
Pacific Graphics 2016
E. Grinspun, B. Bickel, and Y. Dobashi
(Guest Editors)

Volume 35 (2016), Number 7

Progressive compression of arbitrary textured meshes

F. Caillaud1,2, V. Vidal1,3, F. Dupont1,3 and G. Lavoué1,2

1 Université de Lyon, CNRS, 2 INSA-Lyon, LIRIS UMR 5205, 3 Université Lyon 1

0.9 bpv (+ 0.7 bpv)
16,952 v.

1.3 bpv (+ 1.5 bpv)
23,449 v.

3.0 bpv (+ 3.8 bpv)
45,045 v.

24.2 bpv (+ 9.7 bpv)
314,218 v.

Figure 1: Progressive decompression of the Tiger Fighter model (314,218 vertices). For each level of detail, we present the total size of the
decoded data for the mesh elements (geometry, connectivity, texture coordinates) and for the texture image (in parentheses) in bit per vertex,
as well as the number of vertices. Texture seams are illustrated in red.

Abstract
In this paper, we present a progressive compression algorithm for textured surface meshes, which is able to handle polygonal
non-manifold meshes as well as discontinuities in the texture mapping. Our method applies iterative batched simplifications,
which create high quality levels of detail by preserving both the geometry and the texture mapping. The main features of our
algorithm are (1) generic edge collapse and vertex split operators suited for polygonal non-manifold meshes with arbitrary
texture seam configurations, and (2) novel geometry-driven prediction schemes and entropy reduction techniques for efficient
encoding of connectivity and texture mapping. To our knowledge, our method is the first progressive algorithm to handle polyg-
onal non-manifold models. For geometry and connectivity encoding of triangular manifolds and non-manifolds, our method
is competitive with state-of-the-art and even better at low/medium bitrates. Moreover, our method allows progressive encod-
ing of texture coordinates with texture seams; it outperforms state-of-the-art approaches for texture coordinate encoding. We
also present a bit-allocation framework which multiplexes mesh and texture refinement data using a perceptually-based image
metric, in order to optimize the quality of levels of detail.

Categories and Subject Descriptors (according to ACM CCS): •Mathematics of computing ~ Coding theory •Computing method-
ologies ~ Image compression • Computing methodologies ~ Texturing

1. Introduction

The development of computer graphics applications leads to a
global increase in 3D model quality. This increase in quality is gen-
erally obtained by an augmentation of the geometric information
describing these models (mostly represented by surface meshes),
as well as the addition of appearance attributes for improving real-
ism, such as texture maps. Utilization of these high quality meshes

over an increasing diversity of devices and applications is quickly
constrained by bandwidth, memory and/or processing speed. For
instance, a web 3D application requires low-latency visualization
and thus is strongly limited by the size of the data to be transmitted
over the network. This kind of application requires a considerable
decrease in mesh information size. Besides this need for efficient
compression, levels of detail (i.e. a multiresolution representation)

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

F. Caillaud, V. Vidal, F. Dupont and G. Lavoué / Progressive compression of arbitrary textured meshes

are also necessary to adapt the data to the visualization device.
These functionalities are offered by progressive compression tech-
niques, which allow a high compression ratio to be attained and
different levels of detail (LoD) to be produced. With these tech-
niques, users instantly get a coarse version of the mesh which is
then progressively refined as more data are decompressed until the
initial model has been restored.
Many progressive compression methods for surface meshes al-
ready exist [MLDH15]. However, most of these approaches only
deal with triangular manifold meshes and few can compress ei-
ther polygonal manifold or triangular non-manifold meshes. To our
knowledge, none of them provide an implementation of progres-
sive compression of any surface meshes, whatever their connectiv-
ity (i.e. including polygonal non-manifold configurations). As for
texture coordinates, most previous works consider them as simple
per-vertex information. However, this assumption does not hold for
most cases due to the presence of discontinuities in the texture map-
ping (i.e. texture seams).

In this context, we present a lossless progressive compression
algorithm suited for arbitrary textured meshes. Our main contribu-
tions are:

• Generic edge collapse and vertex split operators, suited for
polygonal non-manifold meshes with arbitrary texture seam con-
figurations.
• Efficient geometry-driven prediction schemes and entropy re-

duction techniques for progressive encoding of connectivity and
texture mapping.

We also introduce several minor contributions such as a fast met-
ric for edge collapse selection which preserves both geometry and
texture mapping quality, as well as efficient heuristics for adapt-
ing the number of simplifications per iteration, which are called
batches. To our knowledge, our method is the first progressive al-
gorithm to handle polygonal non-manifold models. For geometry
and connectivity encoding of triangular manifold and non-manifold
meshes, our method is competitive with state-of-the-art and better
at low/medium bitrates. Our algorithm also allows progressive en-
coding of texture coordinates with texture seams and outperforms
existing progressive and single-rate methods for this task. Since the
texture map may be also encoded progressively (e.g. using progres-
sive JPEG or texture-specific methods like ASTC [NLP∗12]), we
propose a bit-allocation framework where mesh and texture LoDs
are multiplexed in the compressed stream based on a perceptual
image quality metric. This approach allows perceptually-optimized
levels of detail to be obtained for given bit budgets.

The rest of this paper is organized as follows. We introduce the
previous work in Section 2. Then, an overview of our approach is
presented in Section 3. The different steps of our algorithms are
detailed in Sections 4 and 5. Finally, Section 6 describes our bit-
allocation framework and Section 7 presents our results as well as
comparisons with state-of-the-art. A conclusion as well as future
work are provided in Section 8.

2. Previous work

Much literature is available on the subject of 3D mesh compression.
Readers can refer to [MLDH15] for a recent comprehensive survey

about this topic. We focus this state-of-the-art on progressive com-
pression techniques, particularly those which handle non-manifold
meshes, and on textured mesh compression.

