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bCNRS, LIRIS UMR 5205

cUniversité de Lyon
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Abstract

We propose a novel high-level signature for continuous semantic description of 3D shapes. Given an approximately segmented and
labeled 3D mesh, our descriptor consists of a set of geodesic distances to the different semantic labels. This local multidimensional
signature effectively captures both the semantic information (and relationships between labels) and the underlying geometry and
topology of the shape. We illustrate its benefits on two applications: automatic semantic labeling, seen as an inverse problem along
with supervised-learning, and semantic-aware shape editing for which the isocurves of our harmonic description are particularly
relevant.
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1. Introduction

With the increasing popularity of digital 3D models in the
industry and for the general public, comes an increasing diver-
sification in the use of this 3D content. New needs are emerg-
ing from this diversification: organization of collections, as-
sisted modeling (both for professional and novice users), au-
tomatic shape synthesis, automatic skinning, smart filtering of
3D scenes and so on. These new applications require high-level
shape description and understanding, as well as smart shape dis-
tance measures. A huge amount of geometric shape descriptors
have been introduced by the scientific community over the last
20 years [1] and even very recently [2, 3]. They describe the
geometry of the shape either locally or globally, with various
degrees of invariance and robustness (with respect to isome-
try, sampling, etc.). This geometric description is the first step
toward understanding and comparing shapes. However the ge-
ometric description remains low-level and may not be sufficient
for high-level tasks such as, for instance, retrieving all chair
backs in a database of highly heterogeneous chairs. More re-
cently, researchers have tried to derive high-level descriptions
of shapes in the form of part labeling, e.g., each face of the
3D shape is labeled as back, leg or seat, in the case of chair
models. This high level description may be obtained using su-
pervised learning [4] or by fitting a shape template [5]. Such se-
mantic labeling may be extremely useful in some applications
such as database organization. However this approach has the
drawback of being constrained by the semantic domain of the
database. Moreover it defines a hard classification of the mesh
elements (one single discrete label for each face among a finite
set). As an example, if one considers a labeling of a humanoid
model as arm, leg, torso and head, then how can the shoulder be
characterized or retrieved? In that context, we introduce a new

high level shape representation (illustrated in Figure 1) which
encodes both semantic and geometric information, in the form
of a multidimensional real-valued vector. The idea is simple:
each vertex is characterized by its geodesic distances to every
semantic part of the object. This rich and continuous informa-
tion allows us to much better characterize the semantic context
of a vertex, as well as the relationships between semantic parts.
Applications of this new representation are numerous: shape
labeling, skinning, geometry transfer, assisted modeling and so
on.

The rest of this paper is organized as follows: section 2 de-
scribes the related work about 3D shape description and under-
standing. Then, section 3 presents our descriptor and its prop-
erties. Finally, we present two applications: 3D-mesh labeling
(section 4) and geometric detail transfer (section 5).

2. Related Work

An incredible amount of work has been devoted during the
last 20 years on 3D shape description and representation. This
topic is involved in many computer graphics areas such as shape
retrieval, segmentation or shape correspondence. In this sec-
tion, we first cover approaches that are most closely related to
our semantic context representation. We refer the reader to re-
cent surveys for more in-depth discussions [1, 6, 7]. We then
examine the relevant work in shape editing, which is one of the
main applications of our representation.

2.1. Shape description
A great variety of geometric shape descriptors have been

introduced for the purpose of shape representation, understand-
ing and retrieval. The earliest ones were global – they repre-
sent a shape by a single signature. The first global descriptors
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Figure 1: Illustration of our continuous semantic signature for different points
of the Horse model. This signature is built from a prior labeling of the model
and consists in the set of geodesic distances to the different semantic parts. For
instance, p1 is close to ears and head and far from torso and legs. This signature
conveys the spatially continuous nature of the semantic.

were only robust to rigid deformations (e.g., spherical harmon-
ics [8]), while more recent ones are also invariant to non-rigid
deformations like near-isometries. These latter descriptors in-
clude spectral embeddings [9, 10] or histograms of local shape
descriptors [11, 12] including bag-of-word models [13, 14]. Lo-
cal descriptors associate one signature per vertex, face or local
region of a 3D shape; they include simple differential quan-
tities (e.g., curvature), shape diameter [12], histogram of gra-
dients [15], the heat kernel signature [16], shape context [3]
or spin images [2]. In contrast to these geometric descriptors,
topological representations are also very popular for shape re-
trieval and understanding [17]. They include mostly graph rep-
resentations like Reeb graphs [18, 19, 20] or simpler region ad-
jacency graphs obtained from a segmentation [21].

