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LIRIS UMR 5205 CNRS, Université Claude Bernard Lyon1, Insa de Lyon, France

Abstract
In this paper we present a new framework for subdivision surface approximation of three-dimensional models
represented by polygonal meshes. Our approach, particularly suited for mechanical or Computer Aided Design
(CAD) parts, produces a mixed quadrangle-triangle control mesh, optimized in terms of face and vertex numbers
while remaining independent of the connectivity of the input mesh. Our algorithm begins with a decomposition of
the object into surface patches. The main idea is to approximate the region boundaries first and then the interior
data. Thus, for each patch, a first step approximates the boundaries with subdivision curves (associated with control
polygons) and creates an initial subdivision surface by linking the boundary control points with respect to the lines
of curvature of the target surface. Then, a second step optimizes the initial subdivision surface by iteratively moving
control points and enriching regions according to the error distribution. The final control mesh defining the whole
model is then created assembling every local subdivision control meshes. This control polyhedron is much more
compact than the original mesh and visually represents the same shape after several subdivision steps, hence it
is particularly suitable for compression and visualization tasks. Experiments conducted on several mechanical
models have proven the coherency and the efficiency of our algorithm, compared with existing methods.
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1. Introduction

The context of this work is the Semantic-3D project

(http://www.semantic-3d.net). The objective is the transmis-

sion of 3D mechanical models through low bandwidth chan-

nels in a visualization objective on various terminals. The

3D model database to handle comes from the car manu-

facturer Renault, and contains thousands of quite irregu-

lar polygonal meshes representing CAD parts. Thus an ef-

ficient compression tool is needed to reduce the amount

of data carried by this 3D content, knowing that the

original Non-Uniform Rational B-Spline (NURBS) infor-

mation is not available. Many efficient techniques have

been developed for encoding polygonal meshes [TG98],

[GS98], [IS01] but fundamentally, this representation re-

mains very heavy in terms of amount of data (a large

points set, on top of the connectivity have to be encoded).

Moreover, lossy compression schemes like wavelet-based

schemes [KSS00], [VP04] produce artifacts, visually damag-

ing for smooth mechanical objects. Other models exist to rep-

resent a 3D shape: NURBS surfaces or subdivision surfaces.

These models are much more compact. A subdivision sur-

face is a smooth (or piecewise smooth) surface defined as the

limit surface generated by an infinite number of refinement

operations using a subdivision rule on an input coarse control

mesh. Hence, it can model a smooth surface of arbitrary topol-

ogy (contrary to a NURBS model which needs a parametric

domain) while keeping a compact storage and a simple repre-

sentation (a polygonal mesh). Moreover it can be easily dis-

played to any resolution, according to the terminal capacity

for example.Subdivision surfaces are now widely used for 3D

imaging and have been integrated to the MPEG4 standard
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[MPEG4]. In this context, we present an algorithm for fit-

ting a piecewise smooth subdivision surface to an input mesh

aiming at optimizing control points number and connectiv-

ity of the subdivision control polyhedron. Our method, based

on mesh decomposition, is particularly suited for mechani-

cal surfaces or CAD parts; indeed in these cases the research

of the optimality is quite relevant. This algorithm is benefi-

cial in terms of compression (the original mesh can be stored

or transmitted in the form of a coarse control polyhedron),

remeshing (the subdivided control polyhedron is often much

more regular than the original mesh) or reverse engineering.

Section 2 details the related work about subdivision surface

fitting, while the overview of our method and the different

choices that have been made are presented in Section 3. Sec-

tions 4–7 deal with the four distinct steps of our method:

The decomposition of the object into surface patches, the

approximation of their boundaries, the initialization and the

optimization of the subdivision surfaces. Finally, in Section 8,

results are presented, evaluated and compared with existing

methods.

2. Related Work

Several methods already exist for subdivision surface fit-

ting, most of them take as input a dense mesh, simplify it

to obtain a base coarse control mesh and then displace the

control points (geometry optimization) to fit the target sur-

face. Lee et al. [LMH00], Ma et al. [MMT*04], Mongkol-

nam et al. [MRF03] and Marinov and Kobbelt [MK05]

use the Quadric Error Metrics from Garland and Heckbert

[GH97] for simplification. Kanai [Kan01] uses a similar

decimation algorithm which directly minimizes the error be-

tween the original mesh and the subdivided simplified mesh.

With these simplification-based approaches, the control mesh

connectivity strongly depends on the input mesh. For in-

stance, Figure 1 shows the approximation method from Kanai

[Kan01] applied on two different meshes representing the

same shape. It appears obvious that results are not the same.

Particularly, the control polyhedron in Figure 1e obtained for

the bad tessellated mesh of Figure 1d is not correct and gives a

quite poor limit surface (see Figure 1f) regarding to the orig-

inal one. In our algorithm, in order to remain independent

of the original connectivity, we first decompose the object

into surface patches, and then we use the boundaries of the

patches and the curvature information of the target object to

transmit the topology to our control polyhedron. The fitting

method from Suzuki et al. [Sus99] also remains independent

of the target mesh connectivity, by iteratively subdividing and

shrinking an initial hand-defined control mesh toward the tar-

get surface. Unfortunately this method fails to capture local

characteristics for complex target surfaces, and is only suited

for genus 0 surfaces without holes. Jeong and Kim [JK02]

use a similar shrink wrapping approach and encounter the

same problems with complex topologies. In the same idea,

Cheng et al. [CWQ*04] construct an octree partition of the

target surface and then triangulate it using the Marching Cube

algorithm.