2.1. Progressive mesh compression

Hoppe [Hop96] introduced progressive compression of 3D models.
He proposes the edge collapse operator to simplify the mesh while
different unitary configurations around the collapsed edge encode
connectivity. He also records the position of edge vertices. These
two pieces of information are given to the vertex split operator in
order to refine the mesh during decompression. The main drawback
of this method is its fine granularity (difference between two con-
secutive LoDs). This allows strong control of distortion but penal-
izes the compression rate. Moreover, as in most further progressive
compression methods (e.g. [TGHL98, PR00, AD01]), it only deals
with triangular manifold meshes.
Only a few methods are able to compress polygonal manifold
meshes. Maglo et al. [MCAH12] present a generalization of the
valence-based algorithm by Alliez and Desbrun [AD01] for this
task. This algorithm can be described in two parts. First, a determin-
istic mesh conquest constructs a set of independent 1-rings where
the center vertex is removed. Second, the valence of the removed
vertices is encoded. These two parts form a decimation batch which
is repeated until a base mesh is reached.
Only a few algorithms are available in the literature for the pro-
gressive compression of non-manifold meshes. Popović and Hoppe
[PH97] adapted [Hop96] for arbitrary simplicial complexes. The
progressive algorithm by Bajaj et al. [BPZ99] is also able to han-
dle non-manifold triangulations; however, the compression effi-
ciency of these last two methods is limited. We particularly set
apart tree-based algorithms by Gandoin and Devillers [GD02] and
Peng and Kuo [PK05]. They encode mesh geometry over, respec-
tively, a kd-tree and an octree by enumerating the vertices in each
cell at the current level. Connectivity is encoded using the sim-
plification and refinement operators of [PH97]. While these ap-
proaches [GD02, PK05] handle non-manifold triangular meshes
and are very efficient at lossless rates, they generate undesired
quantization effects at low and medium bitrates. Moreover, they
do not allow any local control of the decimation and, thus, of
the distortion. Tian et al. [TJL∗12] bring elements to limit these
drawbacks. Using a bottom-up clustering strategy, Peng et al.
[PHK∗10] propose another progressive method which provides
nice low bitrate results. However, it does not guarantee retrieval
of the lossless version of the mesh. Furthermore, all these tech-
niques [PH97,BPZ99,AD01,GD02,PK05,PHK∗10] are limited to
triangular meshes.

In comparison, our method (1) handles both polygonal and non-
manifold meshes, (2) affords a lossless retrieval of the mesh and (3)
allows accurate and customizable local control of decimation, lead-
ing to improved rate-distortion performances at low and medium
bitrates.

2.2. Textured mesh compression

Several approaches have been proposed for textured mesh compres-
sion. Isenburg and Snoeyink [IS03] and, more recently, Váša and

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

F. Caillaud, V. Vidal, F. Dupont and G. Lavoué / Progressive compression of arbitrary textured meshes

Brunnett [VB14] propose single rate compression methods specif-
ically dedicated to texture coordinates. In [VB14] these coordi-
nates are encoded thanks to a parallelogram prediction described
in [VB13], improved by using the mesh geometry information.
In the field of progressive compression, Yang et al. [YLK04] pro-
pose an algorithm for multiplexing mesh LoDs obtained using
Hoppe’s algorithm [Hop96] and texture LoDs obtained through
JPEG2000 compression. Multiplexing is defined in order to obtain
the best visual quality (as predicted using an image quality metric
applied on rendered views) at any moment during decompression.
Tian and Al-Regib [TA08] keep this idea but guide multiplexing
using a combination of geometry and texture RMS errors. These
works focus on multiplexing the LoDs but they discuss neither the
encoding of texture coordinates nor the handling of texture seams.
Popović and Hoppe [Hop96, PH97] handle discontinuities in at-
tributes (like for texture seams) in their progressive mesh algo-
rithms. However, as stated above, these algorithms do not provide
efficient compression. Lavoué et al. [LCCD16] recently adapted
[AD01] to deal with texture seams, however they have to mod-
ify the connectivity to create a per-vertex UV representation.
Tarini [Tar16] recently proposed a new volume based representa-
tion of UV maps. This representation allows to preserve the texture
parametrization for different mesh LoDs and could lead to nice
compression results. Our goal is, however, to compress the stan-
dard texture mapping representation.

In comparison to the algorithms presented above, our scheme
handles texture seams and efficiently encodes texture coordinates in
a progressive way, using a novel geometry-based prediction involv-
ing barycentric coordinates. We propose, moreover, a multiplexing
of mesh and texture LoDs based on a perceptually-validated image
metric.

3. Overview

The overall procedural flow of our progressive compression method
is described below.

• The first step is the uniform quantization of XYZ and UV coor-
dinates, respectively to Qg and Qt bits.
• Then, the mesh is iteratively simplified, in batches (see Section

4.3), using our generic simplification operator (see Section 4.1).
Decimation is driven by a fast metric (see Section 4.2). This sim-
plification is repeated until each connected component has been
reduced to one single vertex.
• At each simplification step, the corresponding batch of vertex-

split operations (which will allow to refine the mesh at decom-
pression) is encoded efficiently using dedicated schemes for ge-
ometry (see Section 5.2), connectivity (see Section 5.3) and tex-
ture coordinates (see Section 5.4).

After these steps, the whole mesh is encoded in the form of chunks
of binary compressed data. The first chunk contains only few ver-
tices encoded in a simple binary form; then each chunk contains
the encoded refinement information (geometry+connectivity+UV
coordinates) that allows the next level of detail to be built. As an ap-
plication for optimized progressive transmission, we propose a bit
allocation framework which multiplexes the encoded refinement in-
formation of mesh and texture (obtained using progressive JPEG),

to optimize the visual quality of the levels of detail at decompres-
sion (see Section 6).