These shape descriptors (both for geometry and topology)
are low-level and thus do not relate to the shape semantics in
any way. However, they may be used to derive high-level repre-
sentations like a semantic labeling. This gap from low-level to
high-level description may be filled using manual annotations
combined with an ontology describing the semantic domain, as
proposed by Attene et al. [22]. To get rid of these manual in-
teractions, recent data-driven techniques [4, 23, 24, 25] benefit
from the availability of large semantically annotated 3D data
collections to infer semantic labels from large sets of low-level
descriptors using supervised learning. Co-analysis [26, 27, 28]
can also infer consistent labels within a collection. In slightly
different ways, Kim et al. [5] learn and then fit a shape tem-
plate to obtain a consistent labeling of a whole model collec-
tion, while Laga et al. [29] and Zheng et al. [30] analyze the re-
lationships between parts for the same purpose. Such semantic
labeling is perfectly suited for several high level applications
such as database exploration [31] or modeling by part assem-
bly [32, 33]. However it has two major drawbacks: (1) it is

limited to a pre-defined ontology (i.e., a finite set of predeter-
mined labels) and (2) it does not convey the continuous nature
of semantics. For instance, for a human being or an animal,
there is no strict semantic boundary between a leg and the torso
but there exist regions that belong to both parts in certain pro-
portions.

Our representation solves these issues by encoding the se-
mantic in a continuous way, as well as geometric and topologi-
cal information in one single local multidimensional descriptor.

2.2. Shape editing

Reusing existing geometry to synthesize new models is an
important challenge in computer graphics. The objective is to
ease the designers work and speed up the production of these
3D models. Two main classes of methods have been proposed
so far: part assembly and geometry cloning.

Part assembly [32, 34, 35, 36, 37, 38] consists in generating
(automatically or using an adapted interface) new 3D models by
gluing together existing parts from a pre-processed database.
The main weakness of these techniques is that they rely on a
prior segmentation/labeling and thus their degree of freedom is
limited by the pre-defined semantic domain. For instance it is
impossible to glue an ear on the head of a 3D model, if these
two components do not possess different labels in the database.

On the other side of the spectrum are geometry cloning tools
which do not consider any semantic information or prior seg-
mentation, but rather consist in fully manual cut-and-paste op-
erations, either conducted on large geometric parts [39] or on
surface details [40, 41]. The main drawback of these exist-
ing works is that the precise location of the part or details to
be transferred from a source to a destination model has to be
manually determined – on both the source and the destination.
However, such process could really benefit from semantic in-
formation. For instance the geometric texture of a shoulder re-
gion from a source object could be automatically pasted on the
shoulder region of the destination model.

Our continuous semantic representation allows for bridging
the gap between part assembly (which is too constrained by a
prior segmentation) and geometry cloning (which is fully man-
ual). It intrinsically encodes a smooth semantic mapping be-
tween two shapes, that allows for a smart automatic geometry
transfer. Note that such correspondence may also be computed
using surface mapping algorithms [42, 43]. However, these al-
gorithms are clearly not suited for the real-time interactions re-
quired by design applications.

3. Continuous Semantic Description

Given an approximately segmented and semantically labeled
mesh, our descriptor consists in a set of geodesic distances to
the different labels. This section describes in more details this
new, semantic, local descriptor, which accurately conveys the
spatially continuous (contrary to uncertain) nature of a mesh
labeling as well as topological relationships within the mesh.
Good properties of this descriptor are illustrated through vari-
ous experiments.
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3.1. Semantic Sampling
To compute our descriptor, the first step is to sparsely sam-

ple points on the mesh. The benefit of this is to avoid the need
of a precise segmentation, which makes it robust against seg-
mentation mistakes inherent to most methods. As such, we do
not assume a particular segmentation method and just assume
we are provided with a coarsely segmented mesh, along with a
semantic labeling for each segment. By semantic labeling, we
assume, for instance, that a single label “leg” is given to the
four legs of a quadruped, rather than a different label for each
leg, and that this labeling is consistent within a database of sim-
ilar objects. Many efficient algorithms are now able to compute
such consistent segmentation and labeling over a database of
3D models [4, 24, 26, 27, 23, 28, 5, 25]. In practice, in the ex-
amples of this paper, we consider the models from the Prince-
ton segmentation benchmark [44], segmented and labeled by
the method of Kalogerakis et al. [4]. Examples of this labeling
are illustrated in Figure 2.

