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On the Efficiency of Image Metrics for
Evaluating the Visual Quality of 3D Models

Guillaume Lavoué, Senior, IEEE, Mohamed Chaker Larabi, Senior, IEEE, and Libor Váša

Abstract—3D meshes are deployed in a wide range of application processes (e.g. transmission, compression, simplification,
watermarking and so on) which inevitably introduce geometric distortions that may alter the visual quality of the rendered data. Hence,
efficient model-based perceptual metrics, operating on the geometry of the meshes being compared, have been recently introduced to
control and predict these visual artifacts. However, since the 3D models are ultimately visualized on 2D screens, it seems legitimate to
use images of the models (i.e. snapshots from different viewpoints) to evaluate their visual fidelity. In this work we investigate the use of
image metrics to assess the visual quality of 3D models. For this goal, we conduct a wide-ranging study involving several 2D metrics,
rendering algorithms, lighting conditions and pooling algorithms, as well as several mean opinion score databases. The collected data
allow (1) to determine the best set of parameters to use for this image-based quality assessment approach and (2) to compare this
approach to the best performing model-based metrics and determine for which use-case they are respectively adapted. We conclude
by exploring several applications that illustrate the benefits of image-based quality assessment.

Index Terms—Computer Graphics, Image Quality Assessment, 3D Mesh Visual Quality Assessment, Perceptual metrics.
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1 INTRODUCTION

THREE-dimensional graphical data, commonly repre-
sented using triangular meshes, are now common-

place in many fields of industry including digital en-
tertainment, mechanical engineering, cultural heritage,
scientific visualization, medical imaging and architec-
ture. Moreover, use of 3D data is bound to increase for
the general public with the proliferation of intuitive 3D
sculpting and modeling tools, affordable 3D printers and
community model repositories. 3D data will probably
also play a significant role in the future evolution of the
Web with the development of Web3D technologies (We-
bGL, X3D and so on). As a result of this increasing and
heterogeneous use, 3D meshes are deployed in a wide
range of application processes which include transmis-
sion, compression, simplification, remeshing, filtering,
watermarking and so on. These operations inevitably
introduce artefacts which often alter the visual quality
of the rendered data.
In order to deliver satisfactory Quality of Experience to
application users, it is critical to be able to evaluate the
quality of the distorted 3D data, i.e. the degree of annoy-
ance caused by the artifacts. Simple geometric metrics,
such as Hausdorff distance and root mean squared error
(RMS), are only weakly correlated with human vision,
hence mesh visual quality (MVQ) metrics have been
recently studied by the scientific community [1], [2];
their goal is to predict the perceived visual fidelity of
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distorted 3D data with respect to the original. These
metrics operate on the geometry of the meshes being
compared; they are referred to as model-based metrics in
the rest of the paper.
Since the 3D models are ultimately visualized on 2D
screens, 2D snapshots of the models can also be con-
sidered to evaluate their visual fidelity, in the manner of
Lindstrom and Turk [3] for driving simplification. Such
image-based approaches could be particularly efficient
since many successful image quality assessment (IQA)
metrics have been introduced in the last decade [4]. This
paper attempts to answer the following questions: Which
is the best method for predicting 3D mesh visual fidelity?
image-based or model-based metrics?
Ten years ago, Rogowitz and Rushmeier [5] and Watson
et al. [6] attempted to answer this question, followed
more recently by Cleju and Saupe [7]. While these prior
works provide interesting insights regarding this ques-
tion, they are limited to the evaluation of a single type
of distortion (only simplification), and test a very small
number of metrics (mostly the simplest ones: Hausdorff,
2D/3D mean and root mean squared distances) and,
more generally, they only consider a small number
of variables in their protocols (i.e. lighting condition,
shaders, number of views, etc). These limitations lead
to somewhat contradictory conclusions.
Our goal is to conduct a complete and comprehensive
study that aims to provide conclusive results regarding
this issue. This study is complex to carry out since a
large number of parameters are involved: which 2D
metrics offer optimum performance? how to choose the
2D views of the 3D models to use in these metrics? how
to combine the quality scores from different views into a
single one for the 3D model? Hence, our study involves
a large number of variables: we have considered 7 image
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metrics, 2 rendering algorithms, 4 lighting conditions, 5
ways of combining image metric results and 4 existing
3D object databases with mean opinion scores for the
evaluation. Note that since this study concerns the evalu-
ation of geometric artefacts only, we consider simple ren-
dering styles without texture or complex shader. In total
we have generated and analyzed around 60,000 images
for this study. We have conducted a statistical analysis of
the collected results allowing us to determine the best set
of parameters and image metrics to use for image-based
quality assessment. We then compare this approach to
the best performing model-based metrics and determine
for which use-case they are respectively best suited.
Finally, we explore several applications where image-
based quality assessment is particularly well-suited.
The rest of this paper is organized as follows: section 2
describes related work about visual quality assessment
of 3D graphics. Then, sections 3 and 4 present, respec-
tively, the image metrics and the rendering protocols that
we consider in our study. Section 5 provides information
on the subjective mean opinion score databases used for
our evaluation and section 6 details the results of our
study. Finally, section 7 illustrates benefits and applica-
tions of image-based metrics.

