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Figure 1: We conducted eye tracking experiments on rendered 3D objects. The human saliency information is mapped on the 3D meshes
(in the form of fixation density maps) and serves to study which factors influence human attention and to evaluate state-of-the-art saliency
algorithms. At the bottom we show the Pearson correlation (ρ) between saliency maps from humans and algorithms.

Abstract
Understanding the attentional behavior of the human visual system when visualizing a rendered 3D shape is of great importance
for many computer graphics applications. Eye tracking remains the only solution to explore this complex cognitive mechanism.
Unfortunately, despite the large number of studies dedicated to images and videos, only a few eye tracking experiments have
been conducted using 3D shapes. Thus, potential factors that may influence the human gaze in the specific setting of 3D
rendering, are still to be understood.
In this work, we conduct two eye-tracking experiments involving 3D shapes, with both static and time-varying camera positions.
We propose a method for mapping eye fixations (i.e., where humans gaze) onto the 3D shapes with the aim to produce a
benchmark of 3D meshes with fixation density maps, which is publicly available. First, the collected data is used to study the
influence of shape, camera position, material and illumination on visual attention. We find that material and lighting have a
significant influence on attention, as well as the camera path in the case of dynamic scenes. Then, we compare the performance
of four representative state-of-the-art mesh saliency models in predicting ground-truth fixations using two different metrics. We
show that, even combined with a center-bias model, the performance of 3D saliency algorithms remains poor at predicting
human fixations. To explain their weaknesses, we provide a qualitative analysis of the main factors that attract human attention.
We finally provide a comparison of human-eye fixations and Schelling points and show that their correlation is weak.

CCS Concepts
•Computing methodologies → Interest point and salient region detections; Perception; Mesh models;

1. Introduction

Visual attention is an aspect of human perception that has been
widely explored by the vision science community. Indeed, under-
standing where exactly human observers look in images is fun-
damental for many computer vision and computer graphics ap-
plications (e.g. foveated compression, indexing, cropping, selec-
tive rendering, game level design). Eye-tracking is the main way

of studying and understanding this property. One of the seminal
studies was performed by Yarbus in the 60s [Yar67] in which he
showed Ilya Repin’s painting to several observers and assigned
to them different viewing tasks. Yarbus noted that the observa-
tion of stationary objects such as images translates into a se-
quence of saccades and fixations on interest (i.e. salient) points
of the observed image. Since then, many computational mod-
els of saliency have been proposed to automatically predict the
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salient regions of an image [IKN98, LLBT06, JEFT09]. These im-
age saliency models have been validated by using fixation maps
obtained from eye-tracking experiments [BTSI13]. Some authors
have proposed mesh saliency models operating directly on 3D data
[LVJ05, SF07, LST12, SLMR14, TCL∗15]. These approaches rely
on geometry information to predict the salient regions on the sur-
face of a shape. However, while these approaches may be efficient,
none of them have been evaluated with respect to a ground-truth of
fixation maps obtained from an eye-tracking experiment.
Very recently Wang et al. [WLL∗16] conducted an eye-tracking ex-
periment to verify if the findings of Yarbus (i.e. observers shift their
gaze to salient features), based on the observations of flat 2D stim-
uli, are still valid for 3D shapes. They asked human observers to
inspect physical objects (printed 3D shapes) and mapped their fix-
ations on the surface of these shapes. They found that, like for 2D
images, there are visually salient features on 3D shapes that attract
the observer’s visual attention. They also used the fixation locations
obtained to benchmark simple mesh saliency estimators (curvature
and difference-of-Gaussian based regional saliency [LVJ05]) and
showed that they fail to predict fixations. This recent work by Wang
et al. is the first attempt to study visual attention on 3D shapes and
to produce a dataset of 3D meshes with fixation locations.
In this work, we conduct new eye-tracking experiments involv-
ing 3D shapes, with both static and time-varying camera positions.
Contrary to Wang et al. [WLL∗16], we are interested in rendered
3D shapes since, except when printed, 3D assets are mostly viewed
on a screen. After mapping the raw 2D fixations onto the 3D shapes,
we use the fixation maps obtained to study the influence of shape,
camera position, material and illumination on the 3D fixations. We
also create a large dataset of 32 shapes with fixation maps, used af-
terwards to benchmark state-of-the-art saliency predictors and ana-
lyze factors attracting human attention.
Contributions. The contribution of this paper is four-fold: First,
we introduce two benchmark datasets of 3D meshes with mapped
human-eye fixations, consisting respectively of 54 images and 81
videos from 3 shapes, and 96 images from 32 shapes. Second, we
provide a rigorous statistical analysis of the influence of 3D shape
and rendering parameters on the 3D eye fixation locations. Third,
we perform a quantitative comparison of four saliency models from
the literature [LVJ05, LST12, SLMR14, TKD15], with an analysis
of their successes and failures. Finally, we provide an analysis of
factors influencing human attention and a comparison of fixation
maps with Schelling points [CSPF12]. This dataset is available at
http://liris.cnrs.fr/glavoue/data/saliency/.

2. Previous Work

As stated in the introduction, visual attention has been widely ex-
plored by the scientific community. In Computer Vision, many ex-
periments have been conducted and many saliency models have
been proposed (e.g. [JEFT09, LL15]). This section details existing
work in Computer Graphics, with a focus on mesh saliency models
and eye-tracking experiments.

2.1. Saliency models for 3D meshes

Early work on saliency detection for 3D objects considered 2D
algorithms applied on rendered images. For instance Yee et al.