4. Textured mesh simplification and refinement

4.1. Generic edge collapse and vertex split

In order to simplify the mesh, at compression, and to refine it, at
decompression, we rely on edge collapse and vertex split operators.
These operators offer a finer local control of distortion than other
ones (e.g. vertex removal). The manifold edge collapse and vertex
split operators introduced by Hoppe [Hop96] were extended by
Popović and Hoppe [PH97] to handle non-manifold topology.
They can thus handle dangling edges (edges without incident
faces), complex edges (edges with more than two incident faces),
complex vertices (vertices linking two connected components) and
holes (missing faces).
However, the latter operators only apply to triangular non-manifold
meshes and are not suitable for polygonal non-manifold meshes.
Therefore, we introduce generic edge collapse and vertex split
operators, able to handle polygonal faces (faces of degree ≥ 3).
The edge collapse consists of several steps, illustrated in Figure 2.
First, incident triangular faces of v1v2 are suppressed (Figures 2a
and 2b). Then, the edge v1v2 is suppressed (Figures 2b and
2c). Vertices v1 and v2 are merged into v. Former incident non-
triangular faces of v1v2 lose one degree. Redundant edges and
faces are suppressed so that the connectivity around v continues
to be valid (Figure 2c). Finally, v is moved to the middle of the
former edge v1v2 (Figure 2d). This position for v is not optimal
regarding geometric error but can be encoded very efficiently. The
vertex split reconstructs first the connectivity, in the reverse order
to the collapse, using the necessary information. Then, the vertices
v1 and v2 are moved to their initial position.

Figure 2: Different steps of our generic edge collapse. (a) Original
configuration around the red edge v1v2 to be collapsed, (b) incident
triangular faces of v1v2 are removed, (c) v1 and v2 are merged into
v and non-triangular faces lose one degree, (d) v is moved to the
middle of the former edge v1v2.

For textured meshes, the collapse/split operators have to deal
with texture seams. We recall here that UV texture coordinates can-
not be considered as simple per-vertex information due to possible
discontinuities in the texture mapping (referred to as texture seams)
which occur when two adjacent mesh faces are associated with non-
adjacent texture faces. A texture map is divided in regions by these
seams. Hence UV coordinates are associated with corners which
are (vertex,face) tuples. Corners are affected by collapse operations
as follows: corners of incident triangular faces of v1v2 are sup-
pressed with their face. For incident non-triangular faces of v1v2,

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

F. Caillaud, V. Vidal, F. Dupont and G. Lavoué / Progressive compression of arbitrary textured meshes

v1

v2c1 c2

c3

edge collapse

vertex split

U V
C1 0.5 0.5

C2 0.5 0.75

C3 0.25 0.25

C1' 0.5 0.625

C3' 0.25 0.25

Matchable
corners

Unmatchable
corner

vc1'

c3'

Figure 3: Left: a 3D configuration describing matchable corners (in blue) and unmatchable corners (in red). Center: UV values of the
different corners before and after the collapse. Right: different configurations of texture seams before the edge collapse.

the corner attached to v2 is suppressed. To update the remaining
corners around v1 and v2, we first detect all the different regions
inside the patch (i.e. the local neighborhood) of v1v2. Note that if
two faces from the same region are associated with non-adjacent
texture faces (e.g. imagine a texture for a cube unfolded in the typ-
ical cross-shaped 2D configuration), we tag one of these faces with
an additional region index (the encoding cost is negligible) in order
to correctly take into account this seam in the rest of the algorithm.
We then define the concepts of matchable and unmatchable cor-
ners, illustrated in Figure 3. A corner c of v1 (resp. v2) associated
with the region index r is called a matchable corner if there exists
another corner cm around v2 (resp. v1) associated with the same in-
dex (e.g. c1 and c2 in Figure 3), while c and cm constitute a pair of
matchable corners. Otherwise, the corner is called a unmatchable
corner (e.g. c3 in Figure 3). Detection of matchable and unmatch-
able corners takes place before any corner suppression. We use the
pairs of matchable corners to interpolate the UV coordinates of the
corresponding corners around v (e.g. c′1 in Figure 3), after the edge
collapse. Meanwhile, without any possible interpolation, unmatch-
able corners remain unchanged (e.g. c′3 in Figure 3). This way, our
method can handle any configuration of texture seams (examples
are illustrated in Figure 3, on the right).

4.2. Edge selection

Our method simplifies the mesh by successive batches of edge col-
lapses. For each decimation batch, k edges are collapsed. The edges
to be collapsed are selected using a priority queue. Before any sim-
plification, each edge e is associated with a weight w(e) which pro-
vides its rank in the priority queue. In our algorithm, these weights
are computed in order to (1) prioritize the collapse of edges produc-
ing the lowest geometric error, (2) minimize the creation of dan-
gling edges as this causes area loss, (3) minimize the collapse of
dangling edges as this may lead to a drastic reduction of the bound-
ing box and (4) for textured meshes, minimize moves of the texture
seams as their displacement greatly affects the visual quality of the
levels of detail.
Hence we have: w(e) = wgc(e)+wt(e), where wgc(e) is the weight
corresponding to geometry and connectivity errors and wt(e) is the
weight corresponding to texture error. If e is a dangling edge (case 3
above) then wgc = diag+ length(e); if the collapse of e will create
a dangling edge (case 2) then wgc = 2× diag+

√
area(e) ; other-

wise (case 1) then wgc = dH(e). diag is the length of the bounding
box diagonal, area(e) is the absolute value of the area difference
caused by an hypothetical collapse of e and dH(e) is the symmetric

Hausdorff distance between the mesh before and after the hypo-
thetical collapse. In this way we give priority to case 1, then 2, then
3. For the texture weight, we set wt(e) = dT (e), where dT (e) is the
maximal displacement of the involved unmatchable corners, in the
geometric space.
This metric is used to make the simplification aware of connec-
tivity (by preventing creation and modification of dangling edges),
geometry (by minimizing local Hausdorff distance) and texture (by
minimizing local texture seam displacement). Moreover, there is no
need to introduce complex weighting factors between wgc and wt
since both these measurements are consistent (they represent dis-
tances in the 3D Euclidian space). The effect of wgc, wt and their
combination on simplification quality is illustrated in Figure 4. This
example clearly shows that our metric offers and excellent tradeoff
between geometry and texture preservation, while also being much
simpler and thus faster than concurrent metrics like that proposed
by Popović and Hoppe [PH97]. More quantitative results are pre-
sented in the supplementary material.

