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Figure 1: Several analytical approximations of the gold-metallic-paint3 MERL BRDF using classical models, with mean subjective opinion
scores reflecting their perceived material similarity with the tabulated reference (between 1–very poor–and 5–excellent).

Abstract
Bidirectional Reflectance Distribution Functions (BRDFs) are pivotal to the perceived realism in image synthesis. While mea-
sured BRDF datasets are available, reflectance functions are most of the time approximated by analytical formulas for stor-
age efficiency reasons. These approximations are often obtained by minimizing metrics such as L2—or weighted quadratic—
distances, but these metrics do not usually correlate well with perceptual quality when the BRDF is used in a rendering context,
which motivates a perceptual study. The contributions of this paper are threefold. First, we perform a large-scale user study to
assess the perceptual quality of 2026 BRDF approximations, resulting in 84138 judgments across 1005 unique participants. We
explore this dataset and analyze perceptual scores based on material type and illumination. Second, we assess nine analytical
BRDF models in their ability to approximate tabulated BRDFs. Third, we assess several image-based and BRDF-based (Lp,
optimal transport and kernel distance) metrics in their ability to approximate perceptual similarity judgments.

CCS Concepts
• Computing methodologies → Reflectance modeling; Perception;

1. Introduction

Appearance modeling is pivotal to realistic image synthesis. In
the case of surface scattering, bidirectional reflectance distribu-
tion functions (BRDFs) are commonly used to encapsulate the re-
flection behavior of light. BRDFs of real-world materials can be
captured and tabulated, however manipulating such datasets has
many practical shortcomings, including inaccuracies due to the
capture and sampling process, as well as large memory require-
ments. As such, more compact models aim to reproduce real-world
reflectance as accurately as possible, avoiding exhaustive tabula-
tion of the BRDFs. Common BRDF models include analytical rep-

resentations [NDM05,WMLT07,BSH12] and models that leverage
basis space expansions [GKD07, XSD∗13, SBN15]. Each of these
representations incurs an intrinsic approximation error, either due
to the inability for their closed-form expression to model the vari-
ation of real-world reflectance profiles, or due to representational
limitations of the basis (e.g., the bandlimiting nature of frequency-
space bases). On top of this, additional approximation errors are
due to the fitting algorithm that is used [FFG12], and are extrinsic
to the model. Papers presenting a specific analytical model always
provide visual comparisons but usually lack a perceptual study to
compare to previous models over a large set of materials.
Assessing the impact of differences in the BRDF tabulated data on
the perceived realism of an image is however not straightforward:
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scene geometry, light source geometries and emission profiles, as
well as the underlying simulation of light transport, all combine to
form this final impression.
Image-based perceptual quality metrics [WBSS04,MKRH11] have
been used in several works [HFM16,BP20] for BRDF quality eval-
uation. Image metrics may indeed represent a good solution to as-
sess a posteriori the quality of a BRDF approximation; however,
such metrics can hardly be used to e.g. predict the visual fidelity
of a BRDF approximation prior to its use (without the knowledge
of lighting, viewpoint and geometry). In addition, the actual cor-
relation of those image metrics with the subjective opinion has
never been quantitatively demonstrated. While various metrics can
be computed using the BRDF samples themselves in closed form
(such as weighted L2 distances), to our knowledge none has been
validated with perceptual user studies.
In this context, perceptual studies are still needed to understand the
visual loss introduced by analytical BRDF approximations, in term
of perceived material difference. Such perceptual evaluation is nec-
essary for the creation of better metrics both for fitting analytical
models and for automatically predicting this perceived difference.
In this paper we introduce a large dataset of 2026 isotropic BRDF
approximations (including hidden references), associated with hu-
man judgments. Those BRDFs were obtained through approxima-
tions of 100 reference measured BRDFs [NDM05] by a variety
of analytical models; they were then rendered, under two differ-
ent illuminations [Deb04], to produce 2796 test images. A total of
84138 perceived similarity judgments (roughly 30 per test image)
were acquired in a double stimulus rating experiment conducted us-
ing crowd-sourcing, where people were asked to rate the perceived
similarity between approximated BRDFs and their corresponding
unimpaired references, when used to render images. First, the col-
lected data was used to explore the influence of material type (di-
electrics or metals) and illumination on material similarity judg-
ment. Second, we leverage the response dataset to benchmark nine
analytical models with respect to the perceived quality of their ap-
proximations. Finally we use our data to evaluate the performance
of multiple image quality metrics and BRDF quality metrics for
predicting similarity scores. We summarize below our key contri-
butions:

• we build a large dataset of perceptual isotropic BRDF approxi-
mation quality ratings from a crowdsourced experiment.
• we analyze the effect of illumination and material type (dielectric

vs. metal) on material perception in light of this dataset.
• we assess the fidelity of nine widely used analytical BRDF mod-

els depending on material types.
• we benchmark several metrics computed both in the BRDF sam-

ple space and in screen-space for their ability to predict percep-
tual degradations.
• we introduce new BRDF metrics, notably based on optimal

transportation, that outperform state-of-the-art metrics.

The supplementary materials, code and the dataset can be found at
http://liris.cnrs.fr/glavoue/data/BRDFs/

2. Previous Work

For their ability to model realistic materials using a simple rep-
resentation, BRDF models have attracted much attention and are
now prevalent despite their lack of support for specific physical

phenomena such as subsurface scattering or fluorescence. This sec-
tion describes related work on the use of perceptual distances in the
context of BRDFs, and more generally, a state-of-the-art in material
visual perception.

2.1. Perceptual models and BRDF metrics
Since the advent of approximation methods for BRDF models, the
need for measuring how well an approximation fits a reference
BRDF has kept appearing. Two main directions have been taken:
approaches working directly in the space of BRDF samples, and
those working on rendered images. While the formers are more
flexible and independent of the 3d scene, the latters usually result
in more perceptually accurate measures.