[YPG01] used the model from Itti et al. [IKN98] to evaluate the
saliency of a dynamic 3D scene. More recently researchers have
proposed saliency models directly based on the 3D data (mostly
geometry information). In a pioneering work, Lee et al. [LVJ05],
inspired by the 2D algorithm from Itti et al. [IKN98], consider a
difference-of-Gaussian operator based on the mean curvature map.
This operator is applied at multiple scales, and single-scale re-
sults are then aggregated to obtain the final saliency. Shilane and
Funkhouser [SF07] propose detection of distinctive regions of a
shape by examining how useful they are for distinguishing this
shape from others of different classes. Their algorithm thus re-
quires a database of meshes partitioned into classes. Leifman et
al. [LST12] consider the distinctiveness of each vertex (how it
is different from the others) as well as extremities of protrusions
and then apply a spatial regularization to this per-vertex informa-
tion to obtain the final saliency. Song et al. [SLMR13, SLMR14]
use spectral approaches which detect the irregularities in the spec-
trum (i.e. eigen-values of the Laplace operator). Finally several re-
cent algorithms [WSZL13, TKD15, TCL∗15] first apply an over-
segmentation and then compute the saliency per patch (instead
of per vertex). Wu et al. [WSZL13] exploit the global rarity of
the patches, while [TCL∗15] and [LTC∗16] estimate their saliency
based on their relevance to some of the most unsalient ones. Fi-
nally, Tasse et al. [TKD15] first compute saliency values per patch
by considering their uniqueness and distribution and then smoothly
propagate them to the vertices. Much literature is available on the
subject of 3D mesh saliency. Readers can refer to [LLS∗16] for a
very recent and comprehensive survey.
Algorithms presented above concern shape saliency, i.e. saliency
based on geometry information only, which is also our focus of
interest. However, higher level saliency models have also been
proposed for complex 3D scenes, mostly in the context of video
games [BSW10, KDCM14, KDCM16]; these are based on the se-
mantic context of objects, rather than on their pure geometry.

2.2. Eye-tracking experiments and benchmarks for 3D meshes

In the field of computer vision, saliency models are usually eval-
uated using ground-truth datasets generated from eye tracking ex-
periments, in the form of either fixation locations, or fixation maps
[BTSI13, BJO∗16]. However, in Computer Graphics, and particu-
larly for mesh saliency, there are very few ground-truths available.
Several eye-tracking experiments have been conducted: Howlett
et al. [HHO05] carried out such an experiment in order to in-
tegrate human fixation information in mesh simplification algo-
rithms. They consider two sets of respectively 37 and 30 mod-
els, with rather low resolutions (between 5K and 8K faces). The
fixations were simply aggregated per face. Kim et al. [KVJG10]
conducted an experiment involving 5 high resolution objects. Their
goal was to compare the saliency model from Lee et al. [LVJ05]
with curvature for the prediction of fixation locations. This evalua-
tion was, however, carried out in the 2D image space. Ground-truth
datasets from these two studies [HHO05, KVJG10] are not pub-
licly available. Mantiuk et al. [MBM13] conducted an experiment
with animated 3D scenes; they show that raw eye-tracker fixations
are inaccurate for tracking small moving objects and propose an
improved tracking algorithm. Finally, as raised in the introduction,
Wang et al. [WLL∗16] recently conducted an eye tracking experi-

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

http://liris.cnrs.fr/glavoue/data/saliency/


G. Lavoué, F. Cordier, H. Seo and M. C. Larabi / Visual Attention for Rendered 3D Shapes

ment involving 15 real printed shapes and gathered a ground-truth
of 3D meshes with mapped fixations. Our work is closely related to
this. However, we consider rendered 3D shapes, making it possible
to investigate a whole range of experimental conditions (regarding
material, lighting, and camera movement) and their influence on
human-eye fixations.
It is important to note that two benchmarks currently serve
as ground-truth for the evaluation of mesh saliency algorithms
[CSPF12, DCG12]. However, they do not result from eye-tracking
experiments. Chen et al. [CSPF12], conducted a large crowdsourc-
ing experiment where they showed rendered 3D models and asked
people to "select points on the surface of a 3D object likely to
be selected by other people". Similarly, Dutagaci et al. [DCG12]
asked participants to "mark all the points they think are interest-
ing or defining". While these data are interesting, they rather reflect
interest points than human fixations. Hence we believe that they
are not well suited to evaluating saliency algorithms. Moreover,
by asking an observer to select points, his/her attention becomes
task-driven (top-down), which is proven to be different from the
stimulus-driven approach based on low-level features (bottom-up).
One of the goals of our work is to propose an alternative bench-
mark, truly related to human fixations. Our benchmark will also
make it possible to test whether these two different concepts (inter-
est points and human fixations) are correlated.

3. Overview of the Eye-Tracking Experiments

We conduct two eye tracking experiments with several different
purposes. The goal of the first one (see Section 4) is to evaluate how
the 3D shape, its material, the lighting conditions and the camera
movement influence human-eye fixations. The second experiment
(see Section 5) aims at providing the scientific community with a
benchmark for the objective evaluation of mesh saliency models.
These two experiments share the rendering parameters, protocol
and tools, which are detailed below.

3.1. Creation of stimuli

Given a 3D model, we created 2D visual stimuli by producing im-
ages and videos with HD resolution (1920× 1080 pixels) using the
3D Studio Max software [Aut17]. These images and videos have all
been rendered using the Phong shader under perspective projection.
Each object was placed at the center of the scene with its local co-
ordinate system aligned with that of the world. In case of dynamic
stimuli (object rotating around its center), the videos were rendered
with a camera whose view direction points toward the center of the
scene. The used 3D shapes, materials, light orientations and camera
positions depend on the experiments and will thus be described in
sections 4.1 and 5.2.

