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ABSTRACT 
 

In this paper, we present two methods to compress colored 3D triangular meshes in a progressive way. Although 

many progressive algorithms exist for efficient encoding of connectivity and geometry, none of these techniques 

consider the color data in spite of its considerable size. Based on the powerful progressive algorithm from Alliez 

and Desbrun [All01a], we propose two extensions for progressive encoding and reconstruction of vertex colors: a 

prediction-based method and a mapping table method. In the first one, after transforming the initial RGB space 

into the Lab space, each vertex color is predicted by a specific scheme using information of its neighboring 

vertices. The second method considers a mapping table with reduced number of possible colors in order to 

improve the rate-distortion tradeoff. Results show that the prediction method produces quite good results even in 

low resolutions, while the mapping table method delivers similar visual results but with a fewer amount of bits 

transmitted depending on the color complexity of the model. 

Keywords: Progressive compression; Colored 3D mesh. 
 

 

1. INTRODUCTION 
 

Nowadays, 3D models are widely used in many 

applications such as virtual reality, entertainment, 

Computer-Aided Design, scientific simulation and e-

commerce. Among the various existing 

representations, 3D triangular meshes are particularly 

appropriate to represent these models due to their 

algebraic simplicity so that the most part of 

manipulations can be processed by the graphic 

hardware. The increasing popularity and the 

increasing size of 3D meshes to respond to the needs 

of representing objects or scenes with more and more 

realism have become a critical issue, especially for 

the end-users with limited bandwidth and storage 

capacity. In this context, compression is a good 

solution for this task; two different classes of 

techniques exist: single-rate and progressive. Single-

rate techniques compress the mesh information as a 

whole and the visualization is possible only when the 

entire compressed file is received at the user-side. 

These techniques often have advantages in terms of 

compression ratio. On the other hand, progressive 

techniques are more flexible by providing the 

possibility of early visualization of the coarse version 

with very few bits transmitted and then more refined 

models can be rendered when more bits are received. 

This property of progressive reconstruction is useful 

especially for large models and for Internet-based 

applications. 

A typical 3D mesh is composed by its geometry, 

connectivity and attribute data. Geometry data 

determine vertex positions in the 3D space. 

Connectivity data describe how these vertices are 

connected together and attribute data specify colors, 

surface normals or texture information for instance. 
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Among these mesh elements, attribute data is not 

often considered by the state-of-the arts mesh 

compression algorithms in spite of their visual 

importance and their considerable size, especially for 

the progressive algorithms.  

In this paper, we propose two approaches to encode 

efficiently color data in a progressive manner. Our 

work can be seen as an extension of the progressive 

mesh compression algorithm from [All01a] which 

encodes only the connectivity and the geometry. We 

have chosen this algorithm, since it is the best state-

of-the-art connectivity-driven algorithm. As it was 

observed in [Lee09], even the most efficient 

geometry-guided algorithm [Pen05] produces a poor 

visual quality at low and medium bit rate, due to the 

stair-like effects. Moreover, Alliez and Desbrun’s 

algorithm which is based on the vertex removal 

allows a better prediction using more neighboring 

vertices than algorithms based on edge-contraction 

[Hop96] [Paj00] [Tau98a] [Kar02], leading to the 

better compression of  the color data. 

 

Related work 
Single-rate techniques have been firstly studied by 

many researchers in order to reduce compactly the 

mesh data [Tau98b] [Tou98] [Gum98] [Baj99] 

[Ros99] [All01b]. 

Later on, research on progressive compression 

techniques have been introduced with the increasing 

popularity of web-based applications. The first 

progressive algorithm was proposed by Hoppe 

[Hop96]. This new mesh representation, progressive 

mesh, simplifies a given mesh by applying 

successively edge contraction operations. At each 

step, the edge to be contracted is properly chosen in 

order to reduce the approximation error as much as 

possible. At the decompression stage, the 

reconstruction is achieved by the inverse operation, 

vertex split. This method has been extended by 

several researchers to improve the compression 

efficiency and also the rate-distortion trade-off 

[Paj00] [Tau98a] [Kar02]. In their work, Cohen-Or et 

al. [Coh99] proposed the patch coloring algorithm for 

progressive transmission. This algorithm removes 

iteratively an independent vertex set – any two 

vertices of this set are not connected by an edge – 

using vertex decimation. Then, each hole left by 

vertex decimation is re-triangulated in a deterministic 

way. The set of these new triangles is called a patch. 

