

New methods for progressive compression

of colored 3D Mesh

Ho Lee

Université de Lyon, CNRS
Université Lyon 1, LIRIS,

UMR5205, F-69622, France

ho.lee@liris.cnrs.fr

Guillaume Lavoué

Université de Lyon, CNRS
INSA-Lyon, LIRIS,

UMR5205, F-69621, France

guillaume.lavoue@liris.cnrs.fr

Florent Dupont

Université de Lyon, CNRS
Université Lyon 1, LIRIS,

UMR5205, F-69622, France

florent.dupont@liris.cnrs.fr

ABSTRACT

In this paper, we present two methods to compress colored 3D triangular meshes in a progressive way. Although

many progressive algorithms exist for efficient encoding of connectivity and geometry, none of these techniques

consider the color data in spite of its considerable size. Based on the powerful progressive algorithm from Alliez

and Desbrun [All01a], we propose two extensions for progressive encoding and reconstruction of vertex colors: a

prediction-based method and a mapping table method. In the first one, after transforming the initial RGB space

into the Lab space, each vertex color is predicted by a specific scheme using information of its neighboring

vertices. The second method considers a mapping table with reduced number of possible colors in order to

improve the rate-distortion tradeoff. Results show that the prediction method produces quite good results even in

low resolutions, while the mapping table method delivers similar visual results but with a fewer amount of bits

transmitted depending on the color complexity of the model.

Keywords: Progressive compression; Colored 3D mesh.

1. INTRODUCTION

Nowadays, 3D models are widely used in many

applications such as virtual reality, entertainment,

Computer-Aided Design, scientific simulation and e-

commerce. Among the various existing

representations, 3D triangular meshes are particularly

appropriate to represent these models due to their

algebraic simplicity so that the most part of

manipulations can be processed by the graphic

hardware. The increasing popularity and the

increasing size of 3D meshes to respond to the needs

of representing objects or scenes with more and more

realism have become a critical issue, especially for

the end-users with limited bandwidth and storage

capacity. In this context, compression is a good

solution for this task; two different classes of

techniques exist: single-rate and progressive. Single-

rate techniques compress the mesh information as a

whole and the visualization is possible only when the

entire compressed file is received at the user-side.

These techniques often have advantages in terms of

compression ratio. On the other hand, progressive

techniques are more flexible by providing the

possibility of early visualization of the coarse version

with very few bits transmitted and then more refined

models can be rendered when more bits are received.

This property of progressive reconstruction is useful

especially for large models and for Internet-based

applications.

A typical 3D mesh is composed by its geometry,

connectivity and attribute data. Geometry data

determine vertex positions in the 3D space.

Connectivity data describe how these vertices are

connected together and attribute data specify colors,

surface normals or texture information for instance.

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

Among these mesh elements, attribute data is not

often considered by the state-of-the arts mesh

compression algorithms in spite of their visual

importance and their considerable size, especially for

the progressive algorithms.

In this paper, we propose two approaches to encode

efficiently color data in a progressive manner. Our

work can be seen as an extension of the progressive

mesh compression algorithm from [All01a] which

encodes only the connectivity and the geometry. We

have chosen this algorithm, since it is the best state-

of-the-art connectivity-driven algorithm. As it was

observed in [Lee09], even the most efficient

geometry-guided algorithm [Pen05] produces a poor

visual quality at low and medium bit rate, due to the

stair-like effects. Moreover, Alliez and Desbrun’s

algorithm which is based on the vertex removal

allows a better prediction using more neighboring

vertices than algorithms based on edge-contraction

[Hop96] [Paj00] [Tau98a] [Kar02], leading to the

better compression of the color data.

Related work
Single-rate techniques have been firstly studied by

many researchers in order to reduce compactly the

mesh data [Tau98b] [Tou98] [Gum98] [Baj99]

[Ros99] [All01b].

