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Abstract
Efficient objective and perceptual metrics are valuable tools to evaluate the visual impact of compression artifacts on the 
visual quality of volumetric videos (VVs). In this paper, we present some of the MPEG group efforts to create, benchmark 
and calibrate objective quality assessment metrics for volumetric videos represented as textured meshes. We created a chal-
lenging dataset of 176 volumetric videos impaired with various distortions and conducted a subjective experiment to gather 
human opinions (more than 5896 subjective scores were collected). We adapted two state-of-the-art model-based metrics for 
point cloud evaluation to our context of textured mesh evaluation by selecting efficient sampling methods. We also present 
a new image-based metric for the evaluation of such VVs whose purpose is to reduce the cumbersome computation times 
inherent to the point-based metrics due to their use of multiple kd-tree searches. Each metric presented above is calibrated 
(i.e., selection of best values for parameters such as the number of views or grid sampling density) and evaluated on our new 
ground-truth subjective dataset. For each metric, the optimal selection and combination of features is determined by logistic 
regression through cross-validation. This performance analysis, combined with MPEG experts’ requirements, lead to the 
validation of two selected metrics and recommendations on the features of most importance through learned feature weights.

Introduction

Technological advances in the acquisition, rendering, and 
visualization devices (e.g., VR/AR Head-Mounted Displays) 
have led to the emergence of a new type of multimedia: 
volumetric videos. A volumetric video generally consists 

of a temporal sequence of 3D meshes or 3D point clouds 
(Fig. 1 illustrates the concepts of point clouds and meshes), 
resulting from a multi-view capture process and a recon-
struction process. This new type of data induces a whole 
range of new scientific challenges from capture to rendering 
[2–4]. A crucial issue is the efficient compression of those 
assets. Indeed, a few seconds of raw volumetric video can 
represent gigabytes of data. Important efforts are therefore 
undertaken by the scientific community and the MPEG and 
JPEG consortiums on this topic. Since compression pro-
cesses may obviously alter the appearance of 3D content, 
efficient perceptual metrics are thus needed to evaluate the 
visual impact of compression artifacts on the visual quality 
of the volumetric videos.

The problem of objective quality assessment of volumet-
ric videos has only been considered by a few authors [5, 
6]. Proposing a robust quality/fidelity metric for volumetric 
videos is actually very challenging, particularly because vol-
umetric videos may have different intrinsic representations 
(meshes or point clouds) and also different representations 
for colors (texture maps or vertex/point colors). Moreo-
ver, a volumetric video is usually composed of incoherent 
frames, i.e., without correspondence between points along 
the frames.
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This paper presents an MPEG effort to create, benchmark 
and calibrate objective quality assessment metrics for volu-
metric videos. This effort is composed of three steps: 

1.	 Creation of the ground-truth dataset. We created a 
challenging dataset of 176 volumetric videos (repre-
sented by textured meshes) impaired with various dis-
tortions and conducted a subjective experiment to gather 
human opinions (more than 5896 subjective scores were 
collected);

2.	 Selection and creation of metrics and features. Two 
model-based state-of-the art metrics were selected [7, 
8]. These metrics operate on the 3D data directly and 
involve the computation of several geometry and color 
features. An image-based (i.e., operating on rendered 
snapshots) metric was also implemented; it computes 
standard image-based features (e.g., mean square errors 
(MSE) on YUV components) but also two novel fea-
tures: one involving the depth buffer and a mask buffer 
that specifically detects holes in the data, and the other 
aiming at detecting temporal distortions.

3.	 Calibration, learning and evaluation. Each metric 
presented above is calibrated (i.e., selection of best val-
ues for parameters such as the number of views or grid 
sampling density) and evaluated on the ground-truth 
dataset presented above. More specifically, for each 

metric, the optimal selection and combination of fea-
tures is determined by logistic regression through cross-
validation. This performance analysis, combined with 
MPEG experts’ requirements, led to the adoption of two 
metrics, one model-based and one image-based that will 
be released publicly in open source.

The main contributions of our work are as follows:

•	 The benchmarking of several state-of-the-art metrics 
and features, originally designed for static 3D models, 
for the specific case of volumetric videos (i.e., temporal 
sequences of 3D models) using our new subject-rated 
dataset.

•	 The proposition of new image-based features involving 
the depth buffer, a specifically designed mask buffer and 
the modeling of temporal distortions. These new features 
greatly improve the performance.

•	 The release in open-source of ready-to-use metrics for 
volumetric videos represented as sequences of textured 
meshes.

The rest of the paper is organized as follows. Section 2 dis-
cusses the related work about quality assessment of volu-
metric videos. Section 3 presents the subjective experiment 
we conducted. In Sect. 4 and 5 we respectively detail the 

Fig. 1   Illustration of point cloud (top row) and mesh (bottom row) 
representations. A 3D point cloud is a discrete set of points in the 
3D space (a). Each point can be assigned a color (b). Basic render-
ing of a point cloud leads to non continuous surfaces (b, c). Hence, 
point clouds often require a huge amount of points for the rendering 
(e.g. millions). Some splatting methods allow to fill these inter-point 

spaces at the rendering stage (d). A 3D mesh is a collection of verti-
ces (3D points), edges and faces that defines a polyhedral surface (e). 
Faces usually consist of triangles. Some color images, named texture 
maps (f), can be mapped onto these triangles to colorize the surface 
(g). The final rendering of a textured mesh produces a continuous sur-
face (h). Longdress model from MPEG dataset, courtesy 8i [1]
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adaptation of some point-based metrics for texture mesh 
assessment and the newly introduced image-based metric. 
We finally provide an evaluation of the different metrics 
using a learning-based approach to select best features in 
Sect. 6 before concluding in Sect. 7.