Figure 4: Simplification of a bumpy surface exhibiting a texture
seam. From left to right: Original mesh (1089 v.), mesh simplified
where w(e) = wgc(e) (221 v.), mesh simplified where w(e) = wt(e)
(264 v.), mesh simplified where w(e) = wgc(e)+wt(e) (234 v.).

4.3. Size of batches

The number k of edges to be collapsed in each batch is critical.
Existing progressive compression algorithms based on this prin-
ciple (e.g. [PR00]) usually maximize the number of edges to be
collapsed. While this strategy provides the best compression rate,
it may severely impact the quality of the levels of detail. On the
contrary, a too small k will penalize the compression rate. There
is actually a tradeoff to be found between the optimized quality
of the levels of detail (by collapsing one single edge at each step
like [Hop96]) and the optimized compression rate (by collapsing

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

F. Caillaud, V. Vidal, F. Dupont and G. Lavoué / Progressive compression of arbitrary textured meshes

as many edges as possible like [PR00]). In our algorithm, we adapt
this batch size dynamically. For a given batch, we first compute
the weights of all edges. We then determine a collapse threshold
as the average weight of these edges. Edges with weights higher
than this threshold are not collapsed in this batch. This simple yet
efficient rule provides an excellent rate-distortion tradeoff. Quanti-
tative comparisons with other strategies are provided in the supple-
mentary material. After each collapse, the weights of all the edges
involved in the operations are updated. In order to avoid conflict
between two collapses during a batch, edges included in the neigh-
borhood (set of incident faces) of an already selected edge, in the
current batch, cannot be selected afterwards. These batched simpli-
fication iterations are repeated until each connected component is
composed of only one vertex. This vertex is the fixed vertex of the
corresponding connected component, as described in Section 5.1.

5. Encoding

We describe below the encoding of connectivity, geometry and tex-
ture mapping data. This encoding takes place at the same time as
edge collapses. We carefully coordinate the encoding/decoding of
these data in order to be able to propose novel and efficient predic-
tion schemes: connectivity information is predicted using decoded
geometry, while texture mapping information is predicted using
both decoded geometry and connectivity. Within each batch, these
data are synchronized using a spanning tree, as described below.
Note that all these information are then entropy coded by means of
arithmetic coding.

5.1. Spanning tree

After having collapsed all the edges of a batch, we have to record
which vertices must be split during decompression. Instead of stor-
ing explicitly the index of these vertices (as in [Hop96, PH97]), we
follow the strategy of Pajarola and Rossignac [PR00] who consider
a spanning tree. This drastically reduces the generated information.
In our case, a spanning tree is built over each connected component
of the mesh, using a strict natural order over R3. This operation is
renewed for each batch. As the structure is build after the simplifi-
cation batch, the connectivity of the current LoD remains the same
for the decoder. A spanning tree starts on a fixed vertex. These fixed
vertices may be arbitrarily chosen on the original mesh. Each fixed
vertex remains during all the simplification steps and cannot be re-
moved (its incident edges can be collapsed anyway). During the
spanning tree traversal, we specify which vertices will be split by
encoding a 1 if the visited vertex results from an edge collapse,
otherwise a 0 (Figure 5). As we forbid edge collapse conflict, we
do not encode a 0 if, at this state, we already encoded a 1 for an
adjacent vertex. This prediction allows us to save about 50% of 0
codes (0.8 bits per vertex or bpv, on average, in the compressed
stream). This spanning tree also provides an ordering of the con-
nectivity, geometry and texture mapping refinement data which are
described below.

5.2. Geometry encoding

To reconstruct the position of the new edge vertices v1 and v2, re-
sulting from the split of v, we just have to encode the displacement

0

0
0

0

fixed
vertex

0

1
Code : 01001001

1 1

Figure 5: Spanning tree, in red, built starting from the fixed vertex.
Ones are generated for vertices resulting from an edge collapse,
zeros otherwise. Red zeros can be predicted and are not generated.

vector of v to one of them (v1), since the other one can be deduced
easily by taking the opposite vector (the collapse places v in the
middle of v1v2). We represent this displacement vector in a local
Frenet frame like in [AD01]. This representation, while not espe-
cially optimal for local non-manifold configurations, still remains
efficient in these cases.

5.3. Connectivity encoding

To reconstruct, at decompression, the connectivity around the edge
v1v2 resulting from the split of v, we use a generalization of the split
codes proposed in [PH97]. These codes (described in Figure 6) are
generated for each edge (row (b)) and each face (row (c)) around v
and describe the connectivity updates when v is split into v1v2, for
different configurations. For instance, case 1.0 (resp. 1.1) indicates
that the edge has to be attached to v1 (resp. v2). Another example is
case 2.3, which occurs when a face of degree n becomes a face of
degree n+1 during the split.
Most configurations are coded in the same way as [PH97] (except
for polygonal case 2.3 which is new) using the same topological
constraints to reduce redundancy. These constraints usually allow
the code associated with a face to be deduced from its edge codes
(see Figures 7a and 7b). For instance, if two edges of a face are at-
tached to v1 (they have code 0), then the face code is useless since
we can deduce that the face is attached to v1 as well.
On top of these topological constraints, we introduce a novel
geometry-based prediction which significantly improves the encod-
ing of cases 1.0 and 1.1 (which are the most frequent). Instead of
simply encoding a 0 for case 1.0 and a 1 for case 1.1 we predict
the most plausible case using the geometry of vertices v1 and v2.
If the vertex to attach to the edge is closer to v1 than to v2, then
it more likely shares an edge with v1. The coder thus predicts the
closest vertex and generates a 0 if the prediction is verified and a 1
otherwise (see Figure 7c). Since geometry decoding occurs before
connectivity decoding, we can use this prediction at decompres-
sion. This prediction allows the size of these cases to be reduced,
after entropic coding, by about 90% (5.6 bpv, on average, in the
compressed stream).