Fig. 1. Illustration of model-based quality metrics operat-
ing directly on geometry (top) and image-based quality
metrics operating on 2D snapshots (bottom).

2 RELATED WORK ON VISUAL QUALITY AS-
SESSMENT OF GRAPHICAL DATA

In the field of 2D image processing, the research into ob-
jective image quality assessment metrics is highly devel-
oped [4]. Pioneer works (VDP [8], Sarnoff VDM [9]) were
introduced twenty years ago and hundreds of metrics

have been proposed since then, such as the often-cited
SSIM (Structural SIMilarity) index, introduced by Wang
and Bovik [10] which exploits an important aspect of
human visual system (HVS) perception linked to struc-
tural information. With a more theoretical definition, the
VIF [11] has been developed with the aim to quantify
loss of image information due to the distortion process.
More recently, the HDR-VDP2 metric [12] offers a visual
difference predictor suited for any range of luminance.
We refer the reader to section 3 which describes some of
the most relevant image metrics, used in our study, in
detail.

In comparison with this field of image quality
assessment, the visual quality of 3D shapes has as yet
been far less investigated. Two kinds of approaches are
available for this task: model-based and image-based
approaches. Model-based approaches operate directly
on the geometry and/or texture of the meshes being
compared, while image-based approaches considers
rendered images of the 3D models.

2.1 Model-based quality metrics

In the field of computer graphics, the first attempts to
evaluate the visual fidelity of 3D objects were simple
geometric distances, mainly used for driving mesh
simplification [13]. Cignoni et al. [14] provided the
metro tool with an implementation of maximum (i.e.
Hausdorff), root mean squared (RMS) and mean geometric
distances between 3D models. However, these simple
geometric measurements represent a very poor predictor
of visual fidelity, as demonstrated in several studies [1],
[15]. Hence, researchers have introduced perceptually-
motivated metrics. These full reference metrics compare
the distorted and original 3D models and compute a
score reflecting visual fidelity. For example, Karni and
Gotsman [16] proposed combining the RMS geometric
distance between corresponding vertices with the RMS
distance of their Laplacian coordinates (which reflect
the degree of surface smoothness)). Lavoué [17] and
Torkhani et al. [18] proposed metrics based on local
differences in curvature statistics, while Váša and Rus
[15] considered the dihedral angle differences. These
metrics consider local variations in attribute values at
vertex or edge level, which are then pooled into a global
score. In contrast, Corsini et al. [19] and Wang et al. [20]
compute one global roughness value per 3D model and
then derive a simple global roughness difference. For
the roughness calculation, they consider, respectively,
dihedral angles and variance of the geometric Laplacian
[19] and the Laplacian of the Gaussian curvature [20].
Some authors also proposed quality assessment metrics
for textured 3D meshes [21], [22], which integrate both
texture and geometry information. A very recent review
[2] details these works and compares their performance
regarding their correlation with mean opinion scores
derived from subjective rating experiments; this study
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shows that MSDM2 [17], FMPD [20] and DAME [15]
are excellent predictors of visual quality.