BRDF samples space distances. Early methods were based
on a simple cosine-weighted L2 distance between BRDF val-
ues [LFTG97,NDM05,LKYU12] or a dimensionality-reduced ver-
sion of this metric [PL07]. To assess the relevance of this distance,
Fores et al. [FFG12] perform a perceptual experiment to determine
which one of three metrics in BRDF space (RMS, cosine-weighted
L2, and cube root cosine-weighted RMS) is able to produce the best
approximation when used for fitting BRDFs on three different an-
alytical models. They conclude that a cube root cosine-weighted
RMS provides higher visual fidelity, especially for very specular
materials. More complex metrics have been introduced, such as the
E2 metric of Löw et al. [LKYU12]. The E2 metric is a log, cosine-
weighted L2 error, which has notably been used for fitting BRDFs
generated procedurally with genetic algorithms [BLPW14]. Ser-
rano et al. [SGM∗16] propose a control space for predictable edit-
ing of captured BRDF data. Relying on a large-scale experiment on
an extended version of the MERL dataset [MPBM03], they allow
for assessing similarity between BRDFs regarding several aspects
of appearance, such as brightness, strength or sharpness of reflec-
tions, by mapping these attributes to an underlying PCA-based rep-
resentation of BRDFs with 5 principal components. The fitting is
made using a radial basis function (RBF) network with one hidden
layer. However, approximation methods rely on a single value that
serves as the objective function, and combining all these aspects
into a single number describing the proximity in term of material
appearance is not trivial.

Image space distances. Measuring perceptual distances between
images is a well-researched area [Dal92, WBSS04, MKRH11].
Measuring perceptual distances on BRDFs using rendered images
has thus been extensively used. The simpler of these approaches is
that of Ngan et al. [NDM06] who render spheres of a given BRDF
lit with a natural environment map (the Grace Cathedral [Deb04]),
and use the L2 distance between the cube root of linear RGB
channels. They achieve similar results as the standard L2 distance
between channels in the LAB color space (without cube root).
This approach has been extended to instead use a Structural Sim-
ilarity Image Metric (SSIM) [WBSS04] on gamma-corrected im-
ages by Brady et al. [BLPW14]. Very recently, Bieron and Peers
[BP20] use the CSSIM color metric [LPU∗13] to optimize their
fitting, in a two-step process. By using isotropic BRDFs and a
symmetric mathematically defined environment map, Pereira and
Rusinkiewicz [PR12] obtain a near closed-form expression of a ren-
dered sphere, allowing to render spheres using a fast matrix-vector
multiplication. These spheres are, this time, compared using an L4
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norm to obtain a BRDF similarity metric. Havran et al. [HFM16]
evaluate different image space metrics in the context of optimiz-
ing shapes to optimally depict BRDFs. They automatically design
a parametric surface able to represent interesting BRDF variations,
and show that ∆E and HDRVDP2 [MKRH11] both discriminate
materials comparably well. Bousseau et al. [BCRA11] design an
image space metric aimed at optimizing environment maps so that
renderings exhibit particular material properties, such as shininess
for metals, grazing reflections for Fresnel materials, or grazing
highlights for asperity scattering. The closest work to ours is the
work of Lagunas et al. [LMS∗19]. They conducted a large scale ex-
periment to evaluate the perceived similarity between BRDF mod-
els and then used the perceptual judgement to train a new image-
based similarity metric. However, their dataset is mostly an image
dataset, since it considers the 100 MERL BRDF models rendered
using different scenes and illumination. In contrast, our dataset con-
tains 2026 BRDF models.

Other perceptual embeddings. Pellacini et al. [PFG00] ob-
tain a perceptual embedding of BRDFs generated from the Ward
isotropic model in a space of gloss by performing a user study.
They use Multi-Dimensional Scaling (MDS) on apparent gloss dif-
ferences between pairs of renderings, and conclude that two di-
mensions explain most variations and correspond to contrast gloss
and distinctness-of-image gloss. The Ward BRDF model is then
re-parameterized to achieve perceptually uniform gloss variations.
Wills et al. [WAKB09] perform a similar experiment on measured
BRDFs. They use non-metric MDS and ask participants to judge
which one of two renderings is more similar to a third one. An ap-
plication is to interpolate between different BRDFs in a perceptual
way by linearly interpolating within triangles of a Delaunay trian-
gulation of the embedding. A similar approach could in principle
be used to infer perceptual distances from the Delaunay triangu-
lation but for this method to capture subtle differences between
a reference material and its approximation would require an ex-
tremely dense sampling of the space, that is, an intractable experi-
ment involving more than the hundred BRDFs we have at our dis-
posal [NDM05].

2.2. Psychological evaluation of material perception
Material perception is a high level process that cannot be directly
accounted for by only pixel-based or sample-based considerations.
Shape and lighting further play a prominent role in the perception
of materials, which complicates its study. In fact, for gloss percep-
tion, both shape and lighting interact in a joint and hard-to-predict
way [OB11]. Fleming [Fle14] suggests the brain works out a sta-
tistical model by discovering relationships between samples, e.g.,
by observing how the image is changing as material, shape, and il-
lumination properties are changing and looking at image features,
instead of trying to predict physical parameters themselves.

Shape. Initial experiments by Nishida and Shinya [NS98] where
the material of a heightfield surface had to be matched to that of
another heighfield showed the difficulty of the task when the heigh-
fields were very different. Instead of matching reflectances directly,
Vangorp et al. [VLD07] studies the problem at the higher level of
material recognition. They ask participants to tell whether two ren-
dered objects are made of the same material, and they vary the ob-
jects shape. Their results provide guidelines for shapes to be used

for this task: they show that the commonly used sphere is one of the
least discriminating shape and tesselated geometries do not work
well, while smooth but curved geometries such as a blob or a Bud-
dha model work much better. While the question investigated in
their study is relatively close to ours, it unfortunately does not di-
rectly allow for assessing BRDF approximation models or metrics.