Figure 1: Subdivision surface approximation for a simple
object with the algorithm from Kanai et al. [Kan01].

Concerning the geometry optimization, Lee et al.
[LMH00] and Hoppe et al. [HDD*94] sample a set of points

from the original mesh and minimize a quadratic error to the

subdivision surface. This technique was recently improved

by Marinov and Kobbelt [MK05] who introduce parameter

corrections. Suzuki et al. [Sus99] propose a local and faster

approach, also used in [JK02] and [MRF03]: The positions of

the control points are optimized, only by reducing the distance

between their limit positions and the target surface. Hence

only subsets of the surfaces are involved on the fitting proce-

dure, thus results are not so precise. Litke et al. [LLS01] also

introduce a local algorithm, based on quasi-interpolation,

to compute detail coefficients on a Catmull-Clark surface.

Ma et al. [MMT*04] consider the minimization of the dis-

tances from vertices of the subdivision surface after several

refinements to the target mesh; our algorithm follows this

framework while not using a point-to-point distance mini-

mization, but a point to surface minimization, by considering

the local quadratic approximants introduced by Pottmann and

Leopoldseder [PL03]. This algorithm allows a more accurate

and rapid convergence. The recent algorithms from Cheng

et al. [CWQ*04] and Marinov and Kobbelt [MK05] follow

a similar way.

To our knowledge, the optimality in terms of control point

number and connectivity represents a minor issue in the exist-

ing algorithms but seems particularly relevant for mechanical

or CAD objects. Only Hoppe et al. [HDD*94] optimize the

connectivity by trying to collapse, split or swap each edge

of the control polyhedron. Their algorithm produces high-

quality models but need, of course, an extensive computing

time. Recently, Marinov and Kobbelt [MK05] subdivide faces

associated with high errors and flip some edges to regular-

ize vertex valences, similar to Cheng et al. [CWQ*04]. Our

algorithm adapts the connectivity of the control mesh to the

anisotropy of the target surface by analyzing its curvature

directions, which reflect the natural parameterization of the

object. The number of control points is also optimized by
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Figure 2: The different steps of our fitting scheme for the Fandisk object. (a) Segmentation, (b) boundaries extraction,
(c) boundaries approximation, (d) subdivision control mesh, (e) limit surface.

enriching iteratively the control polyhedron following differ-

ent rules depending on the error distribution. Moreover this

approach allows to directly control the approximation error,

whereas simplification-based methods [Kan01], [MRF03],

[MMT*04], [LMH00] indirectly control the error by modi-

fying the decimation level.

3. Overview and Orientation

Our first objective is to obtain a base coarse control poly-

hedron with the same topology as the target mesh but inde-

pendent of its connectivity and aiming at optimizing vertex

and face numbers. Then, we wish to enrich and optimize

this initial control polyhedron in terms of connectivity and

geometry. Accordingly, our framework is the following (see

Figure 2):

� The target 3D object is segmented into surface patches

(see Section 4), of which boundaries are extracted. The

objective of this segmentation step is dual: Fitting a sim-

ple patch is easier than fitting a whole object, and the

boundaries will help us to retrieve and transmit to the

coarse base mesh, the topology of the target object.
� The network of boundaries is approximated with piece-

wise smooth subdivision curves (defined by coarse con-

trol polygons)(see Section 5). This step provides a net-

work of control polygons (see Figure 2c), optimized in

terms of control point number.
� For each patch an initial approximating subdivision sur-

face is created by linking the boundary control points

(extracted from the network) with respect to the lines of

curvature of the target patch (see Section 6). The cor-

responding control polyhedron connectivity is therefore

adapted to the anisotropy of the target patch, with a quite

low number of vertices and facets, as boundary control

polygons are optimized.
� The initial local control polyhedrons are enriched and op-

timized (connectivity and geometry) by iteratively mov-

ing control points and adding new points according to

the error distributions (see Section 7). The control mesh

defining the whole surface is then created assembling

every local control meshes.

Our main contributions are the following:

� The original global framework for subdivision surface

fitting, based on segmentation and boundaries approxi-

mation.
� The initialization algorithm, which creates a topologi-

cally correct approximating subdivision surface, inde-

pendent of the connectivity of the target patch, and

adapted to its anisotropy, while owning a near-minimal

vertex number.
� The enrichment process that allows to directly control the

approximation error, by adding iteratively new control

points according to the error distribution, while optimiz-

ing the connectivity.

The segmentation and the curve approximation algorithms

are detailed in previous works, thus they are just briefly pre-

sented in this paper.

The geometry optimization algorithm, which is a nontrivial

adaptation of the Pottmann and Leopoldseder’s Active B-

Spline algorithm [PL03] to subdivision surfaces is also briefly

presented as two recent subdivision surface fitting algorithms

consider a similar approach [CWQ*04], [MK05].

3.1. Curvature calculation

Our whole fitting algorithm is, to a large extent, based on cur-

vature tensors analysis, thus we have to calculate this informa-

tion for the input 3D meshes. A triangular mesh is a piecewise

linear surface, thus the calculation of its curvature is not triv-

ial. We have implemented the work of Cohen-Steiner et al.
[CM03], based on the Normal Cycle. This estimation proce-

dure relies on solid theoretical foundations and convergence

properties and is quite robust even for bad-tessellated objects.