Figure 2: Illustration of some classes of models (labeled by [4]) that we con-
sider in the examples of this paper: Human (8 labels), Armadillo (11 labels),
FourLeg (6 labels) and Airplane (5 labels).

We consider an adaptive sampling strategy. For each la-
bel, we determine a number of samples proportional to the area
of that label over the mesh (we add a minimum number of
samples to avoid under-represented labels such as the ears or
tail). We then randomly select faces according to their area
(and label) and sample within these faces. We use 10 + 100 ×
area(`)/area(mesh) samples per label (where area(`) is the to-
tal area of the label `). A visualization of some sampled labels
can be seen in Figure 3.

Figure 3: Our label sampling strategy. Left to right: body, head, tail.

3.2. Semantic Shape Signature
For each label `, we have obtained a set of samples S ` as

described in Section 3.1. Our descriptor, denoted d, depends

on a predefined set of labels L, which corresponds to the entire
collection of labels present in a mesh database. For a given
point p on the mesh, the descriptor is computed as a vector of
|L| elements. Each element of the vector d(p), denoted d`(p),
describes the relation between the point p and the label `. In
many cases, and in particular for heterogeneous databases, a
single model will only possess a subset of the entire set of labels
L. This makes the descriptor sparse, and some elements of the
descriptor will just be undefined.

The scalar d`(p) is computed as the geodesic distance from
p to the closest point in S `, denoted g(p, S `). As the points in
S ` may belong to different segments, this makes our descrip-
tor invariant to the number of occurrences of a label in a shape.
For instance, if we consider a dataset of human models, our
descriptor would contain (among other relationships) the ge-
ometric relationship between the points of the models and the
nearest of the two arms. Intuitively, the descriptor indicates that
a point on the shoulder of a human will be close to the label arm
but far from the label leg, in term of geodesic distance. This is
in contrast to probabilistic approaches which would consider a
point on the shoulder more likely to belong to the arm than the
leg. A probabilistic approach based on geometric features is
unable to tell that a point on a shoulder is actually in-between
the arm and the head, but can only assign probabilities based on
resemblance. Further, our use of geodesic distances makes our
descriptor robust to changes in pose and sampling, as shown in
Figure 5.

The descriptor is thus computed as:

d(p) = {d`(p), ` ∈ L}
d`(p) = min

s∈S `

(g(p, s)) (1)

where g is the geodesic distance. When a label ` is not repre-
sented in a shape, a default value d` = ∞ is used. In practice,
we compute an exact geodesic distance with the algorithm of
Surazhsky et al. [45].
Figure 1 illustrates our descriptor for a few points of a mesh.
This signature smoothly encodes the semantic information and
its topology (i.e., relationships between labels) as well as geo-
metric information. Unlike a simple labeling, it is able to easily
discriminate different points having the same label but differ-
ent positions (e.g. P4 and P5). Figures 4 and 5 illustrates the d`
scalar field for different labels `. Once again, these figures show
that our signature describes a continous semantic information,
much richer than a simple labeling.

3.3. Properties

Our signatures exhibits several useful properties detailed
below.

3.3.1. Robustness
Since we compute exact geodesic distances on the surface,

as well as an adaptive semantic sampling, our descriptor is in-
variant to the mesh resolution, as can be seen in Figure 6. It
is also very robust to near-isometric deformations like skeletal
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Figure 5: Visualization of d`(p) for two meshes of the Human category from the Princeton Benchmark [44].

body rudder wing

Figure 4: Visualization of d`(p) (blue to red for low to high) for two meshes of
the Airplane category from the Princeton Benchmark [44].

articulations as illustrated in Figure 5. Further, when increas-
ing the number of samples, our descriptor converges toward a
set of geodesic distances to segment boundaries – which would
not be robust against small segmentation mistakes. Our sam-
pling strategy hence enforces robustness against segmentation
inaccuracies. In practice, within a segment with label `, the dis-
tance corresponding to that label can be non-zero. However, we
did not find this to be problematic in our experiments.