2.2 Image-based quality metrics
Apart from these model-based quality metrics, operating
on 3D geometry, many researchers have used 2D image
metrics to evaluate the visual quality of 3D models,
mainly in the context of simplification and LoD
management for rendering. Bolin and Meyer [23]
introduced a simplified version of the Sarnoff VDM [9]
to optimize sampling for ray-tracing algorithms. Qu and
Meyer [24] considered the visual masking properties of
2D texture maps to drive simplification and remeshing
of textured meshes. They evaluate the potential masking
effect of surface signals (textures, bump maps, etc) using
the 2D Sarnoff VDM [9]. Some authors considered 2D
models of the contrast sensitivity function (CSF) [25],
[26], [27] to drive simplification or LoD selection.
Another example is Zhu et al. [28], who studied the
relationship between the viewing distance and the
perceptibility of model details using image metrics
(VDP [8] and SSIM [10]) for optimal design of discrete
LoD for visualization of complex 3D building facades.
While most of these works are view-dependent, 2D
image metrics can be used in a view independent
way by evaluating them on a set of snapshots of
the 3D objects, taken from different viewpoints. This
kind of image-based view-independent approach was
considered by Lindstrom and Turk [3], who evaluate
the impact of simplification using a fast image quality
metric (RMS error) computed on snapshots taken from
20 different camera positions regularly sampled on a
bounding sphere.

2.3 Comparing the two approaches
An important question for the future of 3D graphics
quality assessment and, by extension, for the whole
computer graphics community is: what is the best way
to evaluate the visual quality of 3D graphical objects, image-
based or model-based metrics? As pointed out in [3], the
main benefit of using image-based metrics to evaluate
the visual quality of 3D objects is that the complex
interactions between the various properties involved in
appearance (geometry, texture, normals) are naturally
handled, avoiding the problem of how to combine and
weigh them. On the other hand, Rogowitz and Rush-
meier [5] advocate model-based metrics since they show
that 2D judgments do not provide a good predictor of
3D object quality, implying that the quality of 3D objects
cannot be correctly predicted by the quality of static
2D projections. To demonstrate this, the authors have
conducted two subjective rating experiments; in the first,
the observers rated the quality of 2D static images of
simplified 3D objects, while in the second they rated an
animated sequence of these images, showing a rotation

of the 3D objects. Results show that (1) the lighting
conditions strongly influence the perceived quality and
(2) the observers perceive differently the quality of the
3D objects according to whether they observe still im-
ages or animations. Watson et al. [6] also compared the
performance of several image-based (Bolin-Meyer [23]
and Mean Squared Error) and model-based (mean, max
and RMS) metrics. They conducted several subjective
experiments to study the visual fidelity of simplified 3D
objects, including perceived quality rating. Their results
showed a good performance of 2D metrics (Bolin-Meyer
[23] and MSE) as well as the mean 3D geometric distance
as predictor of the perceived quality. The main limitation
of this study is that the authors only considered a
single view of the 3D models. More recently, Cleju and
Saupe [7] designed another subjective experiment for
evaluating the perceived visual quality of simplified 3D
models and found that image-based metrics generally
perform better than model-based metrics. In particular,
they found that 2D mean squared error and SSIM pro-
vide good results, whereas the performance of SSIM is
more sensitive to the 3D model type. For model-based
metrics, like Watson et al. [6], they showed that the mean
geometric distance performs better than RMS, which is
better than Hausdorff.
While the works mentioned above provide interesting
insights into the relative accuracy of image-based and
model-based metrics, they possess some serious limita-
tions:
• Only a single type of distortion is evaluated/rated

(only simplification).
• As the image-based and model-based metrics com-

pared are quite simple, a lot of new and more
efficient works have been introduced since.

• Accuracy of visual quality prediction is evaluated
based on the results of a single subjective experi-
ment.

• A limited number of variables are tested, whereas
many parameters may influence the image-based
results (number of views, rendering algorithm,
method of combining results for each view, lighting
conditions).