Lighting. Environment lighting also plays a significant role. Flem-
ing et al. [FDA03] show that natural illumination is an important
factor for depicting materials, and that a human observer can in-
fer materials directly from statistical image features. They design
an experiment where a sphere is lit from captured environment
maps or artificial point or rectangular light sources, and had par-
ticipants match materials using a Ward BRDF model. They show
that captured environment maps allow participants to more accu-
rately match materials, except for the artificial rectangular light
source that performed comparably well for Ward’s BRDF rough-
ness parameter. Since this pioneering work, many studies (e.g.,
[VBF17, TF18, ZdRBP19]) confirmed this major role of environ-
ment lighting in our perception of materials. In the same spirit
at Vangorp et al., Ramanarayanan et al. [RFWB07] evaluate the
high level perception of materials when varying environment maps.
They develop the concept of “visual equivalence”: two images are
deemed visually equivalent if, when seen side-by-side, the objects
they depicts are perceived as having the same shape and materials,
and one cannot tell which one has been rendered with the reference
environment map. From a user study, they are able to design a “Vi-
sual Equivalence Predictor” (VEP) using a Support Vector Machine
classifier on experimental data. Krivanek et al. [KFB10] study vi-
sual equivalence (and image quality) between a reference rendering
and a degraded rendering that uses only a limited number of vir-
tual point lights (VPLs). They vary materials, geometry and light-
ing conditions, and find that more geometrically complex glossy
shapes and lighter dielectrics are more forgiving of illumination er-
rors while metals are generally unforgiving. Using actual painted
glass samples of different materials, Leloup et al. [LPDH10] con-
firm the importance of illumination on gloss perception and that
commercial gloss meters did not accurately predict gloss percep-
tion.

3. BRDF dataset

In this section, we describe the dataset we created to assess BRDF
perceptual differences. Our dataset consists in 100 source BRDFs,
subject to approximations with different models, producing a total
of 2026 BRDFs (including references).

3.1. Source BRDFs

Our source BRDFs are the real-world tabulated data of the MERL
database [MPBM03]. The database features a total of 100 measure-
ments of isotropic materials sampled over 90×90×180 couples of
directions. For further analysis, we manually categorized those ma-
terials into dielectrics (70 out of 100) and metals (30 out of 100).
Our classification is publicly available with the dataset.

3.2. Analytical models

We perceptually evaluate the analytical approximations of MERL
tabulated data for the following isotropic analytical models: Blinn-
Phong [Bli77], ABC [LKYU12], Ward [War92], Beckmann
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with Gaussian normal distribution [BS87], Lafortune [LFTG97],
Rational-Chebychev [PSCS∗12], Rational-Legendre [PSCS∗12],
SGD [BSH12], GGX [WMLT07], Bagher [BSN16] and Dupuy tab-
ulated approximation [DHI∗15].
Ward, Blinn-Phong, Lafortune, ABC and Beckmann models were
fitted using Hooke-Jeeves minimization with D4.Cl metric (see
Section 6 for details). For Ward, Blinn-Phong, and Lafortune we
considered a second approximation by taking the parameters from
Ngan’s paper [NDM05] (available for 86 out of the 100 MERL
BRDFs). For ABC, we also considered a second approximation
by taking the parameters from the authors paper [LKYU12]. The
rational Chebychev and Legendre models were fitted using the
ALTA library [BCP∗15], while SGD, GGX and Dupuy were all fit-
ted using Dupuy’s BRDF fitting library (available at https://
github.com/jdupuy/dj_brdf). The approximations from
Bagher [BSN16] were provided by the authors.
Figure 2 gives for each analytical approximation the number of dif-
ferent materials used in our study. The “Reference” material (at
right) refers to the original tabulated data that we also include in
our tests for sanity check, as a “hidden reference” during the ex-
periment. As can be seen in the figure, we were not able to obtain
rational Chebychev and Legendre fits for all MERL BRDFs, due to
inherent limitations of the fitting library.

3.3. Manifold approximations

In addition to analytical models, we included in our experiment a
number of BRDF approximations obtained by sampling the MERL
manifold (as defined by Soler et al. [SSN18]) close to the origi-
nal BRDFs. Since this manifold exactly interpolates the input data,
points that are taken close to the original MERL BRDFs in the la-
tent space provide an interesting set of very realistic-looking tabu-
lated BRDFs, extending the space of tabulated data over which the
different metrics will be compared. The approximations of a BRDF
at latent position c are chosen to be at positions

∀i ∈ [1,N],ci = c+d∗
(

i
N

)5

r,

where d is a random unit-vector in the parameter space of the man-
ifold, N is the total number of approximations produced for this
material, and r is the diameter of the parameter space.
Six MERL Manifold Samples (MMS) ci were constructed for each
reference BRDF (see Figure 2).

Figure 2: Distribution of our BRDF dataset in terms of approxi-
mating methods.

3.4. Stimuli creation

To create stimulus images from our dataset of BRDFs, we apply
each of these BRDFs to a 3D shape, and render the corresponding
3D scene under specific illumination conditions.

Shape and scene. Vangorp et al. [VLD07] specifically investigated
how the shape of an object influences the perception of its material.
They demonstrate that the sphere is not well suited to material
discrimination, while more complex geometries such as a blob
or the Buddha model are much better suited. We follow their
recommendations and selected the Buddha model. This model
has the benefit of representing a realistic shape (a statue) and
exhibiting a wide range of geometric features: smooth parts, high
frequencies as well as creases. We created a 3D scene where this
3D model is placed on a wood table, in order to have a plausibly
realistic context. We indeed hypothesise, like many studies related
to material perception [VLD07, RFWB07, KFB10], that keeping
a realistic setting is an important factor to help naive observers to
understand the notion of “material”.