We need to preserve the faces orientations as well at reconstruc-
tion. In most cases, the orientation of a removed face can be deter-
mined by the decoder from its adjacent faces. Otherwise, we also
encode this orientation using one bit.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

F. Caillaud, V. Vidal, F. Dupont and G. Lavoué / Progressive compression of arbitrary textured meshes

v1

v2

(a)

v1

v2

v1

v2

v1

v2

v1

v2

v1

v2

v1

v2

v1

v2

(b)

(c)

0 1 2 3
1.0 1.1 1.2 1.3

2.0 2.1 2.2 2.3

Figure 6: All the possible configurations around v1 and v2. (a) The
generated codes. (b) The corresponding edge configurations. (c)
The corresponding face configurations.

v

v1

v2

Code : 033011 003

vertex split

3

1

Code : 033011

Code : 033000

3

3
0

0

0
0

1

3

1

3

0
0

1

3
3

0
0

0

0

(a)

(b)

(c)

vertex split

vertex split

v

v1

v2

v

v1

v2

Figure 7: An encoding example with the split codes associated with
edges and faces: (a) without any optimization, (b) with topolog-
ical constraints from [PH97] (avoiding most configuration codes
associated with faces). (c) with topological constraints and our
geometry-based prediction of edge codes.

5.4. Texture mapping encoding

We also have to encode the information necessary to retrieve, at de-
compression, the UV coordinates of the corners around v1 and v2.
We introduce novel encoding and prediction schemes for this task.
As explained in Section 4.1, during simplification, UV coordinates
of some corners (unmatchable) remain the same after collapse. So,
we only need information to retrieve UV coordinates from match-

able corners, as well as the configuration of texture seams.
First, the nr detected regions around v1 and v2 are ordered by their
indices (from 0 to nr−1). For each face incident to v1v2, the index
of its region is encoded. If no seams are detected over the mesh,
only 0 codes are generated, leading to a null entropy. We actually
rarely detect more than one seam over a patch. Practically, in our
experiments, we used less than 1 bit per vertex, on average, for
compression of these region indices.
The corners around a vertex associated with the same region have
the same UV coordinates. Therefore, we only need to encode one
displacement vector per region around v1 and v2 to retrieve all the
UV pairs. To synchronize the coder and the decoder, we set this
vector as the UV displacement vector of the corner belonging to v1.
This 2D vector is expensive to encode, even with the quantization
of its coordinates. To reduce this encoding cost, we predict this 2D
texture vector using the connectivity and geometry around v1 and
v2. Since geometry and connectivity decoding occur before texture
mapping decoding, we can use this prediction at decompression.
We make a conformality assumption over the texture parametriza-
tion and exploit the shape similarity between 3D faces (mesh faces)
and 2D faces (texture faces). Note that Váša and Brunnett [VB14]
also proposed a geometry-based prediction which exploits confor-
mality for their single rate encoding of texture coordinates. How-
ever, our scheme, as detailed below, is very different.
Figure 8 shows the patch around the to-be-collapsed edge v1v2. We
need to predict the 2D texture vector−→u ′. For that purpose, we con-
sider an edge of the patch, v3v4, chosen in a deterministic way,
as reference. We then compute the barycentric coordinates of v1,
according to vv3v4 (the resulting face after collapse). By applying
these barycentric coordinates to the texture face v′v′3v′4, we approx-
imate the texture vertex v′1 by v′′1 . As the decoder can find the same

predicted v′′1 , we only have to encode the error vector −→e =
−−→
v′′1 v′1

to retrieve the correct displacement vector −→u ′ =
−−→
v′v′′1 +−→e . In this

scheme, the more the corresponding faces have a similar shape, the
smaller are the error vectors, and the smaller is the entropy.

v1

v2v3

v4

v
u

v3'
v4'

v1'
v2'v'

v1''e

Geometry Texture

u'

Figure 8: Illustration of our texture coordinate prediction scheme.
Instead of coding the displacement vector −→u ′, we predict v′′1 using
barycentric coordinates and just encode the prediction error −→e .

For each incident triangular face of v1v2, which is suppressed
during collapse, the opposite corner of v1v2 also needs to be re-
trieved (e.g. the corner associated with v4 and v1v2v4). For that pur-
pose, we just copy the UV coordinates of another corner belonging
to the same vertex and with the same region index (e.g. the corner
associated with v4 and v1v3v4). There are only very rare configura-
tions where such a corner does not exist. This case can be detected
by the decoder. In that case, we use the same prediction scheme as

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

F. Caillaud, V. Vidal, F. Dupont and G. Lavoué / Progressive compression of arbitrary textured meshes

presented above, to approximate the coordinates and generate an
error vector.
During simplification, a triangular incident face of v1v2 can be the
last face of a region. In this case, we do not have any other possi-
bility but to send the full UV coordinates of the three corners of the
face. For the decoder to understand that this will be a new region,
its region index is set to nr, the number of detected regions in the
patch.