For each vertex, the curvature tensor is calculated and

the principal curvature values kmin, kmax and directions
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Figure 3: Curvature fields for the 3D object Plane. (a) Kmax,
(b) Kmin (absolute value), (c) dmax, (d) dmin.

dmin, dmax are extracted. They correspond respectively to

the eigenvalues and eigenvectors of the curvature tensor, with

switched order (the eigenvector associated with kmin is dmax
and vice versa). Figure 3 presents samples of these fields for

the Plane object. On the edges of the wings, we have a high

maximum curvature, whereas kmin is null, it is a parabolic

region. Kmin is positive on elliptic regions, like at the end of

the wings, and negative in hyperbolic regions like at the joints

between the wings and the body of the plane. The principal

curvature directions have significance only on anisotropic

regions (elliptic, parabolic and hyperbolic) where they rep-

resent lines of curvature of the object. On isotropic regions

(spherical, planar), they do not carry any information.

3.2. The choice of the subdivision scheme

Within our approximation framework, we have to choose a

subdivision scheme. Many subdivision rules exist, some of

them are adapted for triangular control meshes, like Loop

[Loo87] and others are adapted for quadrilateral meshes, like

Catmull-Clark [CC78]. For a given surface to approximate,

the choice of the appropriate subdivision scheme is critical.

Indeed, even if in theory any triangle can be cut into quads

or any quad can be tessellated into triangles, results are not

equivalent. The fact is that the nature of the control polyhe-

dron (quads or triangles) strongly influences the shape and

the parameterization of the resulting subdivision surface. The

body of the cylinder, for instance, is much more naturally pa-

rameterized by quads than by triangles. These reasons have

led us to chose the hybrid quad/triangle scheme developed

by Stam and Loop [SL03]. This scheme reproduces Catmull-

Clark on quad regions and Loop on triangular regions. At

each subdivision step, the base mesh is first linearly subdi-

vided: Each edge is split into two, each triangle into four

and each quad into four (see Figure 4). Secondly, each ver-

tex is replaced by a linear combination of itself and its direct

neighbors. When a vertex is entirely surrounded by triangles

Figure 4: :Example of quad/triangle subdivision. (a) Con-
trol mesh, (b,c) one and two subdivision steps, (d) limit sur-
face.

Figure 5: Smoothing masks for Loop (a) Catmull-Clark (b)
and the quad-triangle scheme (c) (extracted from [SL03]).

or quads we use smoothing masks of Figure 5a and Figure

5b and otherwise we use the mask from Figure 5c, which

depends on the numbers of edges (ne) and quads (nq) sur-

rounding the vertex.

Concerning smoothness analysis, we have to notice that

this scheme, although being C2 almost everywhere, remains

only C1 at extraordinary points and around triangle/quad

boundaries. Even if our mechanical surfaces are likely to

be quadrics (this is often the case of CAD parts), this loss of

quadratic precision is not a limitation because our objective

is not a perfect fitting of the target objects but rather a correct

approximation for a visualization purpose.

4. Decomposition into Patches

The problem of subdivision surface fitting is quite complex

to resolve, particularly in our case, since we aim at remaining

independent of the target mesh connectivity. Hence we have

chosen to previously segment the object into near-constant

curvature surface patches. Benefits are numerous: The inverse

subdivision problem is simplified whereas boundaries of the

patches can be used to retrieve the topology and simplify

the fitting process. Moreover this decomposition may bring

adaptivity for the visualization (we can imagine, once we

have the complete control polyhedron, subdivide only a
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Figure 6: The different steps of the Boundary Rectification
(algorithm from [LDB05]) for the Fandisk object with a zoom
on an artifact correction. (a) Region-based segmentation. (b)
Minimum curvature directions. (c) Correct boundary edges
extraction and marking (incorrect ones are in red, others in
green). (d) Final boundaries after extension.

desired part of the object). We use the segmentation method

described in [LDB05]. This decomposition is based on the

curvature tensor field analysis and presents two distinct com-

plementary steps: A region-based segmentation (see Fig-

ure 6a) which decomposes the object into near constant curva-

ture patches, and a boundary rectification based on curvature

tensor directions, which corrects boundaries by suppressing

their artifacts or discontinuities. This rectification step, which

is critical for our fitting algorithm is illustrated in Figure 6.

Even if the region segmentation (see Figure 6a) shows good

qualitative results in terms of general shape and disposition

of the segmented regions, boundaries are often jagged and

present artifacts; the rectification algorithm will analyze the

coherency between curvature directions (see Figure 6b) of

the object and boundaries of the segmented regions to sup-

press incorrect boundary edges (see Figure 6c) and extend

good boundary edges (see Figure 6d). Resulting segmented

patches, by virtue of their properties (constant curvature,

clean boundaries) are thus particularly adapted to subdivi-

sion surface fitting.

5. Boundaries Approximation

Once the 3D object has been segmented, our algorithm ap-

proximates the network of patch boundaries with subdivision

Figure 7: Illustration of segmentation (a), boundary extrac-
tion (b) and subdivision curve approximation (c).