3.2. Apparatus

We used the Tobii TX-120 standalone eye-tracking device. This
device allows both eyes to be tracked simultaneously and reports
an accuracy equal to 0.5◦ under ideal conditions. While recording
eye-tracking, data are delivered every 8 ms (120 Hz). A higher sam-
pling is unnecessary in our case since we do not need to analyze
the results in a finer detail. Every recorded point is characterized

by its screen coordinates (x,y) and can be classified as a fixation
or a saccade. The I-VT fixation filter developed by the device man-
ufacturer was used to handle this task. Stimuli were displayed on
the Eizo ColorEdge CG303W 30” monitor with a refresh rate of
60 Hz. The display was viewed in a calibrated test room with con-
trolled lighting at 64 lux on the surface of the display. The distance
between observer-eyetracker-display was defined in such a way as
to guarantee an accurate recording while also ensuring comfortable
viewing for the observer. The TOBII Track Status tool was used
to place the participant at the appropriate distance from the eye
tracker. The actual distance between the observer and the display
was approximately 90cm. This distance, as well as the head posi-
tion, was checked at every stage of the experiment. Observers were
instructed to move eyes instead of their head and to keep their head
in approximately the same position as it was in when calibrating
the eye tracker.
Details about the calibration and accuracy check. To ensure the
quality of the recorded gaze data, a calibration step has been per-
formed for each observer and before each session. This step con-
sists of presenting a neutral image with 3× 3 calibration points,
successively appearing. The software of the eye-tracker computes
both accuracy and precision and displays the results graphically.
The observer can run the test only if his/her calibration is within a
tolerable interval. In addition to this calibration, we also checked
the accuracy and precision of the eye-tracker using the Tobii Ac-
curacy Test Tool, regularly along the experiment. This tool uses a
regular 3× 3 point image and computes the mean offsets in mil-
limeters and degrees of visual angle.

3.3. Procedure

Every observer participated individually in the eye-tracking exper-
iment alone in the test room. The experiment started with the cali-
bration step. The whole series of images/videos (depending on the
experiment) was then presented without a break except for the mid
gray plate (see Figure 2), which was intentionally inserted to reduce
the memory effect between stimuli. The stimuli were presented ran-
domly. Extra stimuli were added at the beginning of the test to allow
the observer to adapt to the test and to focus appropriately. The re-
sults of these first stimuli were discarded at the time of the analysis.
The experiments were conducted in a free-watching setting, and no
specific task was given to observers other than to observe the con-
tent of the stimuli. As demonstrated by Yarbus [Yar67], giving ob-
servers a task would make the results usable only in this specific
context. The procedure is depicted in Figure 2.

Figure 2: Illustration of the procedure followed for our eye-
tracking experiments. The duration shown is given in the format:
image / video.
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3.4. Data processing

The parameters of the I-VT fixation filter applied are tuned in order
to detect even short fixations while watching the stimuli. If sev-
eral fixations occur within a spatial interval of less than 0.5◦ of
visual angle, they are merged into a single fixation. In the filter pa-
rameters, we consider that the minimum duration of fixation is 60
ms. Eye-movements with a velocity higher than 30◦/s are assumed
to be saccades. Such a tuning provides the opportunity to detect
pursuit movements that are considered as a sequence of fixations.
Analysis of eye-tracking records starts with the selection of only
valid data, when both eyes are open.

3.5. From 2D Fixations to the 3D Fixation Density Map

The data from the eye-tracker is a sequence of fixations, where each
fixation is defined by its spatial 2D position (x,y) (in the screen
space) and its duration, i.e. the number of temporal samples (every
8 ms) composing it. In order to determine which surface point on
the 3D mesh corresponds to the fixation pixel, we compute the ray
emitted by the camera pinhole and passing through the pixel on the
image (point pi in Figure 3). We compute the intersection of this
ray with the mesh model in the scene at the time of the fixation.
The closest point of intersection is taken as the 3D fixation point
(point pm in Figure 3).

Figure 3: Computation of the fixation density distribution on the
3D model, corresponding to a 2D fixation point pi. α corresponds
to 1◦ of visual angle.

Sometimes, the fixation point is located near the contour of the
mesh. In this case, depending on the precision of the eye-tracker,
the projection ray may miss the intersection with the mesh, emit-
ting away to the background. Since it clearly shows the observer’s
interest in the silhouette part of the object, we wish to take these
fixations into account. To this end, we replace the ray by a cone
and we project a Gaussian distribution on the 3D mesh (see Figure
3). The standard deviation of the Gaussian distribution is set to 49
pixels, corresponding to 1◦ of visual angle in our experimental con-
ditions i.e. the radius of the fovea of the human visual system. By
summing the contributions of all fixation points from all observers,
we obtain the fixation density map (referred to as the fixation map
hereafter in the paper) as illustrated in Figure 1, 2nd column.

3.6. Measuring similarity between maps

To analyze the agreement between observers (see Section 4) and
to benchmark the saliency models (see Section 5), we need to be
able to compute a similarity value between two fixation maps (de-
rived from humans or saliency models). Many evaluation metrics

have been proposed to compare fixation maps (or sets of fixa-
tion locations) [LB13], e.g. receiver-operator-characteristic (ROC)
curve, Information Gain, Pearson correlation and so on. Bylinskii et
al. [BJO∗16] recently analyzed a set of 8 different metrics and com-
pared their properties. According to their recommendations, we se-
lected the Pearson’s Linear Correlation Coefficient (ρ), since it pro-
vides a balanced handling of false positives and false negatives. For
two maps x and y, it is defined as follows:

ρx,y =
cov(x,y)

σxσy
(1)

For benchmarking the saliency models, we also selected the area
under the ROC curve (AUC). In this case, the fixation maps are
thresholded to be converted into binary fixation maps (in practice
we threshold to obtain 20% of visible vertices considered as fix-
ations; more thresholds are illustrated in the supplementary ma-
terial). The saliency map is then treated as a binary classifier of
these fixations. The ROC curve represents the relationship between
probability of false positives and probability of true positives and
is obtained by varying the decision threshold on the saliency map.
The area under the ROC curve (AUC) can then be used as a direct
indicator of performance (1 corresponds to a perfect classification
while 0.5 corresponds to a random one).