6. Multiplexing mesh and texture data

A textured mesh is associated with a texture image. In a real remote
visualization scenario, this image has to be compressed as well. It
would make no sense to apply a single rate image coding scheme
because the texture would have to be fully transmitted before the
mesh to obtain meaningful levels of detail, hence removing the ben-
efit of progressive mesh compression in terms of latency. Moreover,
the full texture resolution is not necessary for early mesh LoDs.
In this application, we use the progressive JPEG codec which of-
fers good compression performance and provides high quality lev-
els of detail. Of course other multiresolution compression schemes
could have been used such as JPG2000, or some random-accessible
texture-specialized methods such as ASTC [NLP∗12]. We then
propose a multiplexing algorithm between mesh LoDs and texture
LoDs. This scheme alternates mesh information and texture infor-
mation in the compressed stream in order to provide the highest
quality levels of detail at any time of the decompression.
To determine optimal multiplexing, we start from the coarsest lev-
els of detail for mesh and geometry. At each iteration, we select
either to refine the mesh or the texture. This choice is made by op-
timizing the tradeoff between quality improvement achieved by the
refinement and its cost in terms of number of bits. In practice, we
choose the refinement which maximizes ∆Q

∆S . Where ∆Q is the dif-
ference of visual quality before and after the refinement and ∆S the
data size of the refinement chunk.
Measuring the visual quality Q of a textured mesh is still an open
problem. A recent study [LLV16] suggests that perceptual image
metrics (in particular the multiscale SSIM [WSB03]) may be good
predictors of the visual quality of 3D models. We thus use this
framework for measuring the quality of our textured meshes. As
recommended in [LLV16], we use 42 snapshots of the 3D objects to
be compared (i.e. the original model and a level of detail). Cameras
are placed uniformly around the object using a one-level dyadic
split of a regular icosahedron, and an indirect top left lighting is
considered. Each corresponding pair of snapshots is then evalu-
ated using the multiscale SSIM (MS-SSIM) metric. Its value ranges
from 0 (totally different) to 1 (exactly the same). We keep the mean
of the 42 values as the final visual quality score Q for the level of
detail to be evaluated.

7. Results

In this section, we compare our algorithm with state-of-the-art
approaches for progressive compression of non-manifold triangu-
lar meshes [PK05, PHK∗10], and compression of texture coordi-
nates [Hop96, VB14, LCCD16]. We finally provide results of our
perceptually-optimized mesh/texture multiplexing.

7.1. Geometry and connectivity compression

We present, in Table 1, lossless bitrates and execution times (on
a 3.4GHz Intel Core i5) for different 3D models. Bitrates include
both geometry and connectivity. The compression was carried us-
ing 12-bit geometry quantization (just like all the following results).
Figure 12 illustrates the LoDs for the Hippo model. Our algorithm
is able, on average, to decompress between 17K and 44K vertices
per second, which is competitive with state-of-the-art progressive
algorithms. To our knowledge, our method is the first progressive

Vertices Type
Bitrate
(bpv)

Comp.
time

Decomp.
time

Bimba 8,857 Tri. Man. 35.31 0.264 0.056
Dragon 437,645 Tri. Man. 23.65 4.261 0.022

Dancing Ari 1,175,653 Tri. Man. 22.94 6.169 0.026
Bunny 35,947 Tri. Man. 27.62 0.287 0.057

Armadillo 125,340 Quad. Man. 25.37 0.438 0.035
Bimba-q 15,653 Tri. Quad. Man. 29.05 0.298 0.061

Hippo 65,456 Poly. Man. 28.55 0.589 0.048
Tractor 27,251 Tri. Quad. NM. 26.60 0.330 0.055

House Plant 35,372 Tri. NM. 31.29 0.339 0.056

Table 1: Lossless compression rate and timings for several 3D
models with different connectivities: triangles, quads, higher order
polygons, manifold (Man.) and non-manifold (NM.). Timings are in
seconds per thousand of vertices.

algorithm able to handle polygonal non-manifold models. We com-
pared it with state-of-the-art progressive compression methods able
to deal with triangular non-manifold models: the octree approach
by Peng and Kuo [PK05] and the feature-oriented algorithm by
Peng et al. [PHK∗10]. Table 2 shows the mean geometric error
given by METRO [COS98] for different meshes of various connec-
tivity (both manifold and non-manifold) at different bitrates. Mean
errors for [PK05] and [PHK∗10] were computed from the LoDs
(and corresponding bitrates) provided by the authors. "N/A" val-
ues mean early termination. Figure 9 also presents rate-distortion
curves obtained for the Horse model (triangular manifold) using
Max Root Mean Square error. These results show that our method
exhibits an excellent rate-distortion tradeoff at low and medium bi-
trates thanks to its strong distortion control, better than concurrent
methods. Moreover, contrary to [PHK∗10], it allows lossless de-
compression, even if its lossless rate is more costly than best algo-
rithms (e.g. [PK05]). It is also interesting to notice that compression
performance does not drop for non-manifold meshes; for instance,
for the Mapple model, our algorithm is better than [PK05] at all
bitrates and better than [PHK∗10] for the highest ones.

7.2. Texture mapping compression

We first compare the lossless performance of our algorithm with the
top performing methods by [VB14]: the weighted parallelogram
prediction and the cotan and mean value Laplacian algorithms,
which represent state-of-the-art single rate texture coordinate com-
pression. Results are shown in Table 3 for the set of parameterized
models used in [VB14] (bitrates are taken from the original paper).
For our algorithm, we adjusted the quantization Qt in order to ob-
tain the same error as the other methods, at lossless rate. For this

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

F. Caillaud, V. Vidal, F. Dupont and G. Lavoué / Progressive compression of arbitrary textured meshes

Mesh
Method

Bitrates (bpv)
(# Vertices) 1.0 2.0 4.0 8.0 12.0 16.0

Horse
(19,851)

Our method 20.2 9.3 4.1 1.6 1.0 0.5
[PK05] 31.9 19.4 10.2 3.3 0.9 N/A

[PHK∗10] 19.0 12.8 5.1 3.3 1.6 1.1

Rabbit
(67,039)

Our method 5.3 2.4 1.1 0.6 0.3 0.2
[PK05] 18.9 10.2 8.3 2.2 0.6 N/A

[PHK∗10] 5.5 4.2 2.1 1.7 1.0 0.5

Maple*
(45,499)

Our method 28.3 17.7 9.2 4.9 3.2 2.5
[PK05] 29.8 18.6 13.8 11.3 6.1 4.0

[PHK∗10] 21.5 13.6 8.4 5.4 3.7 2.8
Tractor*
(27,251)

Our method 31.2 26.3 14.5 6.2 3.8 2.0

Skeleton*
(6,308)

Our method 19.0 11.9 10.6 7.3 5.5 3.8

Table 2: Mean error values (scaled by 104) for our method,
[PK05] and [PHK∗10], at different bitrates. Objects marked with
an * are non-manifold. Best results are highlighted.