3.3.2. A semantic-aware distance
A simple L2 distance in our signature space defines a new

semantic-aware metric over the surface. Figure 7 shows uni-
formly sampled isocurves of the distance field from a point on
the right knee to the rest of the human body. For comparison
we also illustrate the geodesic distance field. Our metric well
reflects the semantic distance.

Figure 8 illustrates the use of the previously defined met-
ric for computing correspondences between different models.
In both examples (Armadillo, FourLeg and Chair classes), we

hand lowerleg

Figure 6: Visualization of d`(p) on two labels, with different mesh resolutions
(11015 and 2639 vertices respectively)

selected a point (in red) on the first model, and computed the
L2 distance in descriptor space, from this point to every ver-
tices of every models (including itself). We see that an accurate
correspondence is found between models, illustrated by the se-
mantic similarity between blue areas, even in the case of strong
pose changes (Armadillo) or shape variations (FourLeg,Chair).
To summarize, starting from a coarse corresponding labeling
(see Figure 2), our signature defines a dense correspondence
between the models. This correspondence may be very useful
for many applications such as part-in-shape retrieval and selec-
tion, as well as mesh editing and geometry transfer. Existing
work on dense mesh correspondence such as the work of Ovs-
janikov et al. [46] are based on local geometry desciptors, and
does not account for any semantic information.

The top row in Figure 9 further illustrates the use of the L2
distance in our descriptor space for models of the Human class.
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Figure 8: Correspondence between several models, computed using our signature. For each class (Armadillo, FourLeg and Chair

) we compute the L2 signature distance from the red point to every vertices of every models of the class (illustrated in a blue to
red logarithmic scale). The semantic similarity between the blue regions in each row illustrates that an accurate correspondence is
found between models.

Geodesic distance L2 signature distance

Figure 7: Distance field from a point on the knee to the rest of the model,
computed with a simple geodesic distance (left) and with the L2 distance in
our signature space (right). We observe than our signature-based metric inte-
grates both geometric and semantic information, as it captures variations of the
geodesic distances to all semantic labels.

The selected point on the elbow of the first model is matched
to the others. On the second row, faces are described using
the 608 geometric unary features proposed by Kalogerakis et
al. [4] and the matching is performed using the L2 distance

on these descriptors. The bad correspondence obtained in this
latter case illustrates the fact that even a very large set of geo-
metric features cannot compete with our descriptor in term of
semantic correspondence.

Figure 9: Correspondence between models from the Human class, comparison
with the features from [4]. Top row: L2 distance in our signature space. Bottom
row: L2 distance on the geometric descriptor set from [4] (608 dimensions).
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3.3.3. Descriptive power
Our signature may also be useful to describe segments (i.e.

parts of a mesh). In that case, each segment is described by a
collection of |L| histograms, obtained by uniformly sampling
the segment and accumulating each sample’s signature. In Fig-
ure 10, we depict the repartition of the segments of two classes
from the Princeton Benchmark [44] previously labeled by [4],
obtained by multi-dimensional scaling (MDS) applied on a sig-
nature difference between segments. This signature difference
is defined as the sum of the Earth Movers distances between
histograms. Each point represents a segment, with the color
corresponding to the label. The apparent clustering of points
according to their labels appears to validate the semantic qual-
ity of the L2 descriptor distance. Besides this correct visual
clustering, we observe that our descriptor also provides insights
about the geometry and the topology of the segments which
may bring valuable information. For instance the engines of
the Airplane class are not clustered together because engines
have a different context: some of them are attached to the nose
of the plane, some are attached on the side, while other may
be attached to the wings. Interestingly, the respective positions
of the clusters provide information about the relationships be-
tween labels. For instance the body cluster of the Airplane class
is at the center of the other labels, like the torso for the Human
class. As another example, the lowerArm cluster is at the op-
posite of the foot cluster. We will see in the next section that
this rich descriptive power may be useful for automatic region
labeling.