4. Experiment 1: How Shape and Rendering Parameters
Influence Human Gaze

The goal of this first experiment is to evaluate the impact of the 3D
shape and rendering parameters (camera movement, lighting and
material) on human-eye fixations. For this purpose, we test whether
different human observers tend to generate similar fixations for
similar or different instances of shape, camera movement, lighting
and material. We describe below a protocol for this task (see
Section 4.3), inspired by [WLL∗16]. The protocol is described for
assessing the impact of the 3D shape ; we follow exactly the same
protocol to assess the impact of camera movement, material and
lighting.

4.1. Stimuli

For this first experiment, we selected three 3D objects of high res-
olution: Igea (101K vertices), Dinosaur (42K vertices) and Blade
(200K vertices). They belong to very different semantic categories
(a human face, an organic creature and a mechanical part) and have
very different shapes. The idea behind having such a very small,
yet representative, set of models is to be able to apply a large vari-
ety of rendering conditions (as described below) while keeping the
eye-tracking experiment tractable.
These objects were rendered using three materials, obtained by
varying the specular and glossiness coefficients (∈ [0,100]) of the
Phong shader from 3D Studio Max. Matte, mid gloss and glossy
materials were rendered using different specular and glossiness co-
efficients set to (0,10), (20,30) and (45,45) respectively.
Three lighting conditions were considered: (1) one spot light at-
tached to the camera (i.e., front lighting), (2) one spot light placed
above and slightly to the left of the camera (which is the assumed
light direction by human vision for shape perception [SP98]) and
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(3) three spot lights placed around the object (their location was
chosen so as to minimize the amount of shadows). Examples of
stimuli with different lighting/material conditions are provided in
the supplementary material.
The 3D objects were rendered as static scenes under two camera
positions, chosen manually as the most representative, and also as
dynamic scenes, using three camera paths: an horizontal rotation
around the object, a vertical rotation, and a random path covering
the object. We thus obtained a total of 3×3×3×2 = 54 rendered
images and 3×3×3×3 = 81 rendered videos. Video duration was
set to 20 seconds (one complete rotation) while still images were
displayed 7 seconds each. We split this first experiment into two
sessions, one with the static setting and the other with the dynamic
setting.

4.2. Participants

16 observers participated to the static session, and 13 to the dy-
namic session. Aged between 20 and 40, they were naive about the
goals of the experiments. All observers had a normal or corrected
to normal vision, verified by FrACT (Freiburg Visual Acuity Test).
Participants were also screened using the Ishihara compatible color
vision test for color blindness. The total time was 16 minutes for the
static session (vision check + training/explanations + 54 images ×
7 sec. + transitions), and 45 minutes for the dynamic session (split
into two sub-sessions).
Two observers were removed from the experiment due to the pres-
ence of too much invalid data (e.g., eyes not looking at the screen).

4.3. Analysis protocol

To assess whether observers agree across shapes, we proceed in a
similar way to Wang et al. [WLL∗16]: the idea is to compute the
similarity S(Qi

n,Q
i
m) (noted as Si,i

n,m) between fixation maps Qi
n and

Qi
m of two observers n and m for the same shape i (and the same

camera movement, lighting and material) and then compare it with
the similarity across shapes S(Qi

n,Q
j 6=i
m ) (noted as Si, j

n,m). If Si,i
n,m

> Si, j
n,m for most pairs of observers then a certain agreement may

be observed, i.e. different human observers tend to generate more
similar fixations for the same shape than for different ones. More
specifically, for each possible pair of shapes (i, j) (3 pairs in total),
we compare Si,i

n,m and Si, j
n,m for each combination of camera move-

ment, lighting and material (e.g., 18 in total for the static scenes)
and each possible pair of 14 observers (

( 2
14
)
=91). We thus obtain,

for each pair of shapes (i, j), two sets of 18×91=1638 similarity
values: the first (referred to as an identical setting) corresponding
to the agreement between observers computed on the same shape i
(Si,i

n,m), and the other (referred to as an across setting) correspond-
ing to the agreement computed across shapes i and j (Si, j

n,m). We
then run one-tailed t-tests to assess the superiority of the identical
setting. The null hypothesis is that the sets of similarity values from
the two settings come from normal distributions with equal means,
while the alternative hypothesis is that the identical mean is higher
than the across one.
We also provide the number of trials where identical wins and loses
against across. Results are presented in table 1, in the left column.
We actually applied exactly the same protocol to study the impact

of other rendering parameters (i.e. camera movement, material and
lighting) on the fixation maps. For example, to study the impact
of shape material, we compare for each possible pair of materi-
als (k, l), Sk,k

n,mand Sk,l
n,m for each combination of camera movement,

lighting and shape and each possible pair of observers.
The metric used for computing the similarity S() between fixation
maps, is the Pearson’s linear correlation coefficient. To fasten the
analysis and allows similarity computation across shapes, 3D ob-
jects are re-sampled into isotropic meshes of 1K vertices.

4.4. Results

Static scenes
Table 1 presents the results of the impact for each parameter for
static 3D scenes. Obviously, the shape itself has a high impact
on fixation maps, meaning that observers tend to generate more
similar fixations for the same shape than for different ones. These
results confirm what was observed in [WLL∗16] for printed
shapes.
Lighting seems to have an impact as well, while some conditions
lead to similar results. Front-camera lighting provides results
significantly different from the other conditions. This can be ac-
counted for by the fact that the front lighting direction, as already
observed for quality assessment experiments [RH01], tends to
mask the geometric details of the shape. Figure 4 illustrates this
effect: with front lighting, the geometric features are less visible
on the rendered image and thus observers concentrate their fixation
on the head of the dinosaur due to its semantic importance. On the
contrary, the top-left lighting condition emphasizes the geometric
details, thus drawing observers’ attention to geometrically salient
parts (e.g. the shoulder).
Finally, the material, in certain conditions, may also have a
significant impact on fixation location. Significant differences are
observed, in particular, between glossy and matte materials. Figure
5 illustrates this influence: with the matte material, observers tend
to gaze on regions where a contrast exists due to shadows, as well
as around the center of the shape. However, for the glossy material,
their fixations are concentrated around specular reflections.