Related work

This overview of the state of the art describes describes 
recent advances on quality assessment of volumetric videos. 
We refer the reader to [9] for a very recent and exhaustive 
survey on this topic.

Volumetric videos usually refer to temporal sequences 
of 3D meshes, or 3D point clouds, which are often accom-
panied by color information, either represented in the form 
of texture maps or as color values associated with points/
vertices. These sequences of meshes/point clouds usually 
have no temporal coherence, meaning that from one frame 
to another there are no correspondences between points/
vertices/triangles and even not the same number of points/
vertices/triangles. This lack of coherence, combined with 
the heterogeneous nature of the data (mesh vs point clouds, 
texture maps vs colors) makes their quality assessment par-
ticularly challenging.

The topics of subjective and objective quality assessment 
of 3D meshes and point clouds (with color information) have 
been very active for the last five years. As detailed in [9], 
many subjective experiments have been conducted leading 
to the public release of a number of subject-rated datasets 
[10–16]. Each of these datasets contains a number of stim-
uli rated by observers using different subjective protocols. 
These stimuli are created by applying distortions on pristine 
source models. For instance, Guo et al. [10] propose a data-
set of 136 textured meshes obtained by applying distortions 
on both geometry and texture of 6 source meshes. Nehmé 
et al. [12] propose a dataset of 480 distorted colored meshes 
obtained by applying geometry quantization, color quanti-
zation and simplification on a set of 5 source meshes. For 
point clouds, Su et al. [15] propose a dataset of 740 stimuli 
obtained by applying Gaussian noise and down sampling 
to 20 source point clouds. The largest available dataset is 
for textured meshes [11] and contains 3000 stimuli from 55 
sources. The datasets mentioned above are precious assets 
for evaluation, creation and calibration of objective metrics; 
however, they all concern static 3D content while we are 
interested in temporal sequences of meshes with time-var-
ying texture maps.

Many objective quality metrics have also been proposed 
[7, 17–24]. They usually rely on a number of features, related 
to color and geometry, which are then combined using hand-
crafted weights or regression algorithms. Most of these 
metrics are model-based, i.e., their features are computed 

directly on meshes/points clouds. Still, several image-based 
metrics [25–27] have also been considered for assessing the 
quality of 3D data, they consist in applying well-known image 
metrics (e.g., SSIM [28]) to projected views (rendered snap-
shots) of 3D meshes/point clouds.

All the work presented above concern static 3D models, 
i.e., not specifically volumetric videos which are temporal 
sequences of 3D models. Only a few authors specifically 
tackled the problem of volumetric video quality assessment. 
Zerman et al. [29] and Cao et al. [30] conducted subjective 
quality assessment experiments with volumetric videos, they 
both compared mesh and point cloud representations con-
cerning their rate-distortion tradeoff. Viola et al. [6] com-
pared how the level of interactions (e.g., 3DoFs vs 6DoFs) 
influence the perceived quality of volumetric videos. Finally, 
Ak et al. [5] compared several point-based and image-based 
metrics for the objective quality evaluation of volumetric 
videos from the V-SENSE subject-rated dataset [29] and 
explored how reducing the temporal sampling affects the 
results.

As can be seen above, the field of objective quality assess-
ment of volumetric videos remains mostly unexplored. Ak 
et al. [5] found, in their comparison, that the best results 
were obtained by the image-based SSIM and the model-
based RMS metrics; however, they did not test recent state-
of-the-art metrics such as PCQM. Moreover, the subjective 
data they consider [29] remains relatively easy to predict 
since a simple PSNR results in more than 0.8 Pearson cor-
relation with subjective data.

To further explore this topic, we created a new subjec-
tively-rated challenging dataset of volumetric videos, rep-
resented as textured meshes. We then used it to calibrate, 
optimize and compare several state-of-the-art metrics. We 
also propose an image-based metric integrating two new fea-
tures: the first is based on the depth buffer and a mask buffer 
that specifically detects holes, while the second is designed 
to detect temporal artifacts.

Subjective experiment

We conducted a subjective experiment to evaluate the visual 
impact of different kinds of compression-related distortions 
on the visual appearance of volumetric videos. As recom-
mended by Nehmé et al. [31] we selected a double stimulus 
impairment scale (DSIS) protocol. This section provides 
details on the subjective study.

Stimuli

Source models and distortions

Our dataset consists of 11 source volumetric videos (VVs), 
subject to 4 types of distortions, each associated with 4 
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levels, producing a total of 176 stimuli. The source VVs 
were selected from the MPEG repository updated for the 
V-Mesh call for participation (CfP) [1]. They are illustrated 
in Fig. 2 and Table 1 summarizes their characteristics.

These source models have been corrupted by four types of 
distortions, each applied with four different strengths:

•	 Position quantization - We consider uniform geomet-
ric quantization. The geometric quantization levels are 
driven by Qp , the precision in number of bits per coordi-
nate. Qp ∈ {8, 9, 10, 11}.

•	 Texture coordinate quantization - We consider uniform 
quantization, like for geometry. The texture coordinate 
quantization levels are driven by Qt , the precision in 
number of bits per coordinate. Qt ∈ {8, 9, 10, 11}.

•	 HEVC compression: We consider the libBPG implemen-
tation (https://bellard.org/bpg/). Compression levels are 
driven by Qmap . Qmap ∈ {30, 40, 45, 50}.