The authors applied 2-coloring and 4-coloring 

methods to the patches in order to permit the decoder 

to identify correctly each patch. This algorithm 

encodes the connectivity with an average of 6 bits-

per-vertex (bpv).  Alliez and Desbrun [All01a] 

extended the existing valence-driven single-rate 

approaches [Tou98] [All01b] for progressive mesh 

encoding. Their algorithm, which is also based on 

vertex decimation, consists of two conquests: 

decimation and cleansing. The decimation conquest is 

successively applied alternating with cleansing 

conquest, building different levels of details. This 

algorithm encodes the connectivity with an average of 

3.7 bpv.  

All the progressive algorithms described above are 

connectivity-driven algorithms, meaning that the 

priority is given to the connectivity coding. 

Observing that the amount of geometry data in the 

compressed file is often larger than connectivity data, 

Gandoin and Devillers [Gan02] proposed the first 

geometry-driven approach based on the kd-tree space 

subdivision. In terms of lossless compression ratio, 

this algorithm outperforms connectivity-driven 

algorithms. Peng and Kuo [Pen05] proposed a more 

efficient geometry-guided technique by using the 

octree cell subdivision. An improvement is achieved 

by using efficient prediction methods for both 

connectivity and geometry. These geometry-driven 

algorithms give very impressive results in terms of 

lossless compression ratio, however they provide 

quite poor results at low resolutions, hence they are 

not fully efficient for progressive transmission.  In 

[Lee08], the authors proposed key-frame based 

technique for the efficient transmission of animating 

meshes. 

Up to present, the compression of the mesh attribute 

data such as colors, normals or texture coordinates 

plays a secondary role. Among the well-known 

single-rate techniques, only [Dee95] [Baj99] 

[Tau98b] proposed a method to encode vertex-bind 

color information in the RGB color space. However, 

the prediction and the quantization used for the color 

encoding are the same as for the geometry encoding 

regardless of its different nature. More recently, Ahn 

et al. [Ahn06] and Yoon et al. [Yoo07] proposed new 

methods for the efficient encoding of color data. Ahn 

et al. [Ahn06] used a mapping table based on the 

vertex layer traversal algorithm. Instead of encoding 

color coordinates of each vertex, they encode the 

index of the vertex color in the mapping table. A 

color value in the mapping table is encoded when it 

appears for the first time during the traversal. In other 

words, they have to encode the index of each vertex 

and the corresponding color coordinates in the 

mapping table. To further improve the efficiency, 

they also used a delta coding for color index 

encoding. Yoon et al. [Yoo07] introduces a 

prediction method using connectivity and geometry 

information of neighboring vertices. They consider 

different weights for the neighboring vertices using 

angle analysis. Then the color value of the current 



vertex is predicted from weighted averaged color 

values.  

Geometry images [Gu02] [Yao08] permit to represent 

compactly the colored geometric models using 2D 

images. There exist also some algorithms which 

allow the simplifying the mesh taking the color 

information into account [Hop99] [Gar98] [Roy05]. 

However, these algorithms do not provide a way to 

reconstruct the original mesh. To our knowledge, 

there is no progressive mesh coder allowing the 

encoding of color information.  

 

2. DESCRIPTION OF BASE 

ALGORITHM 
 

Our color compression scheme is based on the 

valence-driven progressive approach proposed by 

Alliez and Desbrun [All01a]. This algorithm uses the 

good statistical property of the native distribution of 

vertex valences for the mesh connectivity encoding. 