Later on, research on progressive compression

techniques have been introduced with the increasing

popularity of web-based applications. The first

progressive algorithm was proposed by Hoppe

[Hop96]. This new mesh representation, progressive

mesh, simplifies a given mesh by applying

successively edge contraction operations. At each

step, the edge to be contracted is properly chosen in

order to reduce the approximation error as much as

possible. At the decompression stage, the

reconstruction is achieved by the inverse operation,

vertex split. This method has been extended by

several researchers to improve the compression

efficiency and also the rate-distortion trade-off

[Paj00] [Tau98a] [Kar02]. In their work, Cohen-Or et

al. [Coh99] proposed the patch coloring algorithm for

progressive transmission. This algorithm removes

iteratively an independent vertex set – any two

vertices of this set are not connected by an edge –

using vertex decimation. Then, each hole left by

vertex decimation is re-triangulated in a deterministic

way. The set of these new triangles is called a patch.

The authors applied 2-coloring and 4-coloring

methods to the patches in order to permit the decoder

to identify correctly each patch. This algorithm

encodes the connectivity with an average of 6 bits-

per-vertex (bpv). Alliez and Desbrun [All01a]

extended the existing valence-driven single-rate

approaches [Tou98] [All01b] for progressive mesh

encoding. Their algorithm, which is also based on

vertex decimation, consists of two conquests:

decimation and cleansing. The decimation conquest is

successively applied alternating with cleansing

conquest, building different levels of details. This

algorithm encodes the connectivity with an average of

3.7 bpv.

All the progressive algorithms described above are

connectivity-driven algorithms, meaning that the

priority is given to the connectivity coding.

Observing that the amount of geometry data in the

compressed file is often larger than connectivity data,

Gandoin and Devillers [Gan02] proposed the first

geometry-driven approach based on the kd-tree space

subdivision. In terms of lossless compression ratio,

this algorithm outperforms connectivity-driven

algorithms. Peng and Kuo [Pen05] proposed a more

efficient geometry-guided technique by using the

octree cell subdivision. An improvement is achieved

by using efficient prediction methods for both

connectivity and geometry. These geometry-driven

algorithms give very impressive results in terms of

lossless compression ratio, however they provide

quite poor results at low resolutions, hence they are

not fully efficient for progressive transmission. In

[Lee08], the authors proposed key-frame based

technique for the efficient transmission of animating

meshes.

Up to present, the compression of the mesh attribute

data such as colors, normals or texture coordinates

plays a secondary role. Among the well-known

single-rate techniques, only [Dee95] [Baj99]

[Tau98b] proposed a method to encode vertex-bind

color information in the RGB color space. However,

the prediction and the quantization used for the color

encoding are the same as for the geometry encoding

regardless of its different nature. More recently, Ahn

et al. [Ahn06] and Yoon et al. [Yoo07] proposed new

methods for the efficient encoding of color data. Ahn

et al. [Ahn06] used a mapping table based on the

vertex layer traversal algorithm. Instead of encoding

color coordinates of each vertex, they encode the

index of the vertex color in the mapping table. A

color value in the mapping table is encoded when it

appears for the first time during the traversal. In other

words, they have to encode the index of each vertex

and the corresponding color coordinates in the

mapping table. To further improve the efficiency,

they also used a delta coding for color index

encoding. Yoon et al. [Yoo07] introduces a

prediction method using connectivity and geometry

information of neighboring vertices. They consider

different weights for the neighboring vertices using

angle analysis. Then the color value of the current

vertex is predicted from weighted averaged color

values.

Geometry images [Gu02] [Yao08] permit to represent

compactly the colored geometric models using 2D

images. There exist also some algorithms which

allow the simplifying the mesh taking the color

information into account [Hop99] [Gar98] [Roy05].

However, these algorithms do not provide a way to

reconstruct the original mesh. To our knowledge,

there is no progressive mesh coder allowing the

encoding of color information.

2. DESCRIPTION OF BASE

ALGORITHM

Our color compression scheme is based on the

valence-driven progressive approach proposed by

Alliez and Desbrun [All01a]. This algorithm uses the

good statistical property of the native distribution of

vertex valences for the mesh connectivity encoding.