•	 Triangle holes: To simulate potential cracks due to 
encoding, we remove arbitrary triangles from each frame. 
The distortion levels are driven by the hole density Dh ; 
for instance Dh = 1000 means that 1 triangle every 1000 
triangles is removed. Dh ∈ {150, 300, 500, 1000}.

The strengths of these distortions were selected in order to 
span the whole range of visual quality from imperceptible 
levels to high levels of impairment.

Stimuli generation

As raised in many studies about quality assessment of 
3D content, while it is important for the observer to have 
access to different viewpoints of the 3D object, the prob-
lem of allowing free interaction is the cognitive overload 
which may alter the results. In the specific case of volumetric 
videos most of studies consider non-interactive protocols, 
some of them generate animations by considering prede-
fined camera paths (e.g., [29]), while others consider fixed 
viewpoints (e.g., [32]). Since our dataset is composed of 
characters and in order to simplify the cognitive task, we 
determined for each VV the most representative viewpoint 
(i.e., corresponding to the front view of each character) 

and produced an animation by simply displaying the mesh 
sequence at 30 frames per second. Note that we considered 
an orthogonal front face projection to prevent any distor-
tion due to perspective projection. For the rendering, we 
considered a top right directional lighting and a Lambertian 
reflectance model. Figure 3 illustrates several reference and 
distorted stimuli.

Experimental procedure and apparatus

A recent study compared three subjective protocols for the 
quality assessment of 3D graphics [31]. This study pointed 
out the fact that, contrarily to images and videos, the simul-
taneous presence of the pristine reference is of great impor-
tance for the human subjects to correctly assess the visual 
quality of impaired 3D models. Following the recommenda-
tion from [31], we adopted the Double Stimulus Impairment 
Scale (DSIS) method: observers see the source VV and the 
distorted VV side by side and rate the impairment of the 
second stimulus in relation to the source model using a five-
level impairment scale, displayed after the presentation of 
each pair of stimuli. The scale is as follows: 5-Impercepti-
ble, 4-Perceptible, but not annoying, 3-Slightly annoying, 
2-Annoying, 1-very annoying.

Fig. 2   The 11 source models used to create our dataset. They are sequences of textured meshes composed of 300 frames each

Table 1   Details on our volumetric videos: vertex number (per-frame), 
face number (per-frame), sizes of texture images and number of 
frames

Source #Vertices #Faces Texture size #Frames

Basket 20k 40k 2048×2048 300
Dancer 20k 40k 2048×2048 300
Exercise 20k 40k 2048×2048 300
Football 27k 40k 2048×2048 300
Longdress 22k 40k 2048×2048 300
Loot 22k 40k 2048×2048 300
Mitch 16k 30k 4096×4096 300
Model 20k 40k 2048×2048 300
Redandblack 22k 40k 2048×2048 300
Soldier 22k 40k 2048×2048 300
Thomas 16k 30k 4096×4096 300
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For each stimulus, we thus generate a video of the pair {
pristine source, distorted stimulus} side by side. The video 
resolution is 1920 x 1080 and the duration is 10 s. Those 
videos were then compressed with FFMPEG H265 at the 
highest quality.

Due to COVID-19 restrictions, participants performed 
the experiment online. To design and implement it, we used 
the PsychoPy framework [33], combined with Pavlovia plat-
form (www.pavlovia.org) for hosting. This way, only a web 
browser was required to run the experiment. As mentioned 
above, we implemented the Double Stimulus Impairment 
Scale (DSIS) protocol: each participant is presented with 
videos illustrating pairs of stimuli (distorted + pristine refer-
ence) during 10 s, and then rates the impairment of the dis-
torted stimulus in relation to the reference using a five-level 
impairment scale [34]. Participants cannot provide their 
score until the videos have been played completely. There 
is no time limit for voting and videos of the stimuli are not 
shown during that time (and cannot be replayed).

At the beginning of the session, all videos are first down-
loaded with a progress bar showing the status of the load-
ing process to ensure there is no latency during the test. 
Then instructions are displayed to the user. A training set of 
three videos (using the volumetric video Ballerina, an asset 
not used in the test session) is then displayed to familiar-
ize the user with the rating task; for the fist two, example 
scores assigned to the presented distortions are illustrated, 
and for the last the participant rates the impairment himself. 
Of course those training ratings are not considered in the 
results. After this training, the real test session starts.

Note that to ensure consistent viewing conditions, par-
ticipants were given requirements before running the experi-
ment (full HD monitor requirement, zoom level set to 100%) 
and the web platform maintained full screen mode through-
out the experiment.

Participants

35 participants (31 males and 4 females) from different inter-
national universities and companies did the subjective test. 
They were recruited by emails and did the subjective test in 

two sessions (88 stimuli each). For each session, each par-
ticipant received a link by email to launch the experiment. 
The link for the second session was sent after completion of 
the first one. For each participant, two unique random play-
lists of stimuli were generated offline for the two sessions. 3 
out of 35 participants could not complete the second session 
due to technical problems. Overall, each of the 176 stimuli 
is associated with between 32 and 35 quality scores, for a 
total of 5896 collected scores.