This approach iteratively decimates a set of vertices 

by combining decimation and cleansing conquests to 

get different levels of details (LOD). Decimation 

conquest consists in traversing the mesh patch by 

patch using a gate-based traversal; the front vertex of 

the current gate is removed only when its valence is 

below 7, in order to preserve compactly the vertex 

valence distribution. The hole left is then re-

triangulated. The boundary edges of the actual patch 

are pushed into a FIFO list. The decimation conquest 

continues with the next available gate in the FIFO list, 

performing a breadth first traversal. Similarly, 

cleansing conquest removes only vertex of valence 3.  

Fig.1 illustrates this mechanism: a regular input mesh 

(Fig.1.a) is simplified by decimation conquest 

(Fig.1.b). A set of independent vertices (red vertices) 

is removed and patches are re-triangulated. After 

performing cleansing conquest (Fig.1.c), vertices of 

valence 3 (blue vertices) are removed. We can see 

that as the input mesh is regular, the simplified mesh 

is also regular. Even for irregular meshes, this 

algorithm delivers better triangulation at coarse levels 

than the work of Cohen-Or et al. [Coh99]. During the 

compression stage, valences of removed vertices and 

additional null codes (in case of irregular mesh) are 

encoded for the connectivity.  

For the geometry coding, Alliez and Desbrun first 

applied a global and uniform quantization to the 

coordinates of the mesh vertices. Then, they used 

both the barycentric prediction and the approximate 

Frenet coordinate frame, separating normal and 

tangential components to further optimize the bit rate. 

The base vectors of the local frame are built from the 

current gate (one of the boundary edges of the patch) 

and the approximated patch normal. The barycenter is 

obtained by averaging positions of neighboring 

vertices. The difference between the position of the 

vertex to be removed and the barycenter is then 

encoded in the local frame. 

 

Figure 1.  An example of decimation (b) and 

cleansing conquests (c) applied on a regular mesh 

(a). 

Recently, Lee et al. [Lee09] proposed an improved 

geometric coder using a discrete bijection. They 

adopted the bijection method of Cartens et al. 

[Car99] and optimized the coding efficiency by 

providing an angle minimization. They also proposed 

a framework to improve the rate-distortion (R-D) 

trade-off by using adaptive quantization during the 

mesh simplification process.  

In the following of this paper, we use the mesh 

traversal and the connectivity encoding techniques of 

[All01a] and the geometry coder of [Lee09]. 

 

3. COLOR COMPRESSION 
 

The amount of color data associated to the mesh can 

be as large as or even larger than connectivity and 

geometry without an adaptive compression method. 

Therefore, a specific technique is required to reduce 

efficiently these data.  

We propose in this section two methods which permit 

to encode the color data associated with mesh 

vertices, in a progressive manner. 

 

Color space transform 
Before to compress any color data, all colors 

expressed in the RGB space are transformed into the 

Lab space. The Lab space is the luminance-

chrominance representation which describes more 

closely the human perception system. Moreover, this 

representation is more decorrelated than the RGB 

space. Thus, the Lab space is more appropriate to the 



data compression. After this transformation, each 

color is represented using 8 bits for L, a and b color 

components as in the initial RGB space. 

Prediction-based method 
Since we consider the connectivity reduction of 

Alliez and Desbrun [All01a], the simplest method to 

predict the color value of the current vertex to decode 

is to use the average color of neighbors, like the 

prediction used for geometry encoding as illustrated 

in Fig. 2. 

 

 

Figure 2. A vertex is removed (resp. inserted) 

during the encoding (resp. decoding) process. Its 

position is predicted from the averaged position of 

the neighboring vertices. 

 

However, this prediction is not very efficient because 

the color data own a different behavior than geometry.  

In the case of quite regular meshes, the difference of 

positions (geometrical distance) between two vertices 

connected by an edge is relatively small, hence the 

barycentric prediction, explained in Section 2, can be 

performed efficiently. However, the color difference 

between two adjacent vertices can be very important, 

especially in the case of a vertex located in a color 

boundary, resulting that the averaging prediction is 

quite ineffective. 