N
o
rm

a
liz

e
d

 M
R

M
S

Bitrate (bpv)

1 bpv

10 bpv

lossless

Our method

[PHK*10]

[PK05]

Figure 9: Rate-distortion curves for Horse model. Distortion is
measured by the Max Root Mean Square error, using METRO
[COS98]. The MRMS values are scaled by 104.

comparison the error is computed as the Root Mean Square Error
over the texture coordinates. Our algorithm outperforms [VB14]
for almost all the models. A visual comparison, at similar bitrates,
is illustrated in Figure 10. Most tested models are derived from au-
tomatic conformal parametrization and thus are particularly well
suited for our prediction. However, even for Victoria and Frog as-
sociated with manual parametrization, our bitrates are still good.

We also compare our algorithm with the few existing methods
able to handle progressive encoding of textured mesh with texture
seams: the progressive meshes from Hoppe [Hop96] and the recent
algorithm from Lavoué et al. [LCCD16] which creates invisible tri-
angle strips at texture seams to get back to a simpler per-vertex
UV representation, before applying the progressive encoding from
Alliez and Desbrun [AD01]. Both algorithms are restricted to man-
ifold meshes. Rate distortion curves for the Tiger Fighter model are
illustrated in Figure 11. Bitrates correspond to geometry, connectiv-
ity and UV encoding. We used original author’s implementations of
[Hop96] and [LCCD16] and adjusted our quantization parameters
to stick with theirs (resp. Qg = 16,Qt = 16 and Qg = 12,Qt = 10).

Mesh # Vertices RMSE
[VB14]

wp
[VB14]
cotan

[VB14]
mv

Our
method

Horse 52,345
0.0015 2.59 2.00 2.12 0.71
0.0001 2.95 4.87 6.30 2.80

Fiery 66,216
0.0030 2.62 1.82 1.79 0.43
0.0001 3.07 7.67 6.44 2.69

Victoria 17,259
0.0008 4.83 9.63 9.58 4.62
0.0001 9.49 16.28 15.73 6.81

Bimba 9,285
0.0015 3.07 1.56 1.24 1.82
0.0001 5.64 7.94 7.19 6.17

Frog 20,834
0.0015 4.03 7.64 6.86 2.54
0.0001 8.96 15.55 14.64 7.55

Bunny 16,331
0.0030 3.00 3.22 3.21 0.89
0.0001 6.58 12.77 12.17 4.74

Kachel 229,330
0.0004 2.82 0.27 0.29 0.86
0.0001 2.84 0.36 0.39 1.73

Table 3: Bitrates for our method and [VB14] for different RMSE
errors on texture coordinates. [VB14]-wp, [VB14]-cotan and
[VB14]-mv stand respectively for weighted parallelogram predic-
tion, cotan Laplacian and mean value Laplacian methods. Values
are in bpv for UV coordinates only. Best results are highlighted.

Original VB14-wp

Our methodVB14-mv

Figure 10: Quality of the texture mapping after compression us-
ing our method and [VB14], for the Victoria model. The [VB14]
versions are reconstructed using 5.25 bpv for texture coordinates
whereas our algorithm use 5.41 bpv.

Our method outperforms both others. [Hop96] is very costly (more
than 400 bpv at lossless rate). [LCCD16] is quite efficient at loss-
less rate (26 bpv against 23 bpv for our method) but produces very
low quality LoDs for low bitrates (due to artifacts along seams).
Other comparisons are illustrated in the supplementary material.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

F. Caillaud, V. Vidal, F. Dupont and G. Lavoué / Progressive compression of arbitrary textured meshes

0.7 KB
196 v.

2.7 KB
775 v.

16.3 KB
4,572 v.

233.5 KB
65,456 v.

16.5 KB (+ 25.2 KB)
5,026 v.

54.0 KB (+ 98.6 KB)
13,388 v.

114.4 KB (+ 135.1 KB)
25,748 v.

629.1 KB (+ 300.5 KB)
130,784 v.

24.1 KB (+ 24.2 KB)
6,463 v.

127.3 KB (+ 41.8 KB)
44,222 v.

342.9 KB (+ 75.8 KB)
97,827 v.

6,009.6 KB (+ 320.2 KB)
1,288,973 v.

24.7 KB (+ 25.2 KB)
5,091 v.

41.3 KB (+ 49.6 KB)
9,484 v.

68.9 KB (+ 63.9 KB)
16,087 v.

112.9 KB (+ 200.2 KB)
27,251 v.

Figure 12: Progressive decompression for different models (Hippo, Creature, Dwarf and Tractor). Textured LoDs are obtained using our
mesh-texture multiplexing. We present the total size of the decoded data for the mesh elements (geometry, connectivity, texture coordinates)
and for the texture image (in parentheses).

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

F. Caillaud, V. Vidal, F. Dupont and G. Lavoué / Progressive compression of arbitrary textured meshes

Figure 11: Rate-Quality curves for Tiger Fighter. Visual quality is
measured by the mean MS-SSIM values (higher is better). LoDs
corresponding to the dots on the curves are illustrated. Models are
mapped with the uncompressed texture image.

7.3. Texture multiplexing

Finally, Figures 1 and 12 illustrate some visual results of our
mesh/texture multiplexing approach. It is interesting to observe that
starting at 150-200KB, the levels of detail become really close to
the original models. Quantitative results are given in the supple-
mentary material.