Illumination and rendering. As raised by Fleming et al. [FDA03],
a natural illumination is a critical factor for depicting materials.
We thus used captured environment maps instead of artifi-
cial light sources. In order to ensure the generality of our
subjective results and evaluate the impact of the lighting environ-
ment, we selected two high resolution environment maps from
https://vgl.ict.usc.edu/Data/HighResProbes/:
Uffizi and Grace which are respectively low and high frequency
(see Figure 8). Our choice was driven by the will to have two
maps with opposite characteristics (both in terms of colors and
frequency). Our whole dataset (2026 BRDFs) was rendered under
the Grace environment map, while approximately a third of it (770
BRDFs) was rendered under the Uffizi environment map, which
allowed us to effectively reduce the size of the experiment. We
privileged Grace for rendering all the stimuli because it compara-
tively spreads over a larger interval of frequencies, hypothesizing
this lighting to be less forgiving for the approximation methods
and thus stimulating a more significant interval of user responses.
A total of 2796 test images were thus rendered. All images were
rendered at 580×900 using Monte Carlo path tracing. For display,
images were tone-mapped using a gamma value of 1.25 using
the algorithm of ILM’s ’exrdisplay’ HDR viewer [ilm] (See
pseudo-code in the supplementary material). We also rendered the
100 reference BRDFs using both light probes, resulting in 200
reference images that will serve as ground-truth material images
during the experiment. Note that, as recommended by Krivanek
et al. [KFB10], those reference images were taken from slightly
different camera positions, to make the task object-focused rather
than image-focused, i.e., avoiding participants to compare specific
pixel values rather than giving their appreciation of the material
itself. Figure 3 presents some of our stimuli images.

4. Methods

In this section, we describe our crowdsourced psychophysical
study. The objective is to evaluate how similar each approximated
BRDF is to its corresponding source BRDF. Participants of our
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Reference GGX Reference Dupuy

Figure 3: Examples of stimuli from our dataset. Shown BRDFs are
blue-metallic-paint2 and gray-plastic. Reference scenes are ren-
dered using a slightly different viewpoint.

study were asked to rate the perceived similarity between series
of test images and corresponding reference images. This proto-
col is formally known as the Double Stimulus Categorical Rating
(DSCR) commonly used for 2D image and video quality assess-
ment. The experimental procedure is described below.

4.1. Rating protocol

Our goal is to measure the perceived fidelity of approximated
BRDFs with respect to their unimpaired reference. We chose to
rely on a categorical rating method, the Double Stimulus Cate-
gorical Rating (DSCR). Participants were presented with pairs of
static images: a test image rendered from an approximated BRDF
and a reference image rendered from the corresponding original
BRDF. They were then asked to rate the similarity between the
statues’ materials on the left and right images (see Figure 5). As
recommended by the ITU standard BT500-11, we used a five-grade
quality scale numbered from 1 (very poor) to 5 (Excellent).
Note that paired comparison methodology have been demon-
strated to be more reliable than rating methods in certain
conditions [MTM12]. However they are not tractable for large
numbers of stimuli, since they require

(n
2
)

comparisons. This high
number of trials could be reduced by using sorting algorithms
as recommended by Silverstein et al. [SF01] and Mantiuk et
al. [MTM12], but such sorting algorithms cannot be implemented
in crowdsourcing experiments where workers do only a small
part of the task. For these reasons, categorical rating methods are
mostly preferred for large datasets and particularly for crowd-
sourced studies (e.g., [SGM∗16, GB16]).

4.2. Instructions, Training, and Testing

We employ the Appen platform (formerly known as CrowdFlower
and Figure 8), which allows, similarly to Mechanical Turk, to pro-
vide micro-tasks to selected pools of registered “workers”. In our
study, the minimal micro-task consists of one page containing 10
pairs of images to rate and is paid $0.20. However, participants can
choose to rate several pages in the limit of 150 judgments (i.e., 15
pages).
Each participant is initially given instructions, and 6 example pairs
of images representative of the approximate range of material qual-
ities are shown along with their corresponding expected answer.
Instructions are illustrated in Figure 4, and example pairs are avail-
able in the supplementary material.
To filter careless participants, we combine four mechanisms:

1. Only workers of “level 3” (internal rating of CrowdFlower) are
allowed to take part in the experiment; this correspond to the
highest quality and most experienced workers.

2. Before entering the study, participants first have to complete a
qualification test consisting of 10 gold standard images with
known ground-truth. Participants with less than 85% correct an-
swers are disqualified. To be considered incorrect, a response
should be very different from the expected answer – the goal be-
ing to avoid careless participants while keeping the natural vari-
ability within careful participants. These gold standard images
are randomly selected among a pool of 44.

3. In each micro-task, one (randomly selected) gold standard im-
age is inserted. An average accuracy of 85% have to be main-
tained by the participant all along his/her tasks.

4. Participants who are too quick to respond (less than 10 seconds
for 10 ratings) are discarded.

4.3. Participants

In total we collected 84138 judgments from 1005 unique partici-
pants after excluding trials that failed the quality checks described
above. Each participant rated 83.7 pairs on average (SD = 56.3).
Each pair was rated by 30.1 participants on average (SD = 0.4).
Participants were very positive about the test, 143 of them gave
their feedback reporting an average satisfaction of 4.2/5, with 3.9/5
for ease of job.

Figure 4: Instructions shown at the beginning of the task.

5. Results and observations
5.1. Computing mean opinion scores

A common way of analyzing the opinion scores of a double stim-
ulus subjective test is to compute the Mean Opinion Score (MOS)
of each stimulus:

MOSs =
1
N

N

∑
i=1

ri
s (1)

where ri
s is the rating given by participant i, to stimulus s. Those

mean opinion scores MOSs are associated with 95% confidence in-
tervals.

5.2. Inter-participant reliability

It is essential to analyze the agreement between participants before
studying the results from the experiment. As in the work of Ghadi-
yaram and Bovik [GB16], we split the subjective ratings obtained
on every pair of images into two disjoint equal groups, and calcu-
lated the correlation between the recovered mean opinion scores
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Figure 5: Illustration of the interface of our experiment, asking
participants to rate on a scale of 1 to 5 the similarity between the
statue’s materials on the left and right images.

of the two groups. When repeated over 100 random splits, we ob-
tained an average Pearson linear correlation coefficient of 0.964
(SD = 0.001) and an average Spearman rank order correlation co-
efficient of 0.929 (SD = 0.002). Those high values indicate that
there is a high degree of agreement between the subjects despite
the fact that the experiment was conducted via crowdsourcing. We
also computed the intraclass correlation coefficient (ICC) [Bar66];
results (ICC= 0.981, 95% CI: 0.980 < ICC< 0.982) confirm the high
agreement between raters.