Analysis of subjective data

We computed the mean opinion score (MOS) and corre-
sponding confidence interval for each of the 176 stimuli, 
according to the ITU recommendations [35]. Figure 4 illus-
trates the results for each distortion type and source model. 
We can observe the strong annoying effect of the triangle 
holes on the perceived quality. On the contrary, the smooth 
artifacts due to compression are judged as much less visible. 
In Sect. 6, those subjective data will be used to optimize 
and evaluate several objective metrics (presented in Sects. 4 
and 5)

Point‑based objective quality metrics

With the conclusion of two international standards for point 
cloud compression (the Video-based Point Cloud Compres-
sion, V-PCC, and the Geometry-based Point Cloud Com-
pression, G-PCC [36]), many metrics to measure point cloud 
distortion have also been proposed [7, 8]. In order to lever-
age the available point cloud distortion tools, dynamic tex-
tured meshes can be converted into colored point clouds and 
then the distortion between two point clouds can be meas-
ured with the available tools. The advantage of such solution 
is that dynamic textured meshes with different connectivity 
varying in time can be analyzed with the proposed scheme. 
However, the fidelity of the metric heavily depends on the 
mesh surface sampling strategy. Mesh sampling is devised 
in next section. We then present the two point-based metrics 
we evaluated; the MPEG PCC [8] and the PCQM [7].

Fig. 3   Illustrations of the visual effects of the introduced distortions, for the redandblack volumetric video
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Mesh surface sampling

Mesh surface sampling is used in mesh evaluation tools like 
metro [37], which implements surface sampling strategies 
such as Monte Carlo sampling, face subdivision or simi-
lar triangle sampling. In our experiments, we sample both 
reference meshes and distorted ones with a grid sampling 
approach. We did experiments with several types of sam-
pling and the grid one, presented hereafter, provided the 
most homogeneous results. Our method divides the sides of 
the sequence bounding box into a grid, and samples the sur-
face of each mesh of the sequence by performing ray-casting 
in the axis direction (x,y,z) from each point of the grid. The 
sequence bounding box is the union of all bounding boxes 
from each frame. For each triangle, the sampling direction 
selected (x, y or z) depends on the normal of the triangle, 
whereby the direction closer to the triangle’s normal is used. 
A hit test determines if the casted ray touches the triangle, 
then the color is obtained by barycentric interpolation (to 
determine the UV coordinate of the point), and then bilin-
ear interpolation (to get the RGB value from texture map) 
(Fig. 5).

The MPEG PCC metric [8]

Geometry‑based features

For geometry distortion, the MPEG PCC tool includes the 
point-to-point fD1 and point-to-plane fD2 metric features 
from [8]. Considering A and B as the original and distorted 
point clouds, respectively, fD1 is calculated in the following 
way:

where the variables NA and NB represent the total number of 
points in the sampled meshes A and B , and the error distance 
between two points is given by E(i, j), which indicates the 
3D distance between a point i and its nearest neighbor j, 
obtained using a kd-tree search.

For fD2 , the metric is obtained using the following 
equation:

where Nj is the normal of the point j, directly provided by 
the sampling algorithm in our use case.

Color‑based features

In the case of texture, a similar metric as used for fD1 is applied 
to the point cloud colors. The only difference is that the range 

(1)

fD1 =max(
1

NA

�
∀aj∈A

‖E(i, j)‖2
2
,

1

NB

�
∀bj∈B

‖E(i, j)‖2
2
)

(2)

fD2 =max(
1

NA

∑
∀aj∈A

(E(i, j) ⋅ Nj)
2,

1
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∑
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2)

Fig. 4   Mean Opinion Scores (MOS) and 95% confidence intervals for 
all stimuli of our dataset

Fig. 5   Mesh grid sampling. The mesh surface points sampled by ray-
casting from the grid at the sequence bounding box are added to the 
final point cloud
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of colors is limited by the maximum color value, typically 255 
for an 8-bit colored point cloud. Each color channel can be 
calculated separately, and usually a conversion from RGB to 
YUV is conducted using ITU-R BT.709 [38] before any meas-
ure is taken, since YUV space correlates better with human 
perception. A symmetric computation of the distortion is uti-
lized, in the same way as is done for geometric distortions. The 
maximum distortion between the two passes is selected as the 
final distortion. The color distortion is similar to the fD1 metric, 
whereby the formula for one of the color channels is given as:

where EC(i, j) indicates the difference between color values 
at point i and at its nearest neighbor j, obtained using a kd-
tree search and c ∈ [y, u, v].

The PCQM metric [7]

PCQM is based on the following steps: first a correspond-
ence is established between the point clouds being com-
pared; for each point p from the reference pristine point 
cloud R its corresponding point p̂ on the distorted point 
cloud D is computed (using a local least-squares fitting of a 
quadric surface). Then, a set of geometric and color features 
is computed locally, i.e. over local neighborhoods around 
each point p of R and their corresponding points p̂ on D.

Geometry‑based features

The geometry-based features of PCQM are based on the 
mean curvature information � and were inspired by the 
SSIM image metric from Wang et al. [39], who consider 
that the human visual system is highly adapted for extracting 
structural information. Hence the geometry-based features 
aim to capture differences of surface structure (captured via 
curvature statistics).

(3)

fc =max(
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where ki are constants to avoid instability when denomina-
tors are close to zero. ��

p
 , 𝜇𝜌

p̂
 are Gaussian-weighted averages 

of curvature over the 3D points belonging to local neighbor-
hoods. Similarly ��

p
 , 𝜎𝜌

p̂
 and 𝜎𝜌

pp̂
 are standard deviations and 

covariance of curvature over these neighborhoods.