This approach iteratively decimates a set of vertices

by combining decimation and cleansing conquests to

get different levels of details (LOD). Decimation

conquest consists in traversing the mesh patch by

patch using a gate-based traversal; the front vertex of

the current gate is removed only when its valence is

below 7, in order to preserve compactly the vertex

valence distribution. The hole left is then re-

triangulated. The boundary edges of the actual patch

are pushed into a FIFO list. The decimation conquest

continues with the next available gate in the FIFO list,

performing a breadth first traversal. Similarly,

cleansing conquest removes only vertex of valence 3.

Fig.1 illustrates this mechanism: a regular input mesh

(Fig.1.a) is simplified by decimation conquest

(Fig.1.b). A set of independent vertices (red vertices)

is removed and patches are re-triangulated. After

performing cleansing conquest (Fig.1.c), vertices of

valence 3 (blue vertices) are removed. We can see

that as the input mesh is regular, the simplified mesh

is also regular. Even for irregular meshes, this

algorithm delivers better triangulation at coarse levels

than the work of Cohen-Or et al. [Coh99]. During the

compression stage, valences of removed vertices and

additional null codes (in case of irregular mesh) are

encoded for the connectivity.

For the geometry coding, Alliez and Desbrun first

applied a global and uniform quantization to the

coordinates of the mesh vertices. Then, they used

both the barycentric prediction and the approximate

Frenet coordinate frame, separating normal and

tangential components to further optimize the bit rate.

The base vectors of the local frame are built from the

current gate (one of the boundary edges of the patch)

and the approximated patch normal. The barycenter is

obtained by averaging positions of neighboring

vertices. The difference between the position of the

vertex to be removed and the barycenter is then

encoded in the local frame.

Figure 1. An example of decimation (b) and

cleansing conquests (c) applied on a regular mesh

(a).

Recently, Lee et al. [Lee09] proposed an improved

geometric coder using a discrete bijection. They

adopted the bijection method of Cartens et al.

[Car99] and optimized the coding efficiency by

providing an angle minimization. They also proposed

a framework to improve the rate-distortion (R-D)

trade-off by using adaptive quantization during the

mesh simplification process.

In the following of this paper, we use the mesh

traversal and the connectivity encoding techniques of

[All01a] and the geometry coder of [Lee09].

3. COLOR COMPRESSION

The amount of color data associated to the mesh can

be as large as or even larger than connectivity and

geometry without an adaptive compression method.

Therefore, a specific technique is required to reduce

efficiently these data.

We propose in this section two methods which permit

to encode the color data associated with mesh

vertices, in a progressive manner.

Color space transform
Before to compress any color data, all colors

expressed in the RGB space are transformed into the

Lab space. The Lab space is the luminance-

chrominance representation which describes more

closely the human perception system. Moreover, this

representation is more decorrelated than the RGB

space. Thus, the Lab space is more appropriate to the

data compression. After this transformation, each

color is represented using 8 bits for L, a and b color

components as in the initial RGB space.

Prediction-based method
Since we consider the connectivity reduction of

Alliez and Desbrun [All01a], the simplest method to

predict the color value of the current vertex to decode

is to use the average color of neighbors, like the

prediction used for geometry encoding as illustrated

in Fig. 2.

Figure 2. A vertex is removed (resp. inserted)

during the encoding (resp. decoding) process. Its

position is predicted from the averaged position of

the neighboring vertices.

However, this prediction is not very efficient because

the color data own a different behavior than geometry.

In the case of quite regular meshes, the difference of

positions (geometrical distance) between two vertices

connected by an edge is relatively small, hence the

barycentric prediction, explained in Section 2, can be

performed efficiently. However, the color difference

between two adjacent vertices can be very important,

especially in the case of a vertex located in a color

boundary, resulting that the averaging prediction is

quite ineffective.

We can observe that the color value of a vertex is

generally very close to at least one of its neighboring

vertices’ colors. Based on this observation, we

propose a method which selects the proper color

among the colors of the neighboring vertices so as to

predict more efficiently. To perform this color

selection, we first calculate the average values, Lmean,

amean and bmean of the neighbor colors. Then, for each

component, we select the one which is the closest to

the corresponding average component among the

neighboring vertices’ colors. The difference between

the original and the selected color component values

is then entropy coded to allow the decoder to

reconstruct the exact color value. During the

decompression process, after an insertion of new

vertex, the corresponding color data is added to the

vertex, allowing the progressive reconstruction.