Figure 8: Example of subdivision curve with one sharp ver-
tex. (a) Control polygon. (b,c) 2 iterations of subdivision. (d)
Limit curve.

curves. At first, pieces of boundary are extracted; a piece of

boundary is a polyline corresponding to the boundary be-

tween two distinct patches (see Figure 7b). Then, each piece

of boundary is approximated with a subdivision curve, as-

sociated with a control polygon. Every control polygons are

then assembled (junction points are tagged as sharp) (see

Figure 7c) to give a control polygon network (see Figure 2c).

The purpose of this network is to simplify and optimize the

further subdivision surface fitting algorithm. This approach

bears some similarities with lofting algorithms, like that pro-

posed by Schaefer et al. [SWZ04], which aims at building a

subdivision surface over a network of curves. Then, consider-

ing a surface patch, its boundary control polygons can then be

extracted from the network; according to subdivision prop-

erties, these control polygons will represent the boundaries

of the control polyhedron of the approximating subdivision

surface.

5.1. Subdivision curve presentation

A subdivision curve is created using iterative subdivisions of

a control polygon (see Figure 8). In this paper we use the sub-

division rules defined for surfaces by Hoppe et al. [HDD*94]

c© 2007 The Authors
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for the particular case of sharp or boundary edges: New ver-

tices are inserted at the midpoints of the control segments

and new positions Pi
′ for the control points Pi are computed

using their old values and those of their two neighbors using

the mask

P ′
i = 1

8
(Pi−1 + 6Pi + Pi+1) (1)

With these rules, the subdivision curve corresponds to

a uniform cubic B-Spline, except for its end segments.

We also consider specific rules (those defined by Hoppe

[HDD*94] for corner vertices) to handle sharp parts and

extremities:

P ′
i = Pi (2)

This subdivision curve will coincide with the boundary gen-

erated by commonly used subdivision surface rules like

Catmull-Clark [CC78], Loop [Loo87] or the quad–triangle

scheme from Stam and Loop [SL03].

5.2. The approximation algorithm

This curve-fitting algorithm approximates efficiently a polyg-

onal curve with a piecewise smooth subdivision curve, while

minimizing the control points number. It is an extension

for subdivision rules, including sharp vertex processing,

of the Active B-Spline Curve developed by Pottmann and

Leopoldseder [PL03]. This algorithm also considers a theo-

retical framework, analyzing curvature properties of subdi-

vision curves, which computes a near-optimal evaluation of

the number and positions of the control points. Describing

this curve-approximation method is beyond the scope of this

paper, thus we request readers to refer to [LDB05] for com-

plete explanations and details about this algorithm. A result

is illustrated on Figure 7c.

6. Local Subdivision Surface Initialization

6.1. Overview

Once the control polygon network has been created, an initial

subdivision surface is created for each patch. The purpose of

the initialization process is dual: Transmit the topology from

the target surface patch to the initial control polyhedron and

optimize the connectivity of this control polyhedron regard-

ing the anisotropy of the target surface. The initialization

algorithm is the following: First, for each patch, the corre-

sponding control polygons representing its boundaries are

extracted from the network, and then our process will at-

tempt to connect control points from these control polygons

(we call them boundary control points), in order to create the

better set of facets that will represent the initial control poly-

hedron. These edges will be chosen according to the curva-

ture directions of the target patch. According to these edges,

Figure 9: The coherency between control lines (a), minimum
(b) and maximum (c) directions of curvatures.

the topology is then reconstructed in a simple and efficient

manner.

Boundary control polygons have to be synchronized, be-

fore launching the surface initialization process. Indeed, con-

sidering a cylinder, the curve approximation will produce

two square-like control polygons for example, however since

these boundaries are approximated independently, nothing

guaranties that control polygons are aligned. Hence, we pro-

cess a synchronization: Closed control polygons associated

with constant curvature target curves (circles) are aligned to-

gether. We rotate them so as to move their first control point

closer to a fixed limit infinite position.

6.2. Edge score definition

The purpose is to create edges and facets by connecting the

boundary control points in such a way that the correspond-

ing created initial subdivision surface is the better approxi-

mation of the target surface for these given control points,

regarding the resulting error. For this purpose, we consider

the lines of curvature of the target surface, represented by

local directions of minimum and maximum curvature (see

Figures 9b and c). We call Control lines of a subdivision

surface, the smooth lines coming from the subdivision of

the edges of the control polyhedron (see Figures 4d and

9a). These Control lines are strongly linked to the lines of

curvature. Indeed the topology of a control polyhedron will

strongly influence the geometry information of the associ-

ated limit surface, which is also carried by lines of curvature

[ACD*03]. This coherency between control lines and lines of

curvature is shown in the example on Figure 9. Thus, for each

couple of control points from the boundary control polygons,

a Coherency Score (SC) is calculated, taking into account the

coherency of the corresponding potential control line with

the lines of curvatures of the corresponding area on the tar-

get surface. The mechanism is illustrated on Figure 10: For

each potential edge E, we consider its vertices P 0, P 1 and

the projections P̃0, P̃1 of their respective limit positions on

the patch boundary. Then we calculate the pseudo geodesic

path between these limit positions, to simulate the control

line, by applying the Dijkstra algorithm on the vertices of the

c© 2007 The Authors
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Figure 10: Mechanism for edge score definition.

target surface. Finally we consider the curvature tensors of

the n vertices Vi of this path, and particularly their curvature

directions. The coherency score SC for this potential edge E
is

SC(E) =
min

( ∑n
i=1 θmini ,

∑n
i=1 θmaxi

)

n
(3)

where θmini(θmaxi) is the angle between the minimum (max-

imum) curvature direction of the vertex Vi and the segment

P̃0 P̃1. This score SC ∈ [0, 90] is homogeneous to an angle

value in degree. Two special cases are taken into account,

concerning the nature of vertices Vi belonging to the path

� If Vi owns an isotropic curvature tensor (plane or spheri-

cal region), hence the directions of curvature do not carry

information. In these cases θmini and θmaxi are set to 45,

to not influence the final score.
� If Vi is on a boundary (while not being the beginning

or the end of the path), then a penalty is introduced, be-

cause if the corresponding potential edge represents a

correct control edge, thus it should not cross or touch a

boundary. Therefore in these cases θmini and θmaxi are

set to 90.