5.3. Effect of material type

Figure 6 illustrates boxplots of MOS values and confidence inter-
vals according to the material type, for all BRDFs (left) and hid-
den reference BRDFs only (right). No effect of material type on
standard deviations was found, meaning that the type of material
has no effect on the agreement of observers. However, differences
can be observed on MOS values: approximations of dielectrics are
globally perceived as of slightly better quality than approximations
of metals; this difference is found as statistically significant by
Welch’s t-test (p-value<0.001). We will see in Section 5.5, that this
difference of perceived quality largely depends on the approxima-
tion models and their ability to reproduce the specular nature of the
material. To confirm this effect, we conducted a two-way analysis
of variance (ANOVA for material type× approximation model) on
MOS values and found a significant interaction (p-value<0.001),
meaning that the performance of approximation models depend on
material type.
When considering only the 100 reference BRDFs, we also found
a significant difference of ratings between both types of material
(p-value<0.001). In this case, metals are rated slightly higher than
dielectrics (average MOS=4.41 and 4.32 respectively). This means
that people tend to better recognize a same material, under differ-

ent viewpoints, when it has a metallic nature. This tends to confirm
the hypothesis of Fleming [Fle14] that the visual system mostly re-
lies on characteristic signatures of specular reflections to identify a
material (see example images in the supplementary material).

MOS - All stimulus CI - All stimulus MOS - References CIs - References

Figure 6: Boxplots of mean opinion scores (MOS) and confidence
interval width (CI), according to the type of material.

5.4. Effect of illumination.

Krivanek et al. [KFB10], Leloup et al. [LPDH10] and Fleming
et al. [FDA03, Fle14] shown that the nature of illumination is
a critical factor for depicting materials; in particular, Fleming et
al. [FDA03, Fle14] emphasized the importance of a natural illumi-
nation. Our dataset allows to evaluate the effect of two radically
different natural lighting environments.
We selected the set of 740 BRDFs lit by both Uffizi and Grace
maps and analyzed the MOS values of the corresponding 1540 ren-
dered images. Figure 7 illustrates the correspondences of the two
sets of MOS values. Whereas the illumination map used for ren-
dering seems to have a certain impact on the perception of certain
BRDFs (i.e., 2D points are not perfectly aligned), no significant
and systematic influence on the quality can be observed (the p-
value from a paired t-test between the two illumination conditions
is 0.93). Pearson and Spearman correlation coefficients between
MOS values from both environment maps were found to be 0.936
and 0.910, respectively. No significant effect was found on standard
deviations (p-value=0.37).
If we restrict our analysis to the 100 reference BRDFs; it is inter-
esting to notice that we observe a significant impact of the environ-
ment lighting on the MOS values (p-value<0.001). Globally, peo-
ple tend to better recognize the same material, under different view-
points, using the Grace environment map (average MOS=4.39)
than using Uffizi (average MOS=4.30). Our hypothesis is that the
high frequency patterns from Grace (see Figure 8 for the frequency
content of both maps) introduce significant reflections that help the
user to better recognize the material, despite the slight difference in
viewpoint (see example images in the supplementary material).
To further explore the influence of illumination, we conducted a
three-way ANOVA (illumination × material type × approxima-
tion model) on MOS values. The significant interaction between
the approximation model and the type of material was confirmed
(p-value<0.001). We also found a slight interaction between the
illumination and the type of material (p-value=0.0151). This inter-
action is illustrated in Figure 8, right. It seems that the difference of
perceived quality between metals and dielectric is dependent on the
illumination. Finally, no significant interaction was found between
the approximation model and the illumination, meaning that the
performance of an analytical model in terms of perceived quality
was not found to be dependent on the illumination.
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Figure 7: Comparison of quality scores obtained with the two dif-
ferent environment maps.
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Figure 8: Left: Energy in each frequency band for Uffizi and Grace
environment maps, normalized to the total energy of the map, com-
puted using spherical harmonics up to order 130. Uffizi clearly
shows up as a low frequency profile whereas Grace contains lots
of high frequencies. Right: Boxplots of MOS values according to
material type and environment maps, showing the low dependency
of perceived material similarity on the illumination bandwidth.

5.5. Evaluation of analytical fits

Given the lack of impact of the illumination on the MOS values,
and the lack of interaction between approximation model and
environment lighting, we consider only the 2026 images rendered
with the Grace environment map for the evaluation of analytical
models. This allows for more robust statistics via paired compar-
isons.
Figure 9 illustrates boxplots summarizing MOS values for each
analytical model, and Fig. 10 separates these MOS values by mate-
rial type. For this analysis we consider nine analytical models plus
the hidden references. Each presented model was fitted on the 100
MERL BRDFs. This analysis does not include rational-Chebychev
and Legendre models because they were not fitted on all the
MERL dataset. For ABC, Ward, Blinn-Phong, and Lafortune, for
which we have two versions of each approximation (ours using
Hooke-Jeeves method and NGan’s parameters [NDM05]), we
select the best one (i.e., associated with the highest MOS) for each
MERL BRDF. As a preamble to our analysis, it is important to note
that, in general, BRDF models with a larger number of degrees of
freedom are expected to better fit tabulated data. This is particu-
larly important for semi-tabulated models such as that of Bagher
et al. [BSN16], Dupuy et al. [DHI∗15], or high-dimensional
models such as SGD [BSH12], since the memory usage of BRDF
models can be limited in rendering applications, and a quality vs.
memory tradeoff has to be found. For instance, a typical BRDF
of Dupuy et al. takes 6KB in memory. We believe our analysis is
important in this regard, and as such, we first report the number of

parameters of the analyzed BRDF models. The Beckmann model
has 8 parameters, while GGX has 8, ABC 8, Ward 7, Lafortune 9,
Dupuy et al. 8, Blinn-Phong 7, SGD 33. Bagher et al.’s model is
non-parametric by design and uses tabulated functions.
Unsurprisingly, semi-tabulated models outperform others, the
model of Bagher et al. [BSN16] having the best MOS values
overall (p-value< 10−9 for all pairwise comparisons), for both
dielectrics and metals. Among low-dimensional models (< 10
parameters), Blinn-Phong performs surprisingly well on dielectrics
given its simplicity, while metals are best fitted by the GGX
model. Most analytical models are more appropriate for a specific
type of material: ABC, Ward, Lafortune, Blinn-Phong, and SGD
perform better for dielectrics than for metals, while GGX, Bagher
et al. [BSN16] and Dupuy et al. [DHI∗15] perform better on metals
than on dielectrics.