4. Application to Semantic Labeling

As detailed in section 3, our descriptor requires a complete
labeling of the mesh, which does not seem suitable at first for
a mesh labeling application. In this section, we demonstrate
that a combinatorial optimization step along with supervised
learning allows for the semantic labeling of an unlabeled shape.

As our descriptor describes the relationship between the ge-
ometry and labels in a set of shapes, we consider the labeling
task as an inverse problem. Specifically, we find the best la-
beling maximizing the probability of a label, given the descrip-
tor, outputted by a random forest classifier given a pre-labeled
dataset.

4.1. Labeling as a Inverse Problem

We consider an input 3D model Q with m unlabeled seg-
ments, that may come from any segmentation algorithms [47,
48]. By using a database of segmented and labeled models, we
infer the labels of Q. We proceed in two steps: the training
step, for which a random forest classifier learns from the la-
beled database, and the inference step which estimates the most
probable labeling of the input model.

4.1.1. Training
For every shape in the training set, we extract a set of source

points S ` for each label ` ∈ L using the method described in
Section 3.1.

We perform supervised learning by considering a feature
vector for each segment of each model associated with its ground-
truth label. The feature vector consists of a collection of |L| his-
togram statistics. Specifically, we uniformly sample the input
model and compute our descriptor d for all the samples accord-
ing to the ground-truth labels. For each label `, we bin the de-
scriptors d` at these sample points to produce a histogram, and
compute their mean, standard deviation, skewness and kurtosis.
These statistical features are classically used for describing dis-
tributions [49]. We thus obtain a feature vector of size 4 × |L|.
If the label is not represented in the shape, the corresponding
element of the feature vector is not used for this shape.

With this training set, we train a multi-class Random Forest
Classifier [50] on the ground-truth labels.

4.1.2. Inference
Given an input model with m segments, we wish to label it

using the previously trained classifier. However, we recall that
our descriptor requires a per-segment labeling: we tackle this
challenge by evaluating hypotheses on possible labelings.

First, we sample each segment si by a set of source point Pi.
We then compute a matrix M of m×m histograms. The element
Mi, j of the matrix contains a histogram of shortest geodesic dis-
tances between all sample points Pi and their corresponding
closest point in P j.

We then evaluate a candidate labeling using our classifier.
For every segment si of the input model, the classifier outputs
the probability P(label(si) = `) of the segment si to be assigned
the label `. We determine a score for a complete labeling hy-
pothesis L by taking the product of all these probabilities for
each segment

P(L) =

m∏
i=0

P(label(si) = `) (2)

While this assumes labels are independent of each other, this
simplifying assumption works reasonably well for our purpose
(see Section 4.2). A statistically correct approach would be
intractable since descriptors (and hence P(label(si) for all seg-
ments) rely on the label of all other segments.

We generate the combinatorial, yet reasonably small, set of
possible labelings, and retain the one maximizing this score.
While we attempted more heuristic approaches such as simu-
lated annealing, this solution was significantly degrading the
quality of our results.

4.2. Results
We test our labeling method on the Princeton Segmenta-

tion Benchmark [44] which contains 19 categories, each of 20
objects, ranging from humans to man-made objects. We use
the segmentation method and ground truth of Kalogerakis et
al. [4]. In practice, there are |L|m possible labelings. This re-
mains tractable within the benchmark (each category contains
on average |L| = 5 labels and m = 7 segments per object, yield-
ing around 80000 evaluations). Our unoptimized implementa-
tion takes 5 minutes for training our classifier on an entire class
of 20 meshes. The inference takes between 56 seconds (for
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Figure 10: Multi-dimensional scaling analysis of the segments of the Airplane and Human categories from the Princeton Benchmark [44]

Glasses) and 30 hours (for Armadillos which have the largest
number of labels and segments), and the median time is 18 min-
utes. Parallelization and simple heuristics on label cardinality
can be used to lower the inference time. For instance, early
experiments shown a three-fold speedup on the Bird class by
assuming the cardinality of each label known in advance (e.g.,
two wing segments, one tail etc.), without loss of accuracy. This
heuristic could be considered when the mesh to be segmented
is consistent with the training database.