We can observe that the color value of a vertex is 

generally very close to at least one of its neighboring 

vertices’ colors. Based on this observation, we 

propose a method which selects the proper color 

among the colors of the neighboring vertices so as to 

predict more efficiently. To perform this color 

selection, we first calculate the average values, Lmean, 

amean and bmean of the neighbor colors. Then, for each 

component, we select the one which is the closest to 

the corresponding average component among the 

neighboring vertices’ colors. The difference between 

the original and the selected color component values 

is then entropy coded to allow the decoder to 

reconstruct the exact color value. During the 

decompression process, after an insertion of new 

vertex, the corresponding color data is added to the 

vertex, allowing the progressive reconstruction.  

 

Mapping table method 
As each vertex color is represented using 24 bits, 

there exist 2
24

 possible colors. Yet, the human visual 

perception system cannot distinguish relatively small 

change of colors. Hence, we propose a method to 

reduce the bit rate needed for color encoding by 

reducing the number of colors to encode.  

Our method first applies a clustering algorithm to the 

input mesh in order to reduce the number of possible 

colors without seriously affecting the visual distortion. 

Then, we use a mapping table method as in [Ahn06], 

based on the observation that this method is 

particularly useful when there is small number of 

colors. Fig.3 illustrates the diagram of our method in 

the case of the compression process.  

 

Figure 3. Diagram of the encoding process of our 

second algorithm. 

The clustering method is widely used for 2D image 

compression [Sal98]. It consists in finding a set of 

representatives (Look Up Table) and in mapping each 

vertex color to its nearest representative. To generate 

a correct mapping table by minimizing the color 

distortion as much as possible, we use the well-

known K-means clustering algorithm.  

1. K initial seeds colors are selected from the 

mesh color data set.  

2. K clusters are created by associating each 

color to the nearest seed.  

3. The centroids of each cluster are used as 

new seeds and the new clusters are created.  

The algorithm repeats step 2 and 3 until the all seeds 

are unchanged. Since the efficiency of the clustering 

algorithm depends on the initial condition of the 

seeds, we use as initial seeds the K more frequent 

colors of the input mesh in order to strengthen the 

approximation. After finding K representatives, each 

vertex color is replaced by its closest representative. 



A result of this clustering algorithm is illustrated in 

Fig.4 with the Globe model containing initially 5030 

colors. Although the number of possible colors is 

reduced to 256 colors, one can hardly distinguish the 

color distortion.  

 

 

Figure 4. Color reduction based on clustering 

for the Globe model. 

 

To encode the color data, we use the mapping table 

containing the final representatives obtained by the 

clustering algorithm. At the compression stage, when 

removing a vertex, the color index corresponding to 

its color in the mapping table is encoded.  

To further enhance the rate-distortion performance 

and also to reduce additionally the coding cost, all 

color values contained in the mapping table are 

encoded in a progressive way. When the resolution 

level is augmented (when the mesh is refined to one 

higher level), the information of new colors are sent, 

enlarging the size of the mapping table. Fig. 5 

illustrates an example of the progressive decoding of 

the mapping table. For a given resolution level, the 

mapping table contains 4 colors (C0 to C3). When a 

new vertex is inserted, and if the decoder identifies 

that the associated color is not present in the current 

mapping table then the new color value is added to it.  

Furthermore, we try to reduce the coding cost needed 

for the encoding of the mapping table. In Ahn et al.’s 

work [Ahn06], they encode each color values in the 

mapping table using 24 bits. We reduce this coding 

cost by using our prediction-based method. During 

the compression process, we use our prediction 

method when removing each vertex. And we store 

only the difference between the original color value 

and the predicted color of the last encountered vertex 

for each color of the mapping table. So, during the 

mesh reconstruction, when a vertex is inserted and its 

color is revealed for the first time, we use information 

of the neighbors to acquire the correct color value of 

the corresponding color in the mapping table.  

Even when the full resolution of the geometry has 

been reached, there still exist some differences of 

colors between the reconstructed color mesh and the 

original one, due to the color number reduction step 

(i.e. the clustering). However, depending on the 

needs, the original vertex colors can be restored, by 

encoding the difference of color between the initial 

color value of each vertex and its representative 

during the clustering phase. These differences are 

sent at the end of the decompression process. 