8. Conclusion

In this paper, we have proposed a new progressive compression
algorithm suited for arbitrary textured meshes. This algorithm han-
dles polygonal and non-manifold models as well as texture map-
ping discontinuities. Our approach provides excellent results at low
and medium bitrates for geometry and connectivity compression.
Moreover, it outperforms the state-of-the-art for texture coordinates
compression and allows high quality levels of detail to be obtained,
even at very small bitrates.
In a future work we plan to propose fast parallel decoding mecha-
nisms and structure optimizations in order to reach timing perfor-
mance attained by recent multi-resolution methods (e.g. [PD15])
specifically designed for interactive Web-based rendering, but
much less efficient in terms of compression performance. We also
envision extending our edge-collapse and vertex-split operators to
volume meshes, particularly used in scientific visualization.

Acknowledgements

The Dwarf is courtesy of the Visual Computing Laboratory of
ISTI-CNR. We thank Libor Vasa for providing us with his parame-
terized models.

References
[AD01] ALLIEZ P., DESBRUN M.: Progressive compression for lossless

transmission of triangle meshes. In ACM Siggraph (2001), pp. 195–202.
2, 3, 5, 8

[BPZ99] BAJAJ C., PASCUCCI V., ZHUANG G.: Progressive compres-
sive and transmission of arbitrary triangular meshes. IEEE Visualization
(1999), 307–316. 2

[COS98] CIGNONI P., OCCHINI C., SCORPIGNO R.: Metro : Measuring
Error on Simplifed Surfaces. Computer Graphics Forum 17, 2 (1998),
167–174. 7, 8

[GD02] GANDOIN P.-M., DEVILLERS O.: Progressive lossless com-
pression of arbitrary simplicial complexes. In ACM Siggraph (2002),
pp. 372–379. 2

[Hop96] HOPPE H.: Progressive meshes. In ACM Siggraph (1996),
pp. 79–93. 2, 3, 4, 5, 7, 8

[IS03] ISENBURG M., SNOEYINK J.: Compressing Texture Coordinates
with Selective Linear Predictions. In Computer Graphics International
(2003), pp. 126–133. 2

[LCCD16] LAVOUÉ G., CHEVALIER L., CAILLAUD F., DUPONT F.:
Progressive streaming of textured 3d models in a web browser. In Sym-
posium on Interactive 3D Graphics and Games (2016). 3, 7, 8

[LLV16] LAVOUE G., LARABI M., VASA L.: On the efficiency of image
metrics for evaluating the visual quality of 3d models. IEEE Transac-
tions on Visualization and Computer Graphics 22, 8 (2016), 1987–1999.
7

[MCAH12] MAGLO A., COURBET C., ALLIEZ P., HUDELOT C.: Pro-
gressive compression of manifold polygon meshes. Computers &
Graphics 36, 5 (2012), 349–359. 2

[MLDH15] MAGLO A., LAVOUÉ G., DUPONT F., HUDELOT C.: 3D
Mesh Compression: Survey, Comparisons, and Emerging Trends. ACM
Computing Surveys 47, 3 (2015), 1. 2

[NLP∗12] NYSTAD J., LASSEN A., POMIANOWSKI A., ELLIS S., OL-
SON T.: Adaptive scalable texture compression. High-Performance
Graphics (2012), 105–114. 2, 7

[PD15] PONCHIO F., DELLEPIANE M.: Fast decompression for web-
based view-dependent 3D rendering. In ACM International Conference
on 3D Web Technology (2015), pp. 199–207. 10

[PH97] POPOVIĆ J., HOPPE H.: Progressive simplicial complexes. In
ACM Siggraph (1997), pp. 217–224. 2, 3, 4, 5, 6

[PHK∗10] PENG J., HUANG Y., KUO C.-C. J., ECKSTEIN I., GOPI M.:
Feature oriented progressive lossless mesh coding. In Computer Graph-
ics Forum (2010), vol. 29, pp. 2029–2038. 2, 7, 8

[PK05] PENG J., KUO C.-C. J.: Geometry-guided progressive loss-
less 3d mesh coding with octree (ot) decomposition. In ACM Siggraph
(2005), pp. 609–616. 2, 7, 8

[PR00] PAJAROLA R., ROSSIGNAC J.: Compressed progressive meshes.
IEEE Visualization and Computer Graphics 6, 1 (2000), 79–93. 2, 4, 5

[TA08] TIAN D., ALREGIB G.: Batex3: Bit allocation for progressive
transmission of textured 3-d models. IEEE Transactions on Circuits and
Systems for Video Technology 18, 1 (2008), 23–35. 3

[Tar16] TARINI M.: Volume-encoded uv-maps. ACM Transactions on
Graphics (TOG) 35, 4 (2016), 107. 3

[TGHL98] TAUBIN G., GUÉZIEC A., HORN W., LAZARUS F.: Progres-
sive forest split compression. In ACM Siggraph (1998), pp. 123–132.
2

[TJL∗12] TIAN J., JIANG W., LUO T., CAI K., PENG J., WANG W.:
Adaptive coding of generic 3d triangular meshes based on octree de-
composition. The Visual Computer 28, 6-8 (2012), 819–827. 2

[VB13] VASA L., BRUNNETT G.: Exploiting connectivity to improve
the tangential part of geometry prediction. IEEE Transactions on Visu-
alization and Computer Graphics 19, 9 (2013), 1467–1475. 3

[VB14] VÁŠA L., BRUNNETT G.: Efficient encoding of texture coordi-
nates guided by mesh geometry. In Computer Graphics Forum (2014),
vol. 33, Wiley Online Library, pp. 25–34. 3, 6, 7, 8

[WSB03] WANG Z., SIMONCELLI E., BOVIK A.: Multiscale structural
similarity for image quality assessment. IEEE Asilomar Conference on
Signals, Systems and Computers 2, 1 (2003), 1398–1402. 7

[YLK04] YANG S., LEE C.-H., KUO C.: Optimized mesh and texture
multiplexing for progressive textured model transmission. In ACM Mul-
timedia (2004), pp. 676–683. 3

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