Figure 9: Boxplot of MOS values, for 9 analytical models, for the
MERL BRDFs. Results for hidden references are also included.

Figure 10: Boxplot of MOS values, for 9 analytical models, ac-
cording to the material type. Results for hidden references are also
included.

In Figure 11, we plot perceptual scores as a function of the dis-
tance value used to generate synthetic BRDFs (MERL Manifold
Samples) via the Gaussian process latent variables model of Soler
et al. [SSN18]. We can see that perceptual quality correlates well
with distances on the learned BRDF manifold.

6. Evaluation of objective metrics

For this analysis, we consider all the images rendered using the
Grace environment map, except the 100 hidden reference images.
We evaluated several metrics, operating on both the BRDF space
and the image space.
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Figure 11: Boxplot of MOS values for the MERL Manifold Sam-
ples [SSN18], according to the distance from the reference BRDF
(normalized by the diameter of the parameter space). A Pearson
correlation coefficient of 0.90 indicates a strong linear correlation
between distances in the manifold and perceived quality.

6.1. Selected metrics

Image metrics. The field of image quality assessment has been
extremely active over the last decade. Hundreds of quality metrics
can be found [Zha12]. For the present study, we selected metrics
that have already been used by the computer graphics community
for the evaluation and/or fitting of materials:

• HDR-VDP-2 [MKRH11]: this bottom-up technique tries to
mimic the low-level mechanisms of the human visual system
(HVS) such as the contrast sensitivity function (CSF). This met-
ric is able to predict both artifact visibility and global quality. It
has been used by Havran et al. [HFM16] to discriminate materi-
als. As output, we selected the quality prediction Q proposed in
the extension by Narwaria et al. [NPC∗15].
• Structural SIMilarity index (SSIM) [WBSS04]: this is a top-

down metric, which does not take into account any HVS model,
but relies on some local Luminance statistics, related to the
structure of the images. This metric has been used by Brady et
al. [BLPW14] to evaluate the quality of analytical BRDFs.
• Color Image Difference (CID) [LPU∗13, PFU14]: since the

above metrics only consider luminance, we selected this color-
based approach, which integrate chromatic information in a
feature-based approach similar to SSIM. This metric, also called
CSSIM, has been used by Havran et al. [HFM16] to discrimi-
nate materials, and by Bieron and Peers [BP20] for their fitting
algorithm.
• Learned Perceptual Image Patch Similarity (LPIPS) [ZIE∗18]:

this is a deep-learning approach which relies on deep fea-
tures, i.e., internal activations of convolutional networks trained
for high-level classification tasks. This approach has shown to
achieve state-of-the-art results for perceptual image quality as-
sessment. The authors compare multiple different networks and
models; we selected the VGG [SZ14] and Alexnet [Kri14] mod-
els and used the metrics as specified in the released code, without
any re-training.
• Material Appearance Similarity Measure (MatSim): this metric

has been introduced by Lagunas et al. [LMS∗19] for predicting
the similarity between materials, from rendered images. It is a
deep-learning approach based on the ResNet network [HZRS16]

and trained on a dataset of images of different materials (from
MERL), associated with similarity judgments from 2AFC tests.
We used the metric as specified in the released code, without any
re-training.
• We also included a baseline color distance (CIELAB): the

quadratic distance in the CIELab color space.

Lp-based BRDF metrics. For the present study, we used the three
BRDF metrics from [FFG12] (D1, D2, and D3), plus six additional
metrics from other sources listed below. They are defined as follows
using for angles the notations of [BSH12]:

• D1 =

√
∑θi ,θo ,φd

( fr(θi,θo,φd)− fa(θi,θo,φd))2

N
This corresponds to the standard root mean square error over
tabulated data

• D2 =

√
∑θi ,θo ,φd

( fr(θi,θo,φd)cos(θi)− fa(θi,θo,φd)cos(θi))2

N
This is the cosine weighted version of D1. The cosine input angle
is used to compensate reflection increase at grazing angles.

• D3 =

√
∑θi ,θo ,φd

3
√

( fr(θi,θo,φd)cos(θi)− fa(θi,θo,φd)cos(θi))2

N
This is the cubic root of D2, it intends to attenuate peak values
in mirror direction and amplify off-peak values.

• D4 =

√
∑θi ,θo ,φd

( fr(θi,θo,φd)− fa(θi,θo,φd))2 cos(θo) sin(θo)

N
This is our own implementation of the L2 distance between
BRDFs with a correct Jacobian term to represent spherical in-
tegration.

• D5 =
∑θi ,θo ,φd

| fr(θi,θo,φd)− fa(θi,θo,φd)|
N

This is the common L1 distance.

• D6 =

√
∑θi ,θo ,φd

( frLab(θi,θo,φd)− faLab(θi,θo,φd))2 cos(θo)cos(θi)

N
This metric is the projected area weighted CIELAB metric of
Ryman et al. [Rym18].