Mapping table method
As each vertex color is represented using 24 bits,

there exist 2
24

 possible colors. Yet, the human visual

perception system cannot distinguish relatively small

change of colors. Hence, we propose a method to

reduce the bit rate needed for color encoding by

reducing the number of colors to encode.

Our method first applies a clustering algorithm to the

input mesh in order to reduce the number of possible

colors without seriously affecting the visual distortion.

Then, we use a mapping table method as in [Ahn06],

based on the observation that this method is

particularly useful when there is small number of

colors. Fig.3 illustrates the diagram of our method in

the case of the compression process.

Figure 3. Diagram of the encoding process of our

second algorithm.

The clustering method is widely used for 2D image

compression [Sal98]. It consists in finding a set of

representatives (Look Up Table) and in mapping each

vertex color to its nearest representative. To generate

a correct mapping table by minimizing the color

distortion as much as possible, we use the well-

known K-means clustering algorithm.

1. K initial seeds colors are selected from the

mesh color data set.

2. K clusters are created by associating each

color to the nearest seed.

3. The centroids of each cluster are used as

new seeds and the new clusters are created.

The algorithm repeats step 2 and 3 until the all seeds

are unchanged. Since the efficiency of the clustering

algorithm depends on the initial condition of the

seeds, we use as initial seeds the K more frequent

colors of the input mesh in order to strengthen the

approximation. After finding K representatives, each

vertex color is replaced by its closest representative.

A result of this clustering algorithm is illustrated in

Fig.4 with the Globe model containing initially 5030

colors. Although the number of possible colors is

reduced to 256 colors, one can hardly distinguish the

color distortion.

Figure 4. Color reduction based on clustering

for the Globe model.

To encode the color data, we use the mapping table

containing the final representatives obtained by the

clustering algorithm. At the compression stage, when

removing a vertex, the color index corresponding to

its color in the mapping table is encoded.

To further enhance the rate-distortion performance

and also to reduce additionally the coding cost, all

color values contained in the mapping table are

encoded in a progressive way. When the resolution

level is augmented (when the mesh is refined to one

higher level), the information of new colors are sent,

enlarging the size of the mapping table. Fig. 5

illustrates an example of the progressive decoding of

the mapping table. For a given resolution level, the

mapping table contains 4 colors (C0 to C3). When a

new vertex is inserted, and if the decoder identifies

that the associated color is not present in the current

mapping table then the new color value is added to it.

Furthermore, we try to reduce the coding cost needed

for the encoding of the mapping table. In Ahn et al.’s

work [Ahn06], they encode each color values in the

mapping table using 24 bits. We reduce this coding

cost by using our prediction-based method. During

the compression process, we use our prediction

method when removing each vertex. And we store

only the difference between the original color value

and the predicted color of the last encountered vertex

for each color of the mapping table. So, during the

mesh reconstruction, when a vertex is inserted and its

color is revealed for the first time, we use information

of the neighbors to acquire the correct color value of

the corresponding color in the mapping table.

Even when the full resolution of the geometry has

been reached, there still exist some differences of

colors between the reconstructed color mesh and the

original one, due to the color number reduction step

(i.e. the clustering). However, depending on the

needs, the original vertex colors can be restored, by

encoding the difference of color between the initial

color value of each vertex and its representative

during the clustering phase. These differences are

sent at the end of the decompression process.

Figure 5. An example of progressive decoding of

the mapping table. Initial mapping table (a) is

enlarged when a new color, C4, appears (b).

4. EXPERIMENTAL RESULTS

Fig. 6 shows the 3D models used in our experiments.

Each coordinate of vertices of these models is

quantized using 10 bits.

Figure 6 : Models used for compression.