Front lighting Top-left lighting

Figure 4: Rendering and fixation maps for different illuminations
(matte material). The scale of the color map is the same for both fix-
ation maps. As front lighting decreases contrast, observers concen-
trate their gaze on the head of the dinosaur, while the top-left light-
ing condition emphasizes the geometric details which then draw
observers’ attention.
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Impact of the shape Impact of the lighting Impact of the material

B
la

de
Dinosaur Igea

p < 0.0001 p < 0.0001

D
in

os
au

r

Igea Blade

p < 0.0001 p < 0.0001

Ig
ea

Blade Dinosaur

p < 0.0001 p < 0.0001

3
so

ur
ce

s

Front Top-left

p = 0.1275 p < 0.0001

Fr
on

t

Top-left 3 sources

p < 0.0001 p < 0.0001
To

p-
le

ft
3 sources Front

p = 0.1096 p = 0.9717

M
at

te

Intermediate Glossy

p = 0.2211 p = 0.0510

In
te

rm
ed

ia
te

Glossy Matte

p = 0.7895 p = 0.2533

G
lo

ss
y

Matte Intermediate

p = 0.0008 p = 0.0399

Table 1: Influence of each parameter (shape, lighting and material) on the fixation maps of static scenes. Each parameter value is compared
to the others (asymmetric comparison): we count the number of trials where the agreement of observers for the identical setting wins (green)
or loses (red) regarding the agreement of observers for the across setting. We also provide the p-value for the rejection of the null hypothesis
"There is no significant difference between these two parameter values".

Matte material Glossy material

Figure 5: Rendering and fixation maps for different materials (top-
left lighting). For the glossy material, observers’ attention is at-
tracted by specular reflections.

Dynamic scenes
Table 2 presents the results on dynamic 3D scenes. Similarly to
static scenes, the shape itself has a high impact on fixation maps.
Interestingly, we find that the camera path greatly influences eye
fixations, while lighting and material seem to have less impact than
for static scenes. This suggests that, in a dynamic 3D scene, cam-
era movement is the prominent factor guiding user attention and
that this movement even decreases the influence of lighting and
material.

4.5. Differences between static and dynamic scenes

We observe that for the same 3D shape, fixations resulting from a
dynamic scene are significantly different from those resulting from
a static scene. For the latter, salient areas are mostly induced by
geometry, emphasized to a greater or lesser extent by lighting and

material. However, as stated above, in a dynamic scene, animation
has a prominent role in the determination of salient parts. As illus-
trated in Figure 6, for the same object and the same combination
of lighting and material, different camera movements may produce
very different eye fixation maps. In this example, fixations are con-
centrated on Igea eyes and chin (prominent geometric features) for
the static view, while they are spanned horizontally and vertically
in the case of camera motion. This effect is due to the fact that peo-
ple tend to keep looking near the center of the object/screen when
there is a camera movement.

Fixed view Horizontal Vertical
rotation rotation

Figure 6: Rendering and fixation maps for different camera
paths (top-left lighting and glossy material). The camera movement
strongly influences human attention.

Another phenomenon accentuates the influence of camera move-
ment on human fixations: as an object rotates about its center, some
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Impact of the shape Impact of the camera Impact of the lighting Impact of the material

B
la

de

Dinosaur Igea

p < 0.0001 p < 0.0001

D
in

os
au

r

Igea Blade

p < 0.0001 p < 0.0001

Ig
ea

Blade Dinosaur

p < 0.0001 p < 0.0001

A
rb

itr
ar

y

Horizontal Vertical

p < 0.0001 p < 0.0001

H
or

iz
on

ta
l

Vertical Arbitrary

p < 0.0001 p = 0.0026

Ve
rt

ic
al

Arbitrary Horizontal

p < 0.0001 p < 0.0001
3

so
ur

ce
s

Front Top-left

p = 0.4141 p = 0.7909

Fr
on

t

Top-left 3 sources

p = 0.9342 p = 0.3174

To
p-

le
ft

3 sources Front

p = 0.0018 p = 0.0281

M
at

te

Intermediate Glossy

p = 0.5259 p = 0.9828

In
te

rm
ed

ia
te

Glossy Matte

p = 0.9737 p = 0.5746

G
lo

ss
y

Matte Intermediate

p = 0.0096 p = 0.0240

Table 2: Influence of each parameter (shape, camera, lighting and material) on the fixation maps of dynamic scenes. Each parameter value
is compared to the others (asymmetric comparison): we count the number of trials where the agreement of observers for the identical setting
wins (green) or loses (red) regarding the agreement of observers for the across setting. We also provide the p-value for the rejection of the
null hypothesis "There is no significant difference between these two parameter values".

parts of its surface become visible to the observers and some other
parts become occluded. To assess if observers tend to look more
at the newly appearing parts of the rotating object, we analyze the
distribution of the fixation map values with respect to the time dur-
ing which the vertices are visible to the observers. For this purpose,
we have computed, for each object and each camera movement, an
histogram were the horizontal axis is the number of frames dur-
ing which the vertices are visible to the observers. The vertical
axis is the summation of fixation map values of the vertices. This
histogram (blue curves in Figure 7) is compared to an histogram
corresponding to a hypothetical observer looking at all the visible
vertices equally for the entire duration of the video (red curves in
Figure 7). These two histograms have been normalized such that
their area is equal to 1. Figure 7 illustrates these histograms for the
Blade and the Dinosaur objects (associated with the arbitrary cam-
era movement). The complete set of histograms is available in the
supplemental material. For the Blade model, the blue curve is above
the red curve for vertices that are visible for less than 100 frames
(about 1.33 second with a frame rate of 30 FPS) and the blue curve
is below the red curve for vertices that are visible for more than 200
frames (about 6.66 seconds). This indicates that observers tend to
look more at the newly appearing vertices rather than vertices that
are visible since a large number of frames. In other words, geomet-
ric parts of the 3D model which appear suddenly during the video
tend to attract human attention. This phenomenon is not observed
for the Dinosaur model, for which eye fixations are mostly attracted
by the head, associated with a strong semantic prior. Moreover this
model is made of thin elongated parts which do not really hide each
other from view.

