proach is particularly suited for medium and low bandwidth chan-
nels; indeed, in case of very high speed connections (50 Mbit/s),
Google webgl-loader and X3DOM’s approach are very efficient.

We have not tested our platform on a mobile device. However, the
management of the levels of details is a very interesting feature for
this kind of lightweight device. For instance, we could decide to
interrupt the stream when a certain number of vertices are reached
or when the frame-rate decreases under a threshold.

6 Conclusion

We have presented a technical solution for the remote streaming
and visualization of compressed 3D content on the web. Our
approach relies on a dedicated progressive compression algorithm,
a new halfedge JavaScript structure and a fast and multi-thread
JavaScript implementation of the streaming and decompression
into levels of details. Our approach brings a clear gain in term of
quality of user experience by removing the latency and providing
very quickly a good approximation of the 3D model even for huge
data.
Our approach is one of the first attempts to implement complex
geometry processing operations directly in JavaScript; hence it
provides useful insights on the benefits and limitations of this
scripting language. JavaScript has shown unexpected impressive
performances in our case. Of course, the main weakness of our
approach is to make an intensive use of the CPU. We plan to
investigate parallel decoding algorithms in order to overcome this
limitation.

One remaining critical issue for the practical industrial use of web
3D data streaming is the question of the intellectual property protec-
tion. Indeed, during its transmission or visualization the 3D content
can be duplicated and redistributed by a pirate. This issue can be
resolved with the use of watermarking techniques. Such technique
hides secret information in the functional part of the cover content
(usually the geometry in case of 3D data). We plan to integrate such
watermarking algorithm in the next version of our web platform
however this algorithm has to be embedded within the compression
and this constitutes a quite complex issue.

Acknowledgment

We thank the anonymous reviewers for helping us to improve this
paper. This work is supported by Lyon Science Transfert through
the project Web 3D Streaming.

1http://webgl-loader.googlecode.com/svn/trunk/samples/happy/happy.html
2http://x3dom.org/x3dom/example/x3dom imageGeometry.html

References

ALLIEZ, P., AND DESBRUN, M. 2001. Progressive encoding for
lossless transmission of 3D meshes. In ACM Siggraph, 198–205.

BEHR, J., JUNG, Y., FRANKE, T., AND STURM, T. 2012. Using
images and explicit binary container for efficient and incremental
delivery of declarative 3D scenes on the web. In ACM Web3D,
17–26.

BLUME, A., CHUN, W., KOGAN, D., KOKKEVIS, V., WEBER,
N., PETTERSON, R. W., AND ZEIGER, R. 2011. Google Body:
3D human anatomy in the browser. In ACM Siggraph Talks.

CHEN, B., AND NISHITA, T. 2002. Multiresolution streaming
mesh with shape preserving and QoS-like controlling. In ACM
Web3D, 35–42.

CHUN, W. 2012. WebGL Models: End-to-End. In OpenGL In-
sights, P. Cozzi and C. Riccio, Eds. CRC Press, 431–454.

DI BENEDETTO, M., PONCHIO, F., GANOVELLI, F., AND
SCOPIGNO, R. 2010. SpiderGL: a JavaScript 3D graphics li-
brary for next-generation WWW. In ACM Web3D, 165–174.

GANDOIN, P.-M., AND DEVILLERS, O. 2002. Progressive loss-
less compression of arbitrary simplicial complexes. In ACM Sig-
graph, 372–379.

GOBBETTI, E., MARTON, F., RODRIGUEZ, M. B., GANOVELLI,
F., AND DI BENEDETTO, M. 2012. Adaptive quad patches. In
ACM Web3D, 9.

HOPPE, H. 1996. Progressive meshes. ACM Siggraph.

ISENBURG, M., AND SNOEYINK, J. 2003. Binary compression
rates for ASCII formats. In ACM Web3D, 6–11.

JOMIER, J., JOURDAIN, S., AND MARION, C. 2011. Remote
Visualization of Large Datasets with MIDAS and ParaViewWeb.
In ACM Web3D.

JOURDAIN, S., FOREST, J., MOUTON, C., NOUAILHAS, B., MO-
NIOT, G., KOLB, F., CHABRIDON, S., SIMATIC, M., ABID, Z.,
AND MALLET, L. 2008. ShareX3D, a scientific collaborative 3D
viewer over HTTP. In ACM Web3D.

KETTNER, L. 1999. Using generic programming for designing a
data structure for polyhedral surfaces. Computational Geometry
13, 21957, 65–90.

KHRONOS, 2009. WebGL - OpenGL ES 2.0 for the Web.

LAVOUÉ, G., TOLA, M., AND DUPONT, F. 2012. MEPP - 3D
Mesh Processing Platform. In International Conference on Com-
puter Graphics Theory and Applications.

LEE, H., LAVOUÉ, G., AND DUPONT, F. 2012. Rate-distortion
optimization for progressive compression of 3D mesh with color
attributes. The Visual Computer 28, 2 (May), 137–153.

MAGLO, A., LEE, H., LAVOUÉ, G., MOUTON, C., HUDELOT,
C., AND DUPONT, F. 2010. Remote scientific visualization of
progressive 3D meshes with X3D. In ACM Web3D.

MARVIE, J.-E., GAUTRON, P., LECOCQ, P., MOCQUARD, O.,
AND GÉRARD, F. 2011. Streaming and Synchronization of
Multi-User Worlds Through HTTP/1.1. In ACM Web3D.

MOUTON, C., SONS, K., AND IAN GRIMSTEAD. 2011. Collabo-
rative visualization: current systems and future trends. In ACM
Web3D.



NIEBLING, F., AND KOPECKI, A. 2010. Collaborative steering
and post-processing of simulations on HPC resources: Everyone,
anytime, anywhere. In ACM Web3D.

PAJAROLA, R., AND ROSSIGNAC, J. 2000. Compressed progres-
sive meshes. IEEE Visualization and Computer Graphics 6, 1,
79–93.

PENG, J., AND KUO, C.-C. J. 2005. Geometry-guided progressive
lossless 3D mesh coding with octree (OT) decomposition. ACM
Transactions on Graphics (TOG) 24, 3.

PENG, J., KIM, C.-S., AND KUO, C.-C. J. 2005. Technologies
for 3D mesh compression: A survey. Journal of Visual Commu-
nication and Image Representation 16, 6, 688–733.

PENG, J., KUO, Y., ECKSTEIN, I., AND GOPI, M. 2010. Feature
Oriented Progressive Lossless Mesh Coding. Computer Graph-
ics Forum 29, 7, 2029–2038.

TAUBIN, G., AND ROSSIGNAC, J. 1998. Geometric compression
through topological surgery. ACM Transactions on Graphics 17,
2, 84–115.

TIAN, D., AND ALREGIB, G. 2008. Batex3: Bit allocation for
progressive transmission of textured 3-d models. IEEE Transac-
tions on Circuits and Systems for Video Technology 18, 1, 23–35.

VALETTE, S., CHAINE, R., AND PROST, R. 2009. Progressive
lossless mesh compression via incremental parametric refine-
ment. Computer Graphics Forum 28, 5 (July), 1301–1310.

Figure 10: Some screenshots illustrating the remote visualization
of the Happy Buddha (1 million triangles) on a 5 Mbit/s Internet ac-
cess, using our approach (left column), webgl-loader [Chun 2012]
(middle column) and X3DOM’s image geometry [Behr et al. 2012]
(right column). From top to bottom, screenshots are taken respec-
tively at 800ms, 1.5s, 3s and 6s after loading the web page.