We demonstrate the accuracy of our method using a leave-
one-out cross-validation on each category of object. This exper-
iment assumes the class of the object is known, but this restric-
tion can be alleviated at the expense of larger inference times.
In Table 1, we report the number of labels |L| considered for
each category, and the percentage of faces correctly labeled by
our method. We also present, for comparison, results obtained
using a simple geometric descriptor (an histogram of Shape In-
dices [51] combined with segment areas) and results obtained
using the large feature vector from Kalogerakis et al. [4]. In
this latter case, as for our signature, we feed the random for-
est classifier with the mean, standard deviation, skewness and
kurtosis of the distributions of the 608 unary features resulting
in a 2432-dimensional feature vector. We also present results
when combining this large set of geometric features with our
signature. Results show that the combination of geometric and
semantic information provides the best results; however, our
descriptor alone (which has an average of 20 dimensions) per-
forms reasonably well given its low dimensionality – albeit less
than the high-dimensional geometric descriptor of Kalogerakis
et al.

In Figure 11, we illustrate labeling results on the Airplane
and Bird classes of the Princeton Segmentation Benchmark.
The last examples are not correctly labeled, when compared
to the ground truth labels provided by Kalogerakis et al. [4].For
one plane, a stabilizer is labeled as rudder, since the two parts
are similar in both geometry and semantic context.

To further assess the robustness of our method with respect
to inaccurate segmentations, we used our technique to label un-
der and over-segmented meshes (three birds and three cups),

Category # labels ours [51] [4] ours+[4]
Airplane 5 87.6 36.5 96.0 98.5

Ant 5 83.0 28.0 99.2 99.2
Armadillo 11 76.3 20.3 98.1 98.1
Bearing 6 57.1 2.0 85.2 84.1

Bird 5 87.5 3.8 95.4 94.0
Bust 8 65.4 2.6 68.1 67.7
Chair 4 59.0 1.7 99.7 99.7
Cup 2 92.1 87.5 95.1 95.1
Fish 3 82.4 78.2 100 90.5

FourLeg 6 80.0 25.0 97.8 97.7
Glasses 3 81.1 64.8 100 97.4
Hand 6 91.1 4.9 87.5 90.9

Human 8 79.3 13.2 92.1 92.0
Mech 5 75.9 14.9 84.7 87.6

Octopus 2 78.6 52.3 55.0 100
Plier 3 61.8 12.9 100 100
Table 2 84.3 89.2 97.8 97.8
Teddy 5 70.2 13.8 100 100
Vase 5 77.2 1.2 85.0 93.8

Average 5 77.3 29.1 91.4 93.7

Table 1: Performance on the Princeton Segmentation Benchmark (ground-truth
from [4]). For each category, we show the number of labels and percentage of
correct labels per face using our 20-dimensional descriptor, simple geometric
descriptors (segment area and Shape Indices [51]), 2432-dimensional statisti-
cal moments from the 608-dimensional unary geometric potentials of Kaloger-
akis et al. [4], and combining our descriptor with these geometric potentials.
Combining both geometry and semantic gives the best result, but our semantic
descriptor alone achieves reasonable success given its low-dimensionality.
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Figure 11: Labeling results for the Airplane and Bird classes of the Princeton Segmentation Benchmark. Green (resp. red) boxes represent correct (resp. incorrect)
labeling.

Figure 12: Labeling results using segmentations inconsistent with the training
set. Green (resp. red) boxes represent correct (resp. incorrect) labelings. On the
top-left, birds are under-segmented: the body and head are merged or the wings
are connected. Given this under-segmentation, the labeling is correct. On the
top-right, the bird is over-segmented into 7 parts which results in parts of the
wings being misclassified as body. In the bottom row, cups are over-segmented
into seven segments, which can result in part of the handle to be misclassified
as inside (bottom right). In general, under-segmentations do not pose particular
problems for our labeling, while problems may occur with over segmentations.

compared to the training database (figure 12). We merged the
body and head segments of two bird meshes and connected the
two wings in one of them. We also over-segmented another bird
and three cups into seven parts (the training dataset consists in
two segments only). For under-segmented meshes our auto-
matic labeling often remains correct, while over-segmentations
occasionally misclassify segments (right column).