• D7 =

√
∑θi ,θo ,φd

3
√

( fr(θi,θo,φd)c(θi,θo)− fa(θi,θo,φd)c(θi,θo))2

N

• D8 =
∑θi ,θo ,φd

∣∣∣∣log
(

fr (θi ,θo ,φd ) c(θi ,θo)+10−3

fa(θi ,θo ,φd ) c(θi ,θo)+10−3

)∣∣∣∣
N

• D9 =

√
∑θi ,θo ,φd

(
log
(

fr (θi ,θo ,φd ) c(θi ,θo)+10−3

fa(θi ,θo ,φd ) c(θi ,θo)+10−3

))2

N
D7, D8 and D9 are the cubic root, log1 and log2 metric of Sun et
al. [SJR18], where c(θi,θo) = max(cos(θi)cos(θo),10−3)

In these equations, fr denotes the reference BRDF and fa de-
notes the approximated BRDF, both linearly tabulated along the
θi,θo,φd angles. N denotes the number of samples in each BRDF,
related to the level of discretization of θi,θo and φd (we chose
N = 90 ∗ 90 ∗ 360 ∗ 3 for the MERL database since it comes pa-
rameterized with the same steps on half-angles [MPBM03]). frLab
and faLab denotes the same functions but with values described in
Lab colorimetric space instead of RGB. Note that some of these
existing metrics ignore the Jacobian that would be needed to let
the distance be a discretised hemispherical integral. Note that using
an isotropic parameteriation with (θi,φi,θo,φo) can be restricted to
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φi = 0. Therefore we prefer to use φd = φo−φi in the above equa-
tions, which doesn’t impact Jacobians.
We computed the results from these metrics with four variations on
the input data:

• No processing: the BRDF data is left as it is;
• Cube root: we take the cubic root of the input BRDF data in

order to attenuate peak values, as suggested by some papers;
• Clamping: we discard grazing θi and θo angles above 80 de-

grees, as performed by Ngan et al. [NDM05];
• Clamping+cube root: This combines the clamping and cube

root strategies.

This leads to a total of 36 different metric variations.

Kernel and Optimal Transport-based BRDF metrics. Optimal
transport is a well-researched area to compare probability distri-
butions by minimizing the effort required to move a pile of sand
shaped as the first distribution towards a hole shaped as the other
distribution [PC∗19]. This effort is computed as the sum over all
mass particles of the cost of moving it from location X to loca-
tion Y . This cost, c(X ,Y ) is called the ground metric. Optimal
transport has seen many applications including BRDF interpola-
tion [BvdPPH11], though to the best of our knowledge, it has not
been used as a metric between BRDFs.
Extensions have been proposed to compare arbitrary functions, and
in particular, the transportation-Lp distance [TPK∗17] which effec-
tively amounts to computing an optimal transport problem on the
graph of the functions being compared. We propose to use this ap-
proach to compare BRDFs, and thus compute the optimal transport
between two 4-d discrete measures† of the form ∑i δXi , where Xi
has coordinates (x,y,z,w) defined as

x = α
θi

π/2
y = α

θo

π/2
,

z = α
φd
2π

w = ϕ( f (θi,θo,φd))

where the factor α allows to weight differently the base space
(x,y,z) and the function value w, and ϕ a function that compresses
BRDF values f and is detailed next.
Optimal transport computation being a costly minimization, to ef-
ficiently solve it, we rely on the GeomLoss GPU library [Fey19]
for a fast approximation. We effectively compute a Sinkhorn di-
vergence [FSV∗19], which introduces a regularization parameter
ε and multiscale scaling factor s. To speed computations, we use
a 45× 45× 180 grid for (θi,θo,φd) instead of 90× 90× 360 as
before. Optimal transport computations were performed for each
color channel of the BRDFs. The three resulting values Wr, Wg, Wb
were combined into a single scalar value as (W+

r +W+
g +W+

b )γ,
where x+ denotes max(x,0).
We test several ground metrics c(X ,Y ), weightings α, regulariza-
tions ε, functions ϕ and scalings s. Ground metrics where chosen as
either a square distance c(X ,Y ) = ‖X−Y‖2 or a distance c(X ,Y ) =
‖X −Y‖. Values for α were chosen in {0.01,0.05,0.1,1}, values
for ε in {0.01,0.02,0.05,0.1}, values for s in {0.8,0.9,0.95,0.99},
values for γ in {0.25,0.35,0.5}, and functions ϕ(t) were taken in

† We also experimented with more principled higher dimensional spherical
parameterizations but found no significant differences in term of results.

{t, t1/2, t1/3, t1/4, log(t + η)} with η in {0.001,0.01,0.1,1}. Due
to the sheer number of possible combinations of optimal transport
parameters (992), combined with high computational costs, only a
small subset of 45 of these combinations were tested, and compu-
tations were interrupted for non-promising metrics.
In addition, the GeomLoss library provides tools for computing
kernel Maximum Mean Discrepancies that amount to computing
Euclidean distance between blurred signals. Specifically, we tested
the energy distance [FSV∗19] with the same set of parameter
ranges for ϕ, α, γ and η (this loss does not rely on ε and s), and
also restricted to a subset of 12 possible combinations.

6.2. Results

Performance measures. As classically done in image and video
quality assessment, the performance of objective metrics is eval-
uated using the Spearman rank order correlation and the Pearson
linear correlation coefficients computed between the objective met-
ric’s values and the subjective mean opinion scores. The Pearson
correlations are computed after a logistic regression which provides
a non-linear mapping between the objective and subjective scores.
This mapping allows the evaluation to take into account the satu-
ration effects associated with human senses. For each metric, in-
stead of single Pearson/Spearman correlation values, we compute
distributions of correlations using bootstrapping: The correlation is
computed 100 times, each time on a random set of BRDFs having
the same size as the original dataset; this random set is generated
by sampling with replacement. The bootstrap distribution allows to
provide an average correlation and a 95% confidence interval.