6.3. Topology reconstruction

Even if we know which edges to create (see previous subsec-

tion), recovering the correct topology for the construction of

the initial control polyhedron is not a trivial problem, because

the target surface patch can have multiple holes (and therefore

multiple boundary control polygons). Alliez et al. [ACD*03]

use parameterization and constrained Delaunay algorithms

for topology reconstruction; we aim at avoiding such com-

plex processes knowing that moreover, parameterization does

not always work on surfaces with multiple holes. We pro-

pose the following solution: We create a single oriented con-

tour including every boundary control polygons, that we call

the topological contour, and then we cut this contour along

the best edges (according to the coherency score SC) to re-

cover a set of facets. The topology reconstruction problem is

thus reduced to the determination of the correct topological

contour.

6.3.1. Topological Contour construction

The objective is to extract a single oriented contour includ-

ing every boundary control polygons. In the case of a single

boundary target surface, the determination of the topologi-

cal contour is automatic, however in the case of a multiple

boundaries target surface, we have several control polygons,

hence we have to link them by creating edges and doubling

some control points. For n boundaries, we create (n − 1)

edges (dotted lines in Figure 11a), by choosing those asso-

ciated with smallest scores SC. The process is illustrated in

Figure 11. For a two holes surface (see Figure 11a), we have

created the correct oriented topological contour [C 0, C 1, C 2

. . ..] (see Figures 11b and 11e). The difficulty is to create a

coherent contour which represents the correct topology of the

target surface, because this contour will lead the initial control

polyhedron construction. Figure 11c presents this problem.

We have chosen to start the topological contour from con-

trol point B1
0 that, therefore, becomes C0, then B1

1 becomes

C1 and B2
1 becomes C2 and then a question occurs: Does

the topological contour have to continue on B2
0 or B2

2? Even

if this question seems trivial for a plane object, it becomes

very complex in the case of a topologically complex, multiple

holes surface and moreover will be critical for the rest of the

process. A topological contour will be coherent if, when we

walk along it, the triangulated surface remains on the same

side (on the right in the example of Figure 11e). Hence, our

solutions are the following (see Figure 11d):

� First, we consider the limit positions of B1
1 and B2

1

(obtained by subdividing the control polygons) and we

project them on the patch boundaries, thus we obtain B̃1
1

and B̃2
1 .

� We mark every edge of the target patch belonging to the

pseudo-geodesic path linking B̃1
1 and B̃2

1 (see the purple

line in Figure 11d).
� We extract a triangle TB1

0 B1
1 from the previous path, this

is a triangle adjacent to the boundary polyline linking

limit positions (B̃1
0 and B̃1

1 ) of B1
0 and B1

1 (this triangle is

in gray in Figure 11d).
� We then extract triangles TB2

0 B2
1 and TB2

1 B2
2, from the

both possible paths B̃2
1 -B̃2

0 and B̃2
1 -B̃2

2 . These triangles

are respectively in blue and pink in Figure 11d.
� Finally we calculate the shortest paths (blue and red ar-

rows), considering marked edges (in purple) as impass-

able, from TB1
0 B1

1 to TB2
0 B2

1 and TB2
1 B2

2, by applying

the Dijkstra algorithm on triangles of the target patch.
� The shortest path (the blue arrow in the example) gives us

the correct control point to integrate on the Topological

Contour: B2
0 (see Figure 11e).

c© 2007 The Authors
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Figure 11: Topology extraction for a two holes surface.

Thus, we obtain the correct oriented Topological Contour

[C 0, C 1, C 2 . . . .].

6.3.2. Initial subdivision surface creation

Once the oriented topological contour has been created, our

algorithm is quite simple (see Figure 12). We consider the

potential edge associated with the smallest score SC (dotted

segments in Figure 12), and we cut the contour along this

edge, creating two sub-contours. This algorithm is repeated

recursively on sub-contours until it remains only plane con-

tours (see contours 1,2,3 in Figure 12). Then for each plane

contour, we check its convexity, if it is convex, we create a

facet, and if not, we decompose it into convex parts, using the

algorithm from Hertel and Mehlhorn [HM83]. By assembling

created facets we obtain our initial polyhedron, of which limit

surface (see Figure 12) represents, in most case, a quite good

approximation of the original surface patch.

This algorithm for topology reconstruction and subdivi-

sion surface initialization is simple but gives quite good re-

sults, even on coarse anisotropic triangulations (see results

in Figure 17). Of course it implies that boundaries of the tar-

get surfaces carry much information about their topologies

and geometry, but this assumption is verified in our case,

because segmented patches coming from our decomposition

algorithm [LDB05] own a near-constant curvature.