Blade Dinosaur

Figure 7: Illustration of the influence of disocclusions (i.e., sudden
appearance of hidden geometric parts) on human fixations in dy-
namic scenes, for the Blade and Dinosaur models (arbitrary cam-
era movement). The blue curves represent the distributions of fix-
ation map values with respect to the time during which the ver-
tices are visible to the observers. The red curve is the histogram
corresponding to a hypothetical observer looking at all the visible
vertices equally.

5. Experiment 2: Benchmarking Saliency Models

5.1. Saliency algorithm selection

Numerous saliency models have been introduced by the Com-
puter Graphics community (see Section 2). We select the earli-
est and most popular one: the center-surround model from Lee et
al. [LVJ05]. We also select several of the most recent and/or most
cited algorithms: the spectral approach from Song et al. [SLMR14],
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the algorithm from Leifman et al. [LST12] based on region dis-
tinctness and, finally, the point set saliency estimator from Tasse et
al. [TKD15]. For accuracy of the results, we asked the authors of
each method to compute the saliency on our models, except for Lee
et al., for which we used the original author’s implementation.

Center bias. With existing eye-tracking datasets for natural images
[LLBT06,JEFT09,JDT12,BJO∗16], researchers have observed that
eye fixations tend to be biased towards the center of images. To
check this hypothesis for rendered 3D models, we have introduced
a center prior model. This model, illustrated in Figure 8, is a two-
dimensional isotropic Gaussian function centered on the center of
the bounding box of the rendered object and projected onto its
3D shape. As in [JDT12], we introduce weighted versions of the
saliency models by fitting a linear model, as follows:

newMap = w× centerMap+(1−w) × saliencyMap (2)

Blur. Analogous to center bias, several authors [JDT12] have no-
ticed that blurrier saliency maps tend to perform better at predicting
fixations than saliency maps with sharp edges. That seems straight-
forward since fixation maps are smooth by nature since they are
derived from Gaussian filtering. Moreover, blurring saliency maps
eliminates scale dependency caused by the fact that fixation map
scale depends on the spatial resolution (in pixels per degree of vi-
sual angle) of the observed images. Therefore, for each saliency
map obtained by automatic algorithms we produce 3 blurred ver-
sions, as illustrated in Figure 9.

Visibility. Note that to accurately measure the performance of
these saliency models, we need to take into account the visibility
of the shape under the viewpoints considered. For static scenes,
this is a binary field (visible or not visible) over the 3D object. In
the following performance calculation, our saliency models are
multiplied by this visibility binary field.

Figure 8: Gaussian center model with increasing standard devia-
tions. From left to right: 100, 200 and 300 pixels.

Figure 9: Different blurred versions of the saliency map from Leif-
man et al. [LST12]. From left to right: no blurring, 40 iterations
and 120 iterations.

5.2. Stimuli

5.2.1. Static or dynamic ground-truth?

Before creating a benchmark for the evaluation of saliency predic-
tors, we have to choose whether we select static or dynamic scenes.
As shown in Section 4, these settings may produce very different re-
sults, and observers tend to agree less on dynamic scenes. Another
problem of dynamic scenes is that their fixations are really hard to
predict by automatic estimators as they are not directly related to
3D geometry, but rather to the changes in shadowing/reflection that
occur during the camera movements. These suggest that predict-
ing saliency of a 3D shape under a moving camera would require
a specific dynamic saliency model. Since no existing models from
the literature consider this aspect, we select static scenes for our
benchmark.

5.2.2. 3D object selection and rendering parameters

We selected 32 models from different public databases:
Aim@Shape †, TOSCA ‡, SHREC 2007 §, Georgia Tech model
archive ¶ as well as from some private collections. These models
have been carefully selected to ensure a large variety of shapes,
vertex numbers and semantic importance. They have been properly
remeshed whenever necessary using Vorpaline ‖ in order to obtain
high resolution isotropic meshes, which constitute high quality in-
puts for both rendering and saliency algorithms. Compared to exist-
ing benchmarks for interest points [CSPF12, DCG12], most of our
3D models are of a higher resolution with more geometric details.
They belong to four classes, as detailed in Table 3: humans, animals
and creatures, familiar objects and mechanical parts. These classes
have been chosen because they convey varying semantic priors (i.e.
very high for Humans and very low for Mechanical parts). Protein
has been placed in the mechanical parts class because of its low
semantic prior. In the same spirit, Hand appears in the familiar ob-
jects class because it does not present the same semantic attraction
level as human face or body.
As mentioned above, we have rendered static scenes for each of
these models. To ensure we cover most of the shape, we consider
three manually chosen viewpoints. To guarantee a tractable exper-
iment and given the large number of 3D models, we used a single
material and lighting condition. We selected the intermediate mate-
rial (i.e. not too glossy nor too matte) and the top-left illumination
since this is the lighting direction assumed by the visual system
when viewing the image of a shaded 3D surface [SP98, OBA08].
We thus obtained a total of 32×3 = 96 rendered images.
To make performance computation tractable and eliminate un-
necessary precision, both human fixation values and outputs of
saliency algorithms are mapped on down-sampled versions of the
3D models. These versions are obtained by isotropic remeshing
with 20K vertices ensuring a distance of roughly 0.1 degrees of
visual angle between vertices, which we consider to be a sufficient

† http://visionair.ge.imati.cnr.it/ontologies/shapes/
‡ http://tosca.cs.technion.ac.il/book/resources_data.html
§ http://watertight.ge.imati.cnr.it/
¶ http://www.cc.gatech.edu/projects/large_models/
‖ http://alice.loria.fr/index.php/erc-vorpaline.html
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Table 3: Our dataset. Object sizes (in thousands of vertices) are
given in parenthesis.