5. Application to Mesh Editing

In this section, we illustrate the use of our descriptor for
semantic-aware mesh editing purposes, such as the addition of
geometric details or filtering. The continuous semantic nature
of our descriptor and the semantic meaning of its associated L2

metric allow to obtain natural-looking shape modifications. We
present here three usage scenarios:

1. The user selects a semantic label (e.g. upper leg) and the
geometric modification is applied to the whole regions
for which the corresponding d` is the smallest dimen-
sion of the descriptor. On the border of the region, the

strength of the modification decreases as the correspond-
ing dimension of the descriptor, normalized over all di-
mensions, increases.

2. The user selects a point on the mesh, and the geometric
modification is applied around this point and decreases
according to the L2 distance in the descriptor space.

3. The user selects a point and an isoline (produced using
the L2 metric), and then the modification is applied on
the whole region bounded by the isoline. Once again the
strength is decreased as we go further from the selected
isoline (in the descriptor space). Thanks to the isolines,
the user can very easily selects a semantic region not ini-
tially defined in the prior labeling, such as the shoulder,
in the case of a humanoid.

In these three scenarios, we have used a Gaussian functionN(µ =

0, σ2) of the distances, withσ2 = 50 when applying on descriptor-
space L2 distance and σ2 = 30 when we use only one geodesic
distance. In all scenarios, distances are normalized by the size
of the mesh.

Scenarios 1 and 2 are illustrated in Figure 13 for which we
apply an additive Perlin noise on the torso and a smoothing on
the upper legs of an Armadillo model. For the smoothing oper-
ation, we select the upper leg label (scenario 1). We thus only
use one dimension of our descriptor: we smooth the whole area
for which the smallest dimension corresponds to this label. The
strength of the smoothing is represented by the opacity of the
green color.
For the noise addition we select the point highlighted in white
(scenario 2) then the modification is applied around this point
according to the L2 signature distance. We can see that the
procedural noise has been naturally spread all over the torso
region. Regions such as the hands or the head remain intact.
Figure 13 (d) illustrates the model after both modifications.
As another example, in Figure 14 we select the red point on
the shoulder of a humanoid model as well as the isoline illus-
trated in red (scenario 3). We then extrude all vertices within
the isolines. Note that since we are measuring distances in the
descriptor space, vertices on the other shoulder are automati-
cally extruded as well; this symmetry comes for free thanks to
the semantic information.
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(a) (b) (c) (d)

Figure 13: Application to mesh editing - (a) Original Armadillo model - (b) Result after Laplacian smoothing when selecting the upperleg label - (c) Noise added by
selecting a point (in white) on the torso - (d) Final Armadillo model after both smoothing and noise addition. Note that the distance in our descriptor space allows a
smooth naturally-looking decreasing of the strength of the geometric modifications (illustrated by the opacity of the colors).

(a) (b)

Figure 14: Application to mesh editing - (a) Original Human model - a point (in
red) is selected on the shoulder/upperarm region of the original model as well
as the isolines (in red) - (b) Vertices bounded by the isolines are extruded with
smooth transition at the borders (illustrated by the opacity of the color). Note
that the editing is symmetrical due to the symmetry of the labeling.

6. Conclusion

We have described a simple yet effective shape signature,
based on geodesic distances to semantic labels. Unlike a simple
labeling, this descriptor conveys the spatially continuous nature
of the semantic as well as its topology (i.e. the relationships
between semantic parts). We have demonstrated its benefit on
two applications: automatic semantic labeling and semantic-
aware shape editing.

In the future, we plan to exploit our shape signature for
data-driven shape editing and design (i.e., using a database of
existing preprocessed models to support the design/editing). Pro-
ducing tools to assist and support the graphic designer in her
modeling task becomes a fundamental research issue since the
production of massive amount of 3D content is now a major
concern for the global production chain of digital entertainment
products. In this work, we showed that our shape signature
was perfectly suited for semantic-aware shape editing. To cre-
ate a complete system for data-driven shape editing, we now
plan to devise complementary tools like a smart user interface
for semantic-aware mesh selection. Some recent user interfaces
dedicated to innovative 3D content creation [52] may be inspir-
ing for this task.

Besides shape editing, we would also like to explore other

applications like automatic skinning and database exploration.
We believe that our descriptor may be highly relevant in such
cases where semantic is a key ingredient.
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