Color‑based features

The color-based features of PCQM are extensions for 3D 
points clouds of the work from Lissner et al. [40], who pro-
posed several features for the quality evaluation of 2D images. 
Their features are inspired by SSIM but also integrate chro-
matic components and demonstrated excellent results for 
image quality assessment. As in [40], the color-based features 
of PCQM are computed in the perceptually uniform color 
space LAB200HL [41], in which each vertex p has of a light-
ness and two chromatic values ( Lp , ap , bp ). The chroma of p is 
defined as: Chp =

√
a2
p
+ b2

p
.

with

and ΔHpp̂ is the Gaussian-weighed average over neighbor-
hoods. These color-based features are inverted ( f p

i
= 1 − f

p

i
 ) 

so that a value of 0 indicates that there is no local geometric 
and color distortion around p. All features ∈ [0, 1].

The geometric and color features detailed above are com-
puted for each point of R. In order to obtain global features fj , 
local values of each feature are then averaged:
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The global distortion score is then defined as a linear combi-
nation of fj , optimized through logistic regression.

S is the set of feature indices of the linear model. wj weights 
the contribution of each feature to the overall distortion 
score. The optimal subset of features and their correspond-
ing weights wj are usually determined through an optimiza-
tion computed through cross-validation.

Image‑based objective quality metric

The point-based metrics presented in the previous section 
involves multiple nearest points search, based on KD-tree, 
leading to very long execution times (see Sect. 6.1), espe-
cially since accurate sampling generates many points and 
our test models present long sequences of 300 frames. 
Inspired by Lindstrom’s work [25] and more recent works 
such as [26, 27, 42] we implemented an image-based metric 
applied to the output of the rendering of the volumetric vid-
eos. This approach is suitable for our kind of contents that 
are localized, generally watertight and presents few occlu-
sions. It is also possible to implement very efficient parallel 
implementation of such metric by leveraging modern graph-
ics hardware. We present in the next section the definition of 
our Image Based Sampling Metric (IBSM), which makes use 
of rendered images but also of rendered masks and accompa-
nying depth buffers generated during the rendering.

The image‑based sampling metric (IBSM)

The computation of the IBSM features, is based on image 
and depth buffer MSE processing. An overview of the 
approach is given in Fig. 6. For each frame, the reference 
and the distorted models are rendered for several view direc-
tions vdi , using an orthographic projection (see Fig. 7). The 
images obtained from the rendering of reference and dis-
torted models are then compared using some adapted image 
MSE metrics. The results are averaged over a set of view 
directions for the frame and over the frames of the sequence.

Rendering of one view

The rendering of one view is illustrated in Fig. 7. The pixels 
of the image could be obtained by ray tracing or rasteriza-
tion of the mesh. We used rasterization for performance rea-
sons. The bounding sphere is obtained by summing the axis 
aligned bounding box of the distorted and reference objects 
and taking the diagonal and center of the resulting bounding 
box. The view directions vdi always points toward the center 

(13)PCQM =
∑
i∈S

wifi

of the bounding sphere in 3D space. The mesh is rendered 
using an orthogonal projection. The projection plane for the 
direction vdi is the plane tangent to the bounding sphere and 
perpendicular to the view direction vector. The mesh is ren-
dered using clockwise (CW) back-face culling which suits 
all the models of our dataset in terms of visual rendering.

The rendering step generates, for each view, a color, a 
mask, and a depth buffer. The color buffer contains for each 
pixel i,j the RGB value, of the nearest projected triangle. 
In case of textured meshes, the RGB color is obtained by 
bilinear interpolation of the texture map using triangle UV 
coordinates. In case of color per vertex meshes (no texture 
map), the vertex colors are blended using barycentric coor-
dinates. Once RGB values are generated, additional YUV 
values are computed per pixel by using ITU-R BT.709 [38], 
since YUV space is known to better correlate with human 
perception.

The mask buffer contains for each pixel i,j a binary value 
set to 1 if a projection for this pixel exists and 0 otherwise. 
Finally, the depth buffer contains for each pixel i,j the dis-
tance di,j from the projection plane to the 3D surface in 3D 
space.

Fig. 6   Overview of the image-based metric. Ref/DisColor are 
the color images/buffers. Ref/DisMask are binary images where 
pixel[i,j]=1 if a projection exists in associated color buffer, and 0 oth-
erwise. Ref/DisDepth are the depth buffers. All the buffers have same 
square dimensions of w pixels

Fig. 7   Rendering of image buffers for a given view direction vdi
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Selection of views

The positioning of the views, that is to say the set of orienta-
tions, is obtained by using a Fibonacci sphere lattice. This 
distribution aims at generating points over a sphere in an 
evenly spaced manner (see Fig. 9). Once one has the points 
Pi , the directions vdi are the vectors passing through these 
points and pointing toward the center of the sphere. Figure 8 
gives an example of generated images for 16 views using 
this method.

The Fibonacci sphere samples (i.e. the view directions) 
are computed as follows. Let nv be the target number of 
views (i.e. of camera directions) and i ∈ [1, nv] be the 
index of the view for which we need to compute the cam-
era direction vdi . Let y = 1 − 2

i−1

nv−1
 vary from 1 to −1 . Let 

r =
√
1 − y2 be the radius at y. Let � be the golden angle, 

� = �(3 −
√
5) . The view direction vdi is defined as follows:

A special attention is also given to generate the up vectors 
vui (see Fig. 7). The up vector vui determines, for a given 
direction vdi , the rotation of the camera on the direction 
axis, and by side effect the final orientation of the model in 

(14)vdi =

⎡⎢⎢⎣

r ⋅ cos (� ⋅ i)

y

r ⋅ sin (� ⋅ i)

⎤⎥⎥⎦

the image. At the end, we obtain the camera matrix using 
the well-known LookAt function from OpenGL. For a given 
view direction vdi , the up vector ( vui ) is defined by Eq. 15.