Animals Humans Mechanical Familiar objects

Horse (113) Igea (101) Casting (5) Vase (15)
Dinosaur (42) Planck (204) Meca (15) Car (17)
Bunny (35) Bimba (75) Blade (200) House (196)
Dragon (50) Torso (142) Rocker (40) Hand (37)
Cow (46) James (51) Carter (25) A380 (173)
Octopus (17) Jessi (70) Fandisk (6) Flowerpot (83)
Gargoyle (150) Mickael3 (53) Turbine (100) Chair (11)
Camel (19) Mickael8 (53) Protein (50) Harley (276)

precision. A380, Harley, and House data contain many tiny, con-
cave parts and have thus been remeshed with respectively 48K, 55K
and 30K vertices to obtain approximately the same resolution. Pos-
sible interior (i.e. not visible) parts have been removed from all
these down-sampled versions. Note that these down-sampled ver-
sions serve only for the performance computation. The human fix-
ation values and outputs of saliency algorithms are computed from
the original high-resolution models.

5.3. Participants

20 observers participated to this experiment. Just like the first one,
they were aged between 20 and 40, were naive to the goals of the
experiment and had a normal or corrected to normal vision. The
total time was 20 minutes (vision check + training/explanations +
96 images x 7 sec. + transitions). One observer was rejected due to
the presence of too much invalid data.

5.4. Optimizing blurriness and centeredness of saliency
models

As explained in Section 5.1, it has been observed in computer vi-
sion experiments that performance of saliency models is enhanced
by blurring saliency maps and by combining them with a center
bias model. To evaluate performance of the tested models indepen-
dently from these blurriness and centeredness factors, we optimize
their parameters for each 3D object and each saliency model, as
follows:

• For the blurring level, for each saliency algorithm we create 4
versions of the saliency map (0, 10, 40 and 120 smoothing iter-
ations) and select the top-performing one for each view of each
3D object.
• For the Gaussian center prior, we sample several σ values from

100 to 400 pixels and select the best performing value for each
view of each 3D object.
• For each view of each 3D object, the linear model between the

blurred saliency map and the center bias (see Equation 2) is fitted
on the remaining objects from the same class.

5.5. Results and observations

The 96 fixation maps obtained (32 objects × 3 views) provide an
opportunity to investigate the performance of saliency models in

predicting human fixations. We also study the kind of features at-
tracting visual attention and finally analyze the difference between
eye fixations and Schelling/interest points. Examples of fixation
maps are illustrated in Figures 10 and 15 (together with saliency
maps). Fixation and saliency maps for all objects are available in
the supplementary material.

Figure 10: 2D heat maps and 3D mesh fixation maps for several
objects. From left to right and top to bottom: A380, Turbine, Rock-
erArm, Car, Igea, Cow, Meca, James, Camel, Michael3, Dinosaur,
Bimba, Carter and Vase.

Overall saliency model performance. Figure 11 shows the overall
performance of humans and saliency models (including the cen-
tered model) using two metrics: Area under ROC curve (AUC)
and Pearson’s Linear Correlation Coefficient. To calculate human
performance, we use the fixation map obtained from ten random
observers to predict the fixation map obtained by the ten others.
Both performance metrics show similar tendencies: (1) The cen-
tered models provide better results than every other saliency model,
meaning that, as with natural images, observers tend to look at
the center of objects. (2) Even combined with a centered model,
saliency algorithms remain poor at predicting fixation locations,
compared to human performance; best methods do not exceed 0.50
linear correlation and 0.76 AUC. (3) Results show very high stan-
dard deviations, suggesting that performance of saliency models
(including the center one) greatly depends on the 3D objects dis-
played.
To assess the superiority of saliency models among others, we con-
ducted pairwise Student’s t-tests on AUC values; the resulting simi-
larity groups at the 95% significance level are reported in Figure 12;
p-values and results for the linear correlation metric are detailed in
the supplementary material.
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Figure 11: Performance, in terms of area under ROC curve
(top) and linear correlation (bottom), of humans, center model
and saliency models from Lee [LVJ05], Leifman [LST12], Song
[SLMR14] and Tasse [TKD15]. Bars with black borders mean that
saliency models are combined with the center model according to
eq. 2

Figure 12: The 95% similarity groups, as revealed by one-tailed
paired t-tests (conducted on AUC values). Items in the same set are
statistically indistinguishable. Saliency models are ranked from left
(best) to right (worst).

Analysis of the center bias. Figures 13 and 14 detail performance
results for each class and each 3D object, respectively. More re-
sults are given in the supplementary material. We observe that the
center bias is more important for mechanical and familiar objects.
Such behavior is related to the semantic prior of the 3D objects.
For mechanical parts, observers do not recognize anything as per-
ceptually salient and thus tend to gaze at the center of the rendered
image. The same effect is observed with the most simple objects
from the familiar objects class (e.g., chair, flowerpot and vase) or,
on the contrary, with highly complex models (e.g., protein). For
humans and animals, the observers’ gaze is attracted by semantic
features (faces, eyes) and thus moves away from the center. The
section below provides more details about features that attract hu-
man attention.

Where do people look on a rendered 3D shape? Besides the cen-
ter of objects, we identified the features that attract people’s at-
tention when looking at a rendered 3D shape. They are described
below.

• Faces (human and animal). Looking at fixation maps from all an-
imal and human models, it seems obvious that the face strongly
attracts eye fixations (see Michael, James, Camel, Dinosaur,
Cow in Fig. 10 and Gargoyle and Horse in Fig. 15). Surpris-
ingly this semantic attraction to the head is also observable with
the Airplane model (Fig. 10), for which the head attracts fixa-
tions whereas it does not present any particular geometric fea-
ture. Note that, for certain human faces, fixations seem to be
more concentrated on cheeks than on eyes. This surprising re-
sult would need a further specific investigation.