Lossless compression
Table 1 shows lossless compression results for the

test models using our methods. The bit rates needed

for compression of the color information and those of

the mesh connectivity and the geometry (C+G) are

given in bits-per-vertex (bpv). As most of the well-

known state-of-the-art progressive algorithms do not

consider color data, the efficiency of our prediction

method is compared with the prediction scheme used

in Yoon et al.’s work [Yoo07] and the averaging

prediction. The method of Yoon et al. was originally

applied in a single-rate way in their work. We have

adapted their prediction method based on angle

analysis for the mesh traversal technique of [All01a].

We can observe that the performance of these

prediction schemes is similar for each model and

better compression rates are obtained for the models

containing large surface of smooth color variation,

such as GIST-Monkey and Swirl models. For all test

models, our method outperforms those of [Yoo07]

and the averaging prediction method, especially for

the Swirl model which contains many color boundary

vertices and for those the color difference on the

boundary is important.

Results of lossless compression of our mapping table

method are also given. Different numbers of seeds, K,

are used during the color number reduction step. We

can see that the more the number of initial seeds

increases, the more the coding rates decreases. This is

because the cost of the original color restitution

applied after reaching the finest geometry resolution

level increases rapidly when the value of K becomes

smaller. As a consequence, the result of the mapping

table is better than our prediction method when the

value of K is superior to 256.

Progressive compression
Fig. 7 illustrates some intermediates meshes with

respective coding rates. All the rates presented in this

figure include the amount of connectivity, geometry

and color data. Our two methods produce

intermediates results with a quite good visual quality

both for the geometry and the color even for low bit

rates (< 5 bpv).

In this figure, the GIST-Monkey model is used to

compare the efficiency of our two methods:

prediction method (d–f) and mapping table method

(g–i). As expected, the mapping table method

produces intermediate meshes of similar visual

quality with less bit rates. Even though the number of

colors has been severely reduced, from 6669 to 32,

one can hardly sense the discrepancy comparing to

the results of the prediction method.

5. CONCLUSION

In this paper, we have presented two methods for

progressive encoding of colored meshes. To our

knowledge the proposed methods are the first ones

which consider the effective color coding in the field

of 3D progressive compression. Our first algorithm

based on the prediction is easily implementable and

produces quite good results even for low bit rates.

The second algorithm combining the mapping table

with the clustering delivers intermediate meshes of

almost equal visual quality with fewer bits, enhancing

the rate-distortion trade-off.

As future work, we will investigate a reliable metric

permitting to measure the global distortion between

two meshes taking mesh geometry and also color into

account, in order to evaluate the rate-distortion

performance.

ACKNOWLEDGMENTS

We would like to thank Hyun Soo Kim for sending us

the color mesh models. This work has been supported

by French National Research Agency (ANR) through

COSINUS program (project COLLAVIZ n°ANR-08-

COSI-003).

Table 1. Compression rates of test models in bits-per-vertex.

Models # V # Color C + G
Prediction Mapping table

Average Yoon Our K = 64 K = 256 K = 1024

Globe 36866 5030 4.61 16.43 16.17 15.37 15.81 13.81 12.65

GIST-Monkey 50503 6669 13.5 6.49 6.49 5.95 8.52 8.33 7.23

Swirl 9216 138 4.12 9.97 10.16 6.62 3.04 - -

Figure 7. Result of progressive decoding of the test models. The model Globe (a – c) and the model GIST-

Monkey (d – f) are progressively reconstructed using our prediction method. Intermediates meshes of the

models GIST-Monkey (g – i) and Swirl (j – l) are given by our mapping table method. For both models,

the number of possible colors are reduced, using K = 32 seeds in the clustering step. The bit rates include

the connectivity, the geometry and the color information.

 REFERENCES

 [Ahn06] J. Ahn, C. Kim, Y. Ho. Predictive compression

of geometry, color and normal data of 3-D mesh

models. IEEE Transactions on Circuits and Systems

for Video Technology, 16(2):291-299, 2006.

 [All01a] P. Alliez and M. Desbrun. Progressive

compression for lossless transmission of triangle

meshes. In ACM SIGGRAPH, 198-205, 2001.

[All01b] P. Alliez and M. Desbrun. Valence-Driven

connectivity encoding for 3D meshes. In

Eurographics, 480-489, 2001.