In other terms, whenever view direction vui is not a north or 
south pole, we use y axis vector as the up vector vui , other-
wise we use the z axis vector as the up vector vdi . In practice 
we use a threshold of angle between vd and (0,1,0) due to 
limited floating point precision. Those values were selected 
so most of our models visually renders head at top of image 
when rendered by side or front views. The special case of 
poles is the simplest positive default value for vui.

Distortion features computation

The calculus of the distortion is based on the general mean 
squared error formula. Let Yi,j be a sample of an original 
image, Ŷi,j a sample of a distorted image and n the width 
of both images in pixels. The MSE for the two images is 
calculated as follows:

In the rest of this document, we adapt this formula to restrict 
the processing to parts where the mask generated from the 
reference and distorted models is equal to one. Let m be a 
matrix, of same size as references mask RefMask noted mr 
and distorted mask DisMask noted md, which contains for 
each pixel i, j a binary value set to 1 if a projection for this 
pixel exists and 0 otherwise. Let mv , mrv and mdv be the 
masks for the given view v.

Let w be the width of the buffers in pixels. The combined 
number of projected pixels ns of all the view directions nv 
for one frame is:

Color‑based features

Let cvij be a sample i, j of the color image/buffer of the ref-
erence model for view direction v, ĉvij a sample i, j of the 
color image/buffer of the distorted model for view direction 
v. The color MSE feature for the YUV images, noted fc , is 
calculated as follows on each color component c in [y, u, v]:

(15)vu =

{
(0, 0, 1), if (vdx, |vdy|, vdz) = (0, 1, 0)

(0, 1, 0), otherwise

(16)MSE =
1

n2

n−1∑
i=0

n−1∑
j=0

(Yi,j − Ŷi,j)

(17)mvij =

{
1, if mrvij + mdvij = 2

0, otherwise

(18)ns =

nv∑
v=1

w−1∑
i=0

w−1∑
j=0

mvij

Fig. 8   Example of color images generated for the basketball player 
using nv = 16 views

Fig. 9   Fibonacci sphere sampling. Left: nv = 16 samples with view 
directions. Center: nv = 128 samples with view directions. Right: 
nv = 1024 samples to better visualize the sampling distribution
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A summary color feature fyuv can also be computed, as com-
monly used in MPEG standards, as follows:

Geometry‑based features

Let dvij be a sample of the depth image/buffer of the refer-
ence model for view direction v, d̂vij a sample of the depth 
image/buffer of the distorted model for view direction v. Let 
sigDynamic be the dynamic of the depth signal initialized 
with the diagonal of the bounding box of both models. The 
depth MSE feature for the depth images/buffers, noted fd , is 
calculated as follows:

The depth re-normalization to 255 is used to get geometric 
MSEs comparable to the color ones.

The metric also reports the ratio of unmatched samples 
feature fru , which corresponds to holes and unmatched sil-
houettes, defined as follows:

Where the number of unmatched samples nus value is given 
by:

An additional feature frh provides the distinction between 
holes and silhouette with a minimum cost of additional pro-
cessing and few false positives. More precisely, it provides 
the percentage of pixels occupied by holes rh not taking into 
account silhouette differences. The silhouette unmatched 
ratio frs is computed by subtracting the percentage of holes 
from the percentage of unmatched pixels: frs = fru − frh . 
Indeed, the unmatched pixels correspond to the pixels where 
there is a projection for one model but not for the other. It 
thus corresponds to the silhouette distortion plus the even-
tual holes on the surface of the distorted model. To compute 
frh we render an additional pass for each view v of the dis-
torted model with back-face culling disabled where internal 
side of the model faces can thus be seen through potential 
holes and obtain an md′

v
ij mask. Let mhvij be the mask detect-

ing holes defined as follows:

(19)fc =
1

ns

nv∑
v=1

n−1∑
i=0

n−1∑
j=0

mvij ⋅ (cvij − ĉvij)
2

(20)fyuv =
6.fy + fu + fv

8

(21)fd =
1

ns

nv∑
v=1

n−1∑
i=0

n−1∑
j=0

mvij ⋅

((dvij − d̂vij) ⋅ 255)
2

sigDynamic

(22)fru =
nus

ns

(23)nus =

nv∑
v=1

w−1∑
i=0

w−1∑
j=0

{
1, if mrvij + mdvij = 1

0, otherwise

We then compute frh the ratio of pixels corresponding to 
holes as:

Temporal distortion features

We introduce temporal features as an extension of the 
features described above. The idea is to compare if the 
distorted signal evolves in the same manner as the refer-
ence signal over time. We evaluate the evolution of the 
signal between frame n and n − 1 , by computing color and 
depth difference between those frames. We then compute 
the distances between reference and distorted difference 
buffers by computing an MSE for each component (depth, 
y,u and v). The obtained MSEs are the temporal features. 
Details are provided below.

The first frame has no temporal features. Then starting 
from the second frame we first compute, for each pixel 
of color and depth buffers of all views, the differences 
between frame n and frame n − 1 . We store those results 
into intermediate buffers.