• Large scale geometric features. As can be seen on the Blade (Fig.
15) and, RockerArm and Vase model (Fig. 10), large scale geo-
metric features like protrusions, have an effect on the gaze at-
traction. It can also be observed with the hair buns of Bimba and
Igea.

• Small scale geometric features. Tiny or sharp geometric details
greatly attract attention as well, particularly when they are lo-
cated on smooth areas. This effect clearly appears in Fig. 10 on
the noisy cracks of Turbine, on the tiny geometric artifact at the
bottom of Vase and on the geometric features (e.g., mirror, an-
tenna) of the Car model.

• Holes and other topological features. As can be observed on
Carter and Meca (Fig. 10), topological holes also attract visual
attention.

• Highlights and other lighting effects. Finally, as observed in Ex-
periment 1, specular reflections are also attractive. For instance,
for Cow (Fig. 10) and Horse (Fig. 15), besides the head, people
clearly directed their gaze to the specular highlights of the body.

Figure 13: AUC values per class for all tested saliency models
(without the combination with the center model).

Analysis of successes and failures of saliency models. As detailed
in the paragraph above, several semantic and geometric features
have proved they attract attention. However, looking at the fixation
maps, it seems very complicated to predict, for each object, which
feature will have more influence than others and thus will attract
the main attention of the observer. The complexity of this cognitive
mechanism accounts for the poor results of tested saliency mod-
els. In the Animal class, saliency models detect protrusions such as
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Figure 14: AUC values per 3D object for all tested saliency models (alone and combined with the center model).

legs, ears and tails, while fixations concentrate on faces (see Gar-
goyle, Horse and Dragon in Figures 15 and 1). In the Familiar and
Mechanical classes, fixations are mostly around the center, while
saliency models tend to detect sharp features (see Blade in Figure
15). However, combinations of saliency models with the centered
Gaussian may yield results quite close to fixation maps (e.g. see the
good performance of Tasse and Leifman for Carter and Meca, and
of Tasse for House in Figure 14, in the bottom row). The relative
success of saliency models for the Human class is due to the posi-
tive correlation between the semantic features (eyes, nose) and the
geometric features which are detected by these models (see Max-
Planck in Figure 15).

Difference with Schelling/interest points. As discussed in Sec-
tion 2, two existing benchmarks [CSPF12, DCG12] have already
been used for evaluating mesh saliency algorithms, such as in the
recent study by Tasse et al. [TKD16]. In the experiment conducted
by Chen et al. [CSPF12] people were asked to "select points on the
surface of a 3D object likely to be selected by other people". In
a similar way, Dutagaci et al. [DCG12] asked people to "mark all
the points they think are interesting or defining". While these data
are interesting, it is questionable whether these Schelling/interest
points are really correlated with human fixations. We have selected
ten objects from our benchmark, which have already been used in
the Schelling points benchmark from Chen et al. [CSPF12] and
have computed the similarity between fixation maps and Schelling
distributions. Figure 16 details the results in terms of AUC (lin-
ear correlation results are presented in the supplementary mate-
rial) while Figure 17 visually compares these two human-generated

scalar fields. The results show that Schelling points and human fix-
ations are not correlated except for Human faces where they both
concentrate on semantic features such as nose, eyes and mouth.
Schelling points tend to concentrate on protrusions (as can be seen
in Figure 17), whereas fixations stem from a more complex cogni-
tive process.

6. Conclusion and perspectives

In this paper, we present two eye-tracking experiments conducted
on rendered 3D shapes, providing fixation density maps on 3D
meshes. We show that, for static scenes, both material and lighting
have a significant influence on human visual attention. This influ-
ence decreases for dynamic scenes, in which the camera path be-
comes the prominent factor driving attention, together with the 3D
shape itself. We provide extensive comparisons of several saliency
models from the state-of-the-art, for prediction of human fixations,
and demonstrate the significant importance of the center bias. We
also investigate the main factors that attract human attention in a
3D setting. We believe that these results and new insights into hu-
man viewing behavior, as well as our publicly available dataset,
will greatly stimulate research on saliency models for 3D graphics.
Limitations and future work directions. Our study is one of the
first that aims at understanding human attention for rendered 3D
shapes, and thus have some limitations that open avenues for future
work. First, we considered non-textured, Phong-shaded 3D mod-
els, which is not the most realistic shading scenario. A future study
could involve more physically correct materials as well as real-
istic environment maps for scene illumination; such study could
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Rendering Fixation Map Lee [LVJ05] Leifman [LST12] Song [SLMR14] Tasse [TKD15]

Figure 15: Rendering (with 2D heat maps), fixation maps and tested saliency models for several 3D objects. From top to bottom: Gargoyle,
Max-Planck, Blade and Horse

Figure 16: AUC values between human fixations and Schelling
distributions [CSPF12].

allow to confirm and enrich recent results on material perception
(e.g., [KFB10]) that suggest a strong interplay between geometry,
material and illumination in the perception of 3D shape. Second,
we chose a free-watching scenario without any specific task as-
signed to the observers. While this protocol is valid and widely
used for producing fixation maps in computer vision, it produced
a strong center bias in our experiment (especially in the dynamic
setting). It could be of interest to conduct an experiment where
different tasks are given to observers (e.g., describe the object to

Fixation Schelling Fixation Schelling

Figure 17: Visual comparison between human fixations and
Schelling distributions [CSPF12]. Schelling distributions tend to
concentrate on protrusions.

another person) to evaluate their influence. Third, we did not evalu-
ate the performance of image-based saliency algorithms [BTSI13]
in predicting our 3D saliency maps. Their evaluation could lead to
interesting and surprising results.
Note that several works have been carried out related to high-
level, task-oriented gaze prediction in the context of video games
[BSW10,KDCM14,KDCM16]. Most of these studies are based on
high-level semantic properties and tend to ignore the appearance or
shape of 3D objects in the scene. In our opinion, a good saliency
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predictor for such complex 3D scene should rely on an appropriate
combination of a bottom-up appearance-based model and a top-
down task-oriented model.
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