Evaluation of Lp metrics. Figure 12 show the performance of the
36 variations of the Lp-based BRDF metrics. First, we observe that
taking the cubic root of the BRDFs before computing the distance,
greatly improves the results for most of metrics. The only ones
that are not improved (D8 and D9) are those that already consider
such attenuation function in their formulas. Secondly, applying the
clamping also consistently improves the results (but in a more mod-
erate way as compared to the effect of the cubic root). The quanti-
tative assessment of those two effects thanks to our data, provides
strong hints for the scientific community for good practices con-
cerning the use of those Lp distances for analytical model fitting.
Overall, the metric that provides the best correlation with percep-
tual measures is D9.Cl (Pearson=0.81). However, we note that with
cubic root and clamping, even the simple L2 distance (D1.Cl.CR)
provides fairly good results (Pearson=0.79).

Evaluation of optimal transport and kernel metrics. The set of
parameters that performs best on average for the optimal trans-
port metrics corresponds to c(X ,Y ) = ‖X −Y‖2, α = 0.1, s = 0.8,
ε = 0.05, γ = 0.25, ϕ(t) = t1/4. The computational time for this
metric is 3 seconds per pair of BRDF on an NVIDIA RTX 2080.
The attained correlation are 0.85 for both Pearson and Spearman.
This showed to be robust with respect to the entropic regularization
parameter ε – setting ε = 0.1 merely increases the Pearson correla-
tion by 0.15% while reducing the Spearman correlation by 0.39%
and setting ε = 0.02 decreases both Pearson and Spearman correla-
tions by 0.3% and 0.06% respectively. For large majority of tested
parameters, correlations where above 0.8.
The best Kernel distance was obtained for ϕ = t1/3, α = 0.1 and
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Figure 12: Performance, in terms of Pearson and Spearman correlation with mean opinion scores (MOS), of tested Lp-based BRDF metrics.
For each metric Di, we present its four variations. Cl stands for Clamping and CR stands for Cubic Root. Bars without border refer to
Pearson and bars with black borders refer to Spearman. The error bars indicate the 95% intervals computed by boostrapping.

γ = 0.25, takes 9 seconds to compute, and results in Pearson and
Spearman correlation coefficients of 0.85 and 0.84 respectively.

Global performance results. The performance of the tested met-
rics are shown in Figure 13. Plots illustrating subjective MOS vs
metric values are shown in Figure 14. For Lp distances, we included
only D1.Cl.CR and D9.Cl for the sake of clarity. Note that image-
based metrics have an advantage in this comparison, since they are
computed on the exact same rendered images as those used in the
experiment. Hence, as compared with BRDF metrics they have the
knowledge of the illumination, rendering parameters and geometry.
Results for image metrics show the high importance of the chroma
information, since luminance-only metrics (HDRVDP2 and SSIM)
provide the lowest correlations. Our results allow to quantitatively
assess the good behavior of the CID metric, used in [HFM16,BP20]
for material quality estimation. Metrics based on deep learning
(LPIPS and MatSim) do not achieve higher performance. However,
they have not been specifically tuned for our task.
When it comes to BRDF metrics, best results are provided by the
optimal transport metric, which even attain the performance of
CID, followed by the Kernel distance. Nevertheless those metrics
are much more costly to compute than the Lp distances.

Figure 13: Performance, in terms of Pearson and Spearman cor-
relation with mean opinion scores (MOS), of several Image-based
and BRDF metrics. Bars without border refer to Pearson and bars
with black borders refer to Spearman. The error bars indicate the
95% intervals computed by bootstrapping.

7. Conclusion

In this paper we presented a database of perceptual measurements
that we obtained by comparing images of approximations of mea-
sured materials to reference images featuring the original BRDF.

We conducted multiple careful statistical evaluations using our
data, that lead to interesting new findings as well as confirmation
of some previously known (yet not systematically tested) facts.
Concerning material perception in general, (1) we didn’t find any
global effect of the illumination on the perceived quality of approx-
imated BRDFs. However, when restricting the analysis to the set of
hidden references, (2) we found that people tend to better recognize
a same material (rendered under different viewpoint) when it has a
metallic nature, and/or under high frequency illumination, confirm-
ing the hypothesis of Fleming [Fle14]. Our small set of two illumi-
nation conditions still renders general interpretations difficult, and
our results should thus be taken with caution.
Concerning analytical models, we found that (1) Their respective
performance heavily depends on the material type (dielectric or
metal). (2) Among parametric models, Blinn-Phong works surpris-
ingly well on dielectrics while GGX outperforms other models on
metals. The non parametric model of Bagher et al. [BSN16] out-
performs all other existing models.
Concerning the metrics, we found that (1) best metrics (i.e. showing
the highest correlation with subjective scores) consider a logarith-
mic distance (e.g. D9 in Section 6) or weighted Lp distances com-
puted over the cubic root of BRDF data (distances D1,D2,D4); (2)
all those Lp distances are improved by clamping grazing angles; (3)
the transportation-Lp metric of Thorpe et al. [TPK∗17], in spite of
being costly to evaluate, shows the best correlation with perceptual
measurements among all tested BRDF-space metrics; (4) the CID
metric, which includes chromatic information, outperforms other
image-space metrics, even deep-learning based ones.

The comparison of perceptual quality of the different analytical
models was based on different fitting methods, some being own fit-
ting algorithm, some obtained from previous work data releases. It
would be beneficial to confirm this comparison by re-doing all fits
using a common optimization method (e.g. Hooke-Jeeves with a
cube-root distance).
Our dataset can be used right away as a reference to benchmark
future BRDF error metrics, in terms of their performance to predict
the perceived fidelity of BRDF approximations.
A challenging future work is to create a data-driven BRDF-
space metric by extrapolating perceptual measurements from our
database. Such a distance could be used e.g. as a cost function when
fitting analytical model to measured data, or for material-preserving
gamut mapping of BRDFs [SSGM17]. The relatively low number
of such measurements however limits their use for deep learning,
justifying the need to either acquire many more measurements, or
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HDRVDP2 SSIM LPIPS CID

D1.Cl.CR D9.Cl Kernel Transport

Figure 14: Subjective MOS vs metric values for several BRDF metrics (bottom) and image quality metric (top). The curve shows the logistic
regression.

turn to a low-dimensional parameterized metric at the expense of
accuracy.
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