Reference color difference crd, with cr(n) the reference 
color of frame n:

Distorted color difference cdd, with cd(n) the distorted color 
of frame n:

Reference depth difference drd, with dr(n) the reference 
depth of frame n:

Distorted depth difference ddd, with dd(n) the distorted 
depth of frame n:

These formulas are used to compare if the distorted signal 
evolves in a similar manner as the reference signal over time. 
We compute the MSE between reference and distorted dif-
ference buffers to obtain our two temporal features, respec-
tively related to color and depth:

(24)mhvij =

{
1, if mrvij + md�

vij
= 2 and mdvij = 0

0, otherwise

(25)frh =
1

ns

nv∑
v=1

w−1∑
i=0

w−1∑
j=0

mhwij

(26)crdvij(n) = crvij(n) − crvij(n − 1)

(27)cddvij(n) = cdvij(n) − cdvij(n − 1)

(28)drdvij(n) = drvij(n) − drvij(n − 1)

(29)dddvij(n) = ddvij(n) − ddvij(n − 1)
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With tm the temporal mask with tmvij set to one if 
mvij of distorted(n), distorted(n − 1) , reference(n) and 
reference(n − 1) are all non null. Otherwise tmvij = 0.

Calculus of PSNRs

Having the different MSE features previously presented it 
is also possible to compute PSNR values since those can 
be more convenient for human interpretation. The PSNRk 
with k ∈ [d, y, u, v] is defined as follows:

Summary

To summarize, the IBSM metric features are the follow-
ing, their values are obtained by computing their mean for 
the entire sequence (Table 2).

(30)ftc =
1

ns

nv∑
v=1

n−1∑
i=0

n−1∑
j=0

tmvij ⋅ (crdvij − cddvij)
2

(31)ftd =
1

ns

nv∑
v=1

n−1∑
i=0

n−1∑
j=0

tmvij ⋅

((drdvij − dddvij) ⋅ 255)
2

sigDynamic

(32)PSNRk = 10 log10

(
2552

fk

)

Metric calibration

We present in this section the calibration process aim-
ing at selecting the most suitable parameters of IBSM for 
our context of volumetric videos representing character 
performances.

Sensitivity to size and number of views

Our objective is to study the behavior of the IBSM met-
ric when varying the generated image resolution w 
and the number of views nv. For this test we experi-
mented with the simple IBSM version, and ran the met-
ric on the first frame of all our models with varying 
Qp ∈ {8, 10, 12, 14, 16, 18, 20, 24, 28, 30} , metric parameters 
w ∈ {512, 1024, 2048, 4092} and nv ∈ {16, 18, 24, 32, 64} . 
Figure 10 shows the PSNRd obtained for the Mitch model by 
varying these parameters. These results are representative of 
the metric sensitivity for all the other sequences, all the other 
parameter variations and all the other features of IBSM. In 
this example we can see that resolutions of 512 and 1024 are 
usually unstable unless we use many views to compensate 
(see 1024 with 64 and 32 views). We can also see that 64 
views with 4K res is very stable and shall be considered the 
reference to compare with. By analyzing the results for all 
models, we extracted some parameters described in Table 3. 
In the context of the MPEG V-Mesh activity we proposed 
to use 16 views of 2K resolution as a good compromise 
between results stability and execution performance.

Table 2   The different IBSM metrics experimented. IBSM is the set of features used for MPEG V-Mesh standard. IBSM
h
 includes additional 

holes features and IBSM
ht

 adds temporal features on top of IBSM
h

Name fd fy fu fv frus frh ftd fty ftu ftv

IBSM ✓ ✓ ✓ ✓ ✓

IBSM
h

✓ ✓ ✓ ✓ ✓ ✓

IBSM
ht

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fig. 10   For each chart, the horizontal axis is Qp (the positions quantization bits) and the vertical axis is PSNRd(Qp,w, nv,Qt = 30) for the first 
frame of Mitch model using software rasterization
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Sensitivity to rig rotation

The purpose of this experimentation is to evaluate the impact 
of the orientation of the camera rig (set of view directions) 
on the results of IBSM(nv = 16,w = 2K) . We selected three 
orientations of the rig (defined by the polar angle and the 
azimuth angle of the rotation axis and the rotation magnitude 
around the center of the sequence bounding sphere) in [(0, 
0, 0), (0, 0, 90), (45, 45, 45)].

In a first test we did run the metric over the available 
sequences of the MPEG V-Mesh Anchor which are based 
on this paper sequences including several distortions such 
as decimation, geometry quantization, texture resizing and 
texture compression. In our observations we noticed that the 
rate point that shows higher discrepancies was R5 (highest 
rate), but we found that the largest difference between the 
different rig orientations is only 0.4 dB in a single frame, and 
in average is usually around 0.04 dB for geometry PSNRd.

We also tested the effect on our models including only 
texture compression based on the MPEG HM encoder. We 
observed that the averaged PSNR is very close for each rota-
tion. As an example, for basketball player at texture quan-
tization Qm = 42 , the maximum PSNRy difference is about 
0.08 dB. The reason is that the geometry plays an important 
role in the discrepancy due to silhouettes penalty, in this 
experiment the geometry is lossless, so the PSNR difference 
from different camera angles is smaller than for previous 
experiments.

To conclude, experimentation with the rig rotation did not 
emphasise strong discrepancies when using different orien-
tations. We thus recommend using the default parameters 
of the metric (no rotation) for the MPEG V-Mesh CfP and 
subsequent uses.

Results and evaluation

This section presents a comprehensive evaluation and com-
parison of the metrics presented above. For each of them, 
we adopt the scheme from PCQM: each metric is defined 

as a linear combination of its features; the optimal subset 
of features and their corresponding weights are obtained 
through an optimization computed by logistic regression. 
This protocol and the results are described below.