 [Baj99] C. L. Bajaj, V. Pascucci, and G. Zhuang. Single

resolution compression of arbitrary triangular meshes

with properties. In IEEE Visualization, 1999, 307-

316.

 [Car99] H.-G. Cartens, W.A. Deuber, W. Thumser, and

E. Koppenrade. Geometrical bijections in discrete

lattices. Combinatorics, Probability and Computing.

8:109-129, 1999.

 [Coh99] D. Cohen-Or, D. Levin, and O.Remez.

Progressive compression of arbitrary triangular

meshes. In IEEE Visualization Conference

Proceedings, 67-72, 1999.

 [Dee95] M. Deering. Geometry compression. In ACM

SIGGRAPH, 13-20, 1995.

 [Gan02] P.-M. Gandoin and O. Devillers. Progressive

lossless compression of arbitrary simplicial

complexes. ACM Transactions on Graphics,

21(3):372-379, 2002.

 [Gar98] M. Garland and P. Heckbert. Simplifying

surfaces with color and texture using quadric error

metrics. In IEEE Visualization, 263-269, 1998.

 [Gu02] X. Gu, S. Gortler, and H. Hoppe. Geometry

Images. ACM Transactions on Graphics, 21(3):355-

361, 2002.

 [Gum98] S. Gumhold and W. Strasser. Real time

compression of triangle mesh connectivity. In ACM

SIGGRAPH, 133-140, 1998.

 [Hop96] H. Hoppes. Progressive meshes. In ACM

SIGGRAPH, 99-108, 1996.

 [Hop99] H. Hoppes. New quadric metric for simplifying

meshes with appearance attributes, In IEEE

Visualization, 59-66, 1999.

 [Kar02] Z. Karni, A. Bogomjakov, and C. Gotsman.

Efficient compression and rendering of multi-

resolution meshes. In IEEE Visualization Conference

Proceedings, 347-354, 2002.

 [Lee09] H. Lee, G. Lavoué, and F. Dupont. Adaptive

coarse-to-fine quantization for optimizing rate-

distortion of progressive mesh compression. In VMV,

73-81, 2009.

 [Lee08] T. Lee, Y. Wang, and T. Chen. Animation key-

frame extraction and simplification using deformable

analysis. IEEE Transactions on Circuits and Systems

for Video Technology, 18(4):478-486, 2008.

 [Paj00] R. Pajarola and J. Rossignac. Compressed

progressive meshes. IEEE Transactions on

Visualization and Computer Graphics, 6(1):79-93,

2000.

 [Pen05] J. Peng and C.-C.J. Kuo. Geometry-guided

progressive lossless 3D mesh coding with octree

(OT) decomposition. In ACM SIGGRAPH, 609-616,

2005.

 [Ros99] J. Rossignac. Edgebreaker : Connectivity

compression for triangle meshes. IEEE Transaction

on Visualization and Computer Graphics, 5(1):57-61,

1999.

 [Roy05] M. Roy, S. Foutou, A. Koschan, F. Truchetet,

and M. Abidi. Multiresolution analysis for meshes

with appearance attributes, In ICIP, 816-819, 2005

 [Sal98] D. Salomon. Data compression: The complete

reference. Springer Verlag, 1998.

 [Tau98a] G. Taubin, A. Guéziec, W. Horn, and F.

Lazarus. Progressive forest split compression. In

ACM SIGGRAPH, 123-132, 1998.

 [Tau98b] G. Taubin and J. Rossignac. Geometric

compression through topological surgery. ACM

Transaction on Graphics, 17(2):84-115, 1998.

 [Tou98] C. Touma and C. Gotsman. Triangle mesh

compression, In Proceedings of Graphics Interface,

26-34, 1998.

 [Yao08] Z. Yao and T. Lee. Adaptive Geometry Image.

IEEE Transactions on Visualization and Computer

Graphics, 14(4):948-960, 2008.

 [Yoo07] Y. Yoon, S. Kim, and Y. Ho. Color data coding

for three-dimensional mesh models considering

connectivity and geometry information. In ICME,

253-256, 2007.