7. Local Subdivision Surface Optimization

Even if the initial subdivision surface often represents a good

approximation of the target surface patch, the initialization

mechanism considers, first of all, the boundary information.

Hence we have now to take into account the interior data.

Considering this purpose, we have defined two complemen-

Figure 12: The initial polyhedron creation mechanism.

tary mechanisms: A geometry optimization algorithm, gen-

eralizing Pottmann and Leopoldseder method [PL03] for the

complex quad–triangle subdivision rules, and an enrichment

mechanism that adds points and optimizes the connectivity

according to the error position and distribution.

7.1. Geometry optimization

For a given target surface and a given initial subdivision sur-

face, this process aims at displacing control points by min-

imizing a global error over the whole surface. To achieve

this purpose, we use a least-square method based on the

quadratic distance approximants defined by Pottmann and

Leopoldseder [PL03]. The local approximant of point to

surface quadratic distance is defined as follows: Consider-

ing a smooth surface �, we can define at each point t0, a
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Cartesian system (e1, e2, e3) whose first two vectors e1, e2

are the principal curvature directions and e3 is the normal

vector. Considering this frame, the local quadratic approxi-

mant Fd(p) of the squared distance of a point p at (0,0,d) to

the surface � is given by [PH03]:

Fd (x1, x2, x3) = d

d + ρ1

x2
1 + d

d + ρ2

x2
2 + x2

3 (4)

where x 1, x 2 and x3 are the coordinates of p with respect to

the frame (e1, e2, e3) and ρ 1(ρ 2) is the curvature radius at

�(t 0), corresponding to the curvature direction e1(e2).

The minimization of this point to surface distance (re-

cently used for subdivision surface fitting by Marinov and

Kobbelt [MK05] and Cheng et al. [CWQ*04]) is much faster

than traditional point-to-point distance (used by Ma et al.
[MMT*04]).

Thus, our algorithm is the following:

1. The curvature is calculated for each vertex of the target

surface (see Section 3.1).

2. Several sample points Sk are chosen on the subdivi-

sion surface, they correspond to vertices of the sub-

divided polyhedron at a finer level l0. The associated

footpoints (projections of the sample points on the tar-

get surface) are extracted. For each of them, we calculate

the curvature tensor, by a linear interpolation of those

of the surrounding vertices, using barycentric coordi-

nates. This tensor allows us to construct the Frame e1,

e2, e3 and the curvature radii ρ 1 and ρ 2, useful for the

point to surface distance computation (see Equation 4).

Sample points Sk can be computed as linear combina-

tions of the initial control points P0
i (see Section 3.2);

they correspond to control points Pl0
i at the finer

level l0.

Sk = Ck

(
P0

1 , P0
2 , . . . , P0

n

)
(5)

3. The functions Ck are determined using iterative multi-

plications of the subdivision matrices associated with

our subdivision rules (see Figure 5).

4. For all Sk, local quadratic approximants Fk
d of the

squared distances to the target surface are expressed

according to the frame e1, e2, e3 at the corresponding

footpoints. The minimization of their sum F gives the

new positions of the control points P0
i .

F =
∑

k

Fk
d (Sk) =

∑
k

Fk
d

(
Ck

(
P0

1 , P0
2 , . . . , P0

n

))

(6)

The minimization of this quadratic function leads to the

resolution of a linear squared system.

Steps (2)–(4) are repeated for a fixed number of iterations,

or until the approximation error reaches a queried value. The

Figure 13: Principal error field extraction (2D example).

approximation error is defined as the mean Euclidian distance

between the sample points Sk on the subdivision surface and

their respective footpoints on the target surface.

Concerning the choice of the number of sample points Sk,

we have chosen l 0 = 2 refinements for all examples in this

paper. As for each refinement, the number of vertices will

increase by a factor of at least four, the number of equations

will be about sixteen times the number of unknowns. That

ensures a stable solution when solving Equation 6 in the least

squares sense.

7.2. Enrichment and connectivity optimization

In this section we present how to modify the connectivity of

our control polyhedron. We have two mechanisms to con-

sider: An enrichment of the mesh, consisting in the addition

of new control points, and an optimization of the connectivity,

insuring that, for a given set of control points, the associated

connectivity (set of faces and edges) is the better possible

regarding the resulting error. This mechanism is quite com-

plex to implement, therefore, since the connectivity has been

optimized by adapting to the target surface anisotropy in the

initialization step (see Section 6), we will just try to limit its

departure. Hence we have integrated these two mechanisms

into a single algorithm, which considers the error distribu-

tion to enrich precisely the polyhedron, while trying to keep

an optimized connectivity. The first step of this algorithm is

the principal error field extraction. The goal is to extract not

only the maximum error point but also an area (a set of error

points) corresponding to the error field in order to be able to

analyze the error distribution. For this purpose we consider

sample points Sk, on the subdivision surface and associated

distances Dk to the corresponding projections on the target

surface (same method that the footpoint determination in Sec-

tion 7.1). Then, we extract and add to our error set, the sample

point corresponding to the maximum error Dmax, and every

sample points corresponding to a similar error (we have fixed

a threshold T = Dmax
2

) and connected to another point of the

error point set. This extraction is shown for a 2D case in Fig-

ure 13. Once we have the principal error field, we study its

dispersion to modify the control mesh. We distinguish two

cases, illustrated in Figures 14 and 15:

1. The error field corresponds to a local error. Hence, if

several control faces Fk are concerned by the error field

c© 2007 The Authors
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Figure 14: The enrichment mechanism (case 1). (a) Origi-
nal surface. Initial (b,c), enriched (d,e) and optimized (f,g)
subdivision surface.