 

Figure 5. An example of progressive decoding of 

the mapping table. Initial mapping table (a) is 

enlarged when a new color, C4, appears (b). 

 

4. EXPERIMENTAL RESULTS 
 

Fig. 6 shows the 3D models used in our experiments. 

Each coordinate of vertices of these models is 

quantized using 10 bits.  

 

 

Figure 6 : Models used for compression. 



Lossless compression 
Table 1 shows lossless compression results for the 

test models using our methods. The bit rates needed 

for compression of the color information and those of 

the mesh connectivity and the geometry (C+G) are 

given in bits-per-vertex (bpv). As most of the well-

known state-of-the-art progressive algorithms do not 

consider color data, the efficiency of our prediction 

method is compared with the prediction scheme used 

in Yoon et al.’s work [Yoo07] and the averaging 

prediction. The method of Yoon et al. was originally 

applied in a single-rate way in their work. We have 

adapted their prediction method based on angle 

analysis for the mesh traversal technique of [All01a]. 

We can observe that the performance of these 

prediction schemes is similar for each model and 

better compression rates are obtained for the models 

containing large surface of smooth color variation, 

such as GIST-Monkey and Swirl models. For all test 

models, our method outperforms those of [Yoo07] 

and the averaging prediction method, especially for 

the Swirl model which contains many color boundary 

vertices and for those the color difference on the 

boundary is important.  

Results of lossless compression of our mapping table 

method are also given. Different numbers of seeds, K, 

are used during the color number reduction step. We 

can see that the more the number of initial seeds 

increases, the more the coding rates decreases. This is 

because the cost of the original color restitution 

applied after reaching the finest geometry resolution 

level increases rapidly when the value of K becomes 

smaller. As a consequence, the result of the mapping 

table is better than our prediction method when the 

value of K is superior to 256.  

 

Progressive compression 
Fig. 7 illustrates some intermediates meshes with 

respective coding rates. All the rates presented in this 

figure include the amount of connectivity, geometry 

and color data. Our two methods produce 

intermediates results with a quite good visual quality 

both for the geometry and the color even for low bit 

rates (< 5 bpv).  

In this figure, the GIST-Monkey model is used to 

compare the efficiency of our two methods: 

prediction method (d–f) and mapping table method 

(g–i). As expected, the mapping table method 

produces intermediate meshes of similar visual 

quality with less bit rates. Even though the number of 

colors has been severely reduced, from 6669 to 32, 

one can hardly sense the discrepancy comparing to 

the results of the prediction method. 

 

 

5. CONCLUSION 
 

In this paper, we have presented two methods for 

progressive encoding of colored meshes. To our 

knowledge the proposed methods are the first ones 

which consider the effective color coding in the field 

of 3D progressive compression. Our first algorithm 

based on the prediction is easily implementable and 

produces quite good results even for low bit rates. 

The second algorithm combining the mapping table 

with the clustering delivers intermediate meshes of 

almost equal visual quality with fewer bits, enhancing 

the rate-distortion trade-off. 

As future work, we will investigate a reliable metric 

permitting to measure the global distortion between 

two meshes taking mesh geometry and also color into 

account, in order to evaluate the rate-distortion 

performance. 
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Table 1. Compression rates of test models in bits-per-vertex. 

Models # V # Color C + G 
Prediction  Mapping table 

Average Yoon Our K = 64 K = 256 K = 1024 

Globe 36866 5030 4.61 16.43 16.17 15.37 15.81 13.81 12.65 

GIST-Monkey 50503 6669 13.5 6.49 6.49 5.95 8.52 8.33 7.23 

Swirl 9216 138 4.12 9.97 10.16 6.62 3.04 - - 



 

Figure 7. Result of progressive decoding of the test models. The model Globe (a – c) and the model GIST-

Monkey (d – f) are progressively reconstructed using our prediction method. Intermediates meshes of the 

models GIST-Monkey (g – i) and Swirl (j – l) are given by our mapping table method. For both models, 

the number of possible colors are reduced, using K = 32 seeds in the clustering step. The bit rates include 

the connectivity, the geometry and the color information. 
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