Performance evaluation measures

In order to evaluate the performance of objective metrics 
presented above, we compare the predicted quality scores 
given by these metrics to the ground truth subjective data 
from our subjective experiment. The standard performance 
evaluation measure consists in computing the Pearson Lin-
ear Correlation Coefficient (PLCC) and the Spearman Rank 
Order Correlation Coefficient (SROCC) between the met-
ric predictions and subjective scores (MOS). These indices 
measure, respectively, the accuracy and the monotonicity of 
the predictions. Note that the Pearson correlation (PLCC) is 
computed after a logistic regression which provides a non-
linear mapping between the objective and subjective scores. 
This allows the evaluation to take into account the saturation 
effects associated with human senses.

Metric optimization and evaluation protocol

Each metric involves a number of different features. All 
these features are not necessarily significant and some may 
be redundant. Moreover, integrating too many features may 
lead to over-fitting. Therefore, to select an optimal subset of 
features for each metric and fairly evaluate them, we adopt 
the cross-validation and feature selection protocol from [7, 
12], as follows: we split the dataset into a training set that 
serves to optimize feature weights using logistic regression 
and a test set used for testing the obtained metrics. The split-
ting is done according to the source models, ensuring that 
the test set does not contain any of the models used for train-
ing, regardless of the distortion. Given that there are 11 
source volumetric videos (VVs) in our dataset, we consider 
8 sources and their distortions out for training (i.e., a total of 
8 × 16 = 128 models), and the remaining 48 VVs (from 3 
sources) for testing. We repeat this operation using the (
11

8

)
= 165 possible splittings, and report the average 

performance.
For each metric, considering that we have n features, 

there are 2n−1 possible combinations of features. We exhaus-
tively search through all possible combinations of features, 
and select the feature subset that generates the best average 
performance over all the test sets (165 folds) in terms of the 
mean of PLCC and SROCC.

Table 3   Expert classification of nv and w parameters according to 
experimentation results. See Sect.  6.3 for the specifications of the 
hardware used for the tests

nv w Quality/stability Seconds per frame

64 4K Reference, “perfect” up to 50
32 2K Very stable 6 to 10
18 2K Stable 4 to 6
16 2K Stable 3.5 to 5
32 1K Acceptable 3 to 4
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Performance of the metrics and comparisons

Table 4 summarizes the Pearson and Spearman correlations 
obtained for the PCQM, PCC and IBSM metrics, with vary-
ing parameters, after the learning approach described above. 
The standard deviations of the Pearson and Spearman cor-
relations are also reported. The lower the standard deviation, 
the more confidence we can have in the learning results. It 
means that each splitting leads to similar results. The execu-
tion times for a sequence of 300 frames are reported in sec-
onds. All the experiments were run on an Intel(R) Xeon(R) 
CPU E5-2687W v3 with 20 cores cadenced at 3.10 GHz 
and 32 GB of RAM. PCC and PCQM benefit from a paral-
lel implementation leveraging this multi-core architecture, 
whereas IBSM uses a single-threaded implementation. This 
timing information is important in the MPEG context since 
enhancing a codec prototype requires validation with many 
executions of the metric over all the test contents, which can 
quickly become a limitation if execution time is too impor-
tant. Finally, the weights of the different features obtained by 
the learning (averaged over all splittings) are also reported.

From the results of Table 4 one can see that the IBSMht 
outperforms all the other metrics and parameter configu-
rations, in terms of Pearson/Spearman correlation with 
reasonable execution times. One can also see that with 
the range of distortions used in the dataset, using the 
IBSMht(nv = 16,w = 512) configuration provide similar 
results as more costly configurations.

Our dataset is particularly challenging especially because 
of the triangle hole distortions. If we remove the triangle 
holes distortion from the dataset and re-run the learning/
testing protocol we obtain the results presented in Table 5. 
In this case the PCQM is providing best results in terms of 
correlation, but at the cost of impracticable execution times. 
We can also conclude that PCQM and PCC are very weak at 
handling hole distortions. Finally, we see that the PCC and 
IBSM metrics produce quite similar correlation results in the 
case of no holes in the dataset. Still, IBSM produces good 
correlated results with the best execution time.

Conclusion

In this work, we designed and produced a dataset of 176 
subjectively-rated volumetric videos (VVs), represented as 
sequences of textured meshes. This dataset was created by 
introducing distortions on 11 pristine source VVs. Subjec-
tive scores were obtained through a subjective study based 
on the DSIS protocol and gathering 5896 subjective scores. 
This dataset allowed us to benchmark and calibrate several 
objective quality metrics: two model-based metrics (PCC 
and PCQM) and one image base approach (IBSM) for which 
we introduced two new features that specifically detect holes 

and temporal defects. Tested metrics are defined as linear 
combinations of several features. To optimize and fairly 
compare them, we trained them and selected the optimal 
subset of features using cross-validation on our dataset.

Extensive evaluations show that the image-based metric 
IBSM offers the best results, especially thanks to our newly 
introduced features for hole detection and temporal effect 
modeling. Moreover, it is the fastest to compute in less than 
370 s per VV of 300 frames. Much further research remains 
to be done on the quality assessment of volumetric videos. In 
the near future, we plan to further explore temporal pooling 
and improve the modeling of temporal distortions. For this 
task, we should take inspiration from the recent 2D video 
quality metrics like VMAF to extend the IBSM metric. Inte-
grating an attention model, e.g., for increasing the perceptual 
importance of salient regions like faces and hands, is also 
a perspective of great interest. Finally, proposing a large 
dataset with mixed distortions (like did Nehmé et al. [11] 
for static 3D meshes) would be very beneficial for the volu-
metric video quality assessment community.
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