Figure 15: The enrichment mechanism (case 2). (a) Origi-
nal surface. Initial (b,c), enriched (d,e) and optimized (f,g)
subdivision surface.

(they contain at least one error point) it means that the

topology in this region is not correct, hence, we merge

these faces and then add a point in the resulting face

and connect it with its neighbors. The position of this

new point is the barycenter of its neighbors. Figure 14a

shows a target surface and Figure 14b shows the initial

subdivision surface with the corresponding error field

(error points are marked in red). Corresponding faces

(Figure 14c) have been merged, before adding a new

control point (see Figure 14d and e).

2. The error field is diffuse. Hence, there is no precise er-

ror center, the error field corresponds rather to a lack of

degrees of freedom. Thus, every concerned face Fk is

enriched. A point is added at the center and connected

to its neighbors. If two faces are adjacent we also cut

their common edge. An example is shown on Figure 15,

each concerned face has been enriched. This mechanism

also concerns cases were there exist one principal error

but the error field already contains a control point. This

means that the control point does not bring enough free-

dom to model the target surface, hence we enrich every

face of the field.

We detect these two cases, simply by considering the per-

centage of the error point set with an error close to Dmax
(the threshold 0.80 × Dmax gives satisfying results). If this

percentage is lower than a threshold (usually 50%) thus the

error set is considered as a Gaussian-like distribution asso-

ciated with a local error (case 1), otherwise the error set is

considered as a plateau-like distribution (case 2). This quite

simple algorithm has given satisfying results in our experi-

ments.

7.3. Whole optimization algorithm

Our algorithm for the optimization of local subdivision sur-

faces is the following:

Begin Subdivision Surface Optimization

whileE > Elimit do
//E is the approximation error and Elimit a threshold value.

while E > Elimit and m < m0 do
/ ∗ m is the iteration number and m0 a maximum number.*/

Call the geometry optimization procedure (see Section 7.1).

The subdivision surface is moved toward the target surface,

by minimizing a sum of quadratic distances.

end while
if E > Elimit then

A new control point is inserted onto the subdivision surface

according to the error distribution (see Section 7.2).

end if
end while

End Subdivision Surface Optimization

m0 was fixed to 5, in order to limit the number of iterations for

the geometry optimization, since its convergence is very fast

(often 3 or 4 iterations) and seeing that this process remains

computationally costly. Note that boundary control points

are fixed, to insure that no crack will appear later, during the

construction of the final whole control polyhedron containing

every control meshes of the different patches.

Figures 14 and 15 show the complete process. Boundaries

of the target surfaces (see Figure 14a and 15a) have been ap-

proximated and initial subdivision surfaces have been con-

structed (see Figure 14b and 15b). The associated approx-

imation L1 errors are respectively, E = 30.7 × 10−3 and

E = 15.2 × 10−3 (in all our experiments the models have

been scaled in a bounding box of length equal to 1). Then the

error distributions are analyzed and control polyhedrons are

enriched. The geometry is then optimized (three iterations)

(see Figure 14f and 15f). The final approximation errors are;

respectively, E = 2.06 × 10−3 and E = 2.69 × 10−3.

8. Results

This section provides some examples to demonstrate the ef-

ficiency of the proposed framework. Figure 2 illustrates the

whole algorithm for subdivision surface fitting to a 3D model:
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Figure 16: Examples of mesh connectivity of our 3D model
database and corresponding numbers in Figure 17.

1. The 3D model is segmented into surface patches (see

Figure 2a).

2. For each patch:

– Pieces of boundary are extracted (see Figure 2b).

– Its boundaries are approximated by piecewise

smooth subdivision curves (see Figure 2c).

– The approximating subdivision surface is created

and optimized (see Figure 2d).

3. Local control polyhedrons are put together. Boundary

edges are marked as sharp (see red edges in Figure 2d)

and therefore are associated with the sharp subdivision

rules from Equation 1.

Our approximation method was tested on the mechanical

database from Renault, these models are issued from CAD,

and thus associated with highly irregular connectivity (see

mesh examples in Figure 16). Figure 17 presents the results

of our subdivision surface-fitting algorithm for the Fandisk

mesh and for several objects from Renault database. In all

these experiments we have fixed E limit = 3 × 10−3. Since

boundary control points are not allowed to move, the value

of E limit has to be coherent with the error threshold associated

with the boundary curve approximation. In our example this

threshold was fixed to 2 × 10−3.

All these experiments were conducted on a PC, with a

2 Ghz XEON bi-processor. Processing times are between 5

and 10 seconds, they are detailed for the Fandisk mesh in

Table 1. Segmentation and curve fitting algorithms have a

linear behavior if we consider larger objects. On the other

hand the surface fitting process is based on Dijkstra paths

calculation on the target patches (see Section 6.2), thus the

complexity will increase in a quadratic way with the size

of the considered patches. Fortunately, since the object is

segmented according to its curvature, there is no reason for

the extracted regions to have a gigantic size.

Table 1: Processing times for the approximation of the Fandisk
mesh (in seconds).

Segmentation Curve fitting Surface fitting Total

0.640 1.203 1.267 3.110

Figure 17 shows initial objects, with patch boundaries

(in green), control polyhedrons (with sharp edges in red)

and associated limit surfaces (after four subdivision steps

for a,b,c,d,e,f and three steps for g and h). Control polyhe-

drons have quite small numbers of faces and vertices com-

pared with initial surfaces (convenient for compression tasks)

and their connectivity (more or less triangles or quads) is

adapted to the geometry and to the anisotropy of the target

objects. The approximation errors remain very low even for

complex objects. Results are also particularly suited for our

visualization task; indeed, resulting surfaces after subdivi-

sion are quite smooth and visually pleasant, without discon-

tinuities or noise like those produced by lossy compression

schemes like wavelet-based schemes for instance. Particu-

larly, our algorithm, thanks to the segmentation step, pre-

serves sharp features, whereas most of other fitting methods

[Sus99], [Kan01], [MRF03], [JK02] can handle only smooth

models. Moreover we can distinguish another benefit, dealing

with the remeshing task on Figures 17g and 17h: The result-

ing subdivided surfaces are quite nicely remeshed models

compared with the initial target objects.

We have compared our results for the Fandisk object with

algorithms from Ma et al. [MMT*04] and Hoppe et al.
[HDD*94] (see Table 2). We obtain a better approximation

error than Ma et al., for a lower number of faces and ver-

tices. Hoppe et al. obtain a better quadratic error than ours

but our control polyhedron is lighter than theirs; Figure 18

compares control polyhedrons from both algorithms. More-

over their method relies on a very long and complex global

optimization while our algorithm is faster (3.110 seconds for

Fandisk). Ma et al. and Hoppe et al. produce only triangular

control polyhedrons, while our algorithm is able to adapt the

connectivity to the natural parameterization of the target ob-

jects by creating triangles, quads and higher order polygonal

faces. Finally, our algorithm works fine on coarse anisotropic

triangulations. Indeed, the segmentation [LDB05] and the ini-

tial subdivision surface creation (based on patch boundaries)

are adapted for such meshes. Moreover, the geometry opti-

mization resamples the original mesh (with the projections

of the sample points Sk) hence the density of the original

sampling affects only the precision, but not the stability.

However, our method owns some limitations: Contrary to

both cited algorithms, our algorithm is, for the moment, only

suited for piecewise smooth mechanical objects and is not

adapted for noisy or scanned data. Moreover our algorithm

is harder to control, since there are three steps to manage:

segmentation, curve fitting and surface fitting. In practice the
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Figure 17: Result of our fitting scheme for different mechanical parts. Initial objects (patch boundaries are marked in green),
control polyhedrons and limit surfaces.

Table 2: Results for different approximation methods applied to
the Fandisk object.

Our Ma et al. Hoppe et al.

#V/#F Ctrl Poly 75/89 173/342 87/170

L1 error (10−3) 0.78 5.06 /

L2 error (10−3) 1,632 / 0.32

Max error (10−3) 10.46 27.09 /

final approximation error is mainly determined by the bound-

ary curve approximation. Indeed, since segmented patches

have a near constant curvature, their boundaries carry most

of their geometry, and thus control point insertions remain

marginal.

9. Conclusion

We have presented a new framework for subdivision surface

fitting of 3D models. Our approach, particularly adapted for

mechanical objects, is independent of the connectivity of the

target mesh and aims at optimizing the generated subdivision

surface, in terms of connectivity and control points number.

After a segmentation step, the 3D object is divided into sur-

face patches of which boundaries are approximated with sub-

division curves, which lead to initial local subdivision control

polyhedrons by linking control points of the boundary con-

trol polygons. These edges are created with respect to the

lines of curvature, to preserve the natural parameterization

of the target surfaces. Local subdivision surfaces are then

iteratively enriched and optimized until the approximation

errors become correct. The final control polyhedron contain-

ing triangles, quadrangles, higher order polygons and sharp
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Figure 18: Control polyhedrons coming from our fitting
method and from the algorithm from Hoppe et al. [HDD*94].
Two different views are presented.

edges is then created by assembling local subdivision control

polyhedrons.

Applications are quite large including remeshing, reverse

engineering and particularly compression for visualization

tasks that is the main objective of our framework. The con-

trol polyhedrons are much more compact than the original

meshes, and once subdivided the limit surfaces are visually

pleasant (at least C0 and piecewise C1 and C2), without arti-

facts or cracks, like traditional lossy compression schemes.

Moreover sharp features of the original models are preserved.

Experiments have shown quite good results compared with

state-of-the-art algorithms.

Our method is effective for CAD mechanical models since

they present large constant curvature regions, with smooth

boundaries, which are particularly adapted for our subdi-

vision inversion based on boundary approximation. On the

other hand, our method is less suited for noisy objects or

scanned data; finding a way to treat such objects is of interest

and needs several improvements, especially concerning our

segmentation algorithm that cannot provide smooth bound-

aries from noisy data. We could replace this step with the

decomposition algorithm from Wu and Kobbelt [WK05] or

the smooth feature line extraction from Hildebrandt et al.
[HPW05].

Our algorithm also introduces sharp edges in resulting sub-

division surfaces (at the boundaries between patches) which

can produce unpleasant discontinuities on totally smooth

objects. An interesting perspective could be to conduct a

global optimization, on the whole control mesh, once lo-

cal polyhedrons have been assembled, which should resolve

this issue and also improves the handling of the algorithm

that, for the moment, depends principally on the boundaries

approximation.
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