Hence, we present a comprehensive study that com-
pares the results of the most recent and efficient image
metrics (see section 3) with the best model-based metrics
(presented above). In order to take into account all
the parameters involved we consider different lighting
conditions (section 4.1), rendering protocols (section 4.2),
and different ways of combining the image metric values
(section 4.3). Metrics performance is evaluated on several
databases (section 5) containing different 3D models
subject to different types of distortions, and associated
with mean opinion scores.

3 IMAGE QUALITY METRICS

Over the last decade, the field of image quality as-
sessment has been extremely active and hundreds of
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related works can be found. This is due to the scien-
tific community’s interest in acquiring tools for accurate
measurement of the fidelity of a given algorithm.
With the aim of conducting the present study, we did
our utmost to select metrics either known for their
efficiency or for their widespread use in the community.
To date, several reviews, surveys and chapters have been
published regarding image quality metrics for different
application fields [29], [30], [31], [32], [33]. When brows-
ing the literature, it can be noticed that some metrics,
namely MSE, PSNR, SSIM [10], VIF [11], are often used
as anchors to demonstrate the efficiency of a proposed
metric. For this study, we opted for signal-based, struc-
tural similarity, feature similarity, information fidelity
metrics in addition to a perceptually weighted metric
and a visual difference predictor.

3.1 Signal-based image metrics: MSE and PSNR
The Peak Signal-to-Noise Ratio (PSNR) is undoubtedly
the most widely used metric to date even with the
advent of an impressive number of metrics. It owes its
popularity mainly to the simplicity of its description,
its ease of understanding and low complexity. PSNR,
which originates from the signal processing community,
aims at assessing fidelity thanks to the ratio between the
maximum possible power of a signal and the power of
corrupting noise affecting it.

PSNR is expressed in terms of the logarithmic decibel
(dB) scale based on the mean square error (MSE) as
described below.

PSNR = 10 log10
I2max
MSE

(1)

where Imax is the maximum possible value of a pixel
(255 for 8-bit images).

There is no standard formulation of PSNR for multi-
channel (e.g. RGB) or multi-view (e.g. stereoscopic) im-
ages. Several authors use either an average of MSEs over
all channels / views or an average of individual PSNRs.

Typical values of PSNR for lossy compression are be-
tween 30 and 50 dB where higher values indicate better
fidelity. However, care must be taken when interpreting
results because their validity greatly depends on the
content, the compared algorithms and the spatial or
spectral distribution of noise [34]. Therefore, perceptual
validity of PSNR is very disputable and several studies
demonstrated its inefficiency on specific impairments.

3.2 MS-SSIM: Multi-Scale Structural Similarity Index
Metric
The Structural Similarity Index Metric (SSIM) proposed
by Wang et al. [10] assumed an important position in
the quality evaluation community and beyond, thanks
to the very interesting tradeoff between complexity and
correlation with human judgment. However, it is quite
difficult to achieve user unanimity when dealing with
this metric. Indeed, it is somehow difficult to interpret

results when two impaired images are close in terms of
quality leading to similar conclusions regarding PSNR as
to usability. Moreover, as reported by the authors them-
selves, SSIM is a single-scale metric while the viewing
conditions are variable. To cope with this limitation, an
extension of this metric called Multi-Scale SSIM (MS-
SSIM) has been proposed [35]. The extension inherits
all the features introduced in the single-scale version. To
avoid redundancy, we focused here only on the extended
version of the structural similarity.

The MS-SSIM metric takes as input the reference and
impaired images and compares two features called con-
trast c and structure s defined by:

c(I, I ′) =
2σIσI′ + c1
σ2
I + σ2

I′ + c1
, (2)

s(I, I ′) =
σII′ + c2

σI + σI′ + c2
, (3)

where σ∗ and σ∗∗ represent the variance and the
covariance of luminance, respectively. c∗ are constants
used for computation stability.

This scale 1 processing is iterated at every scale and
moves from scale to scale are performed by applying a
low-pass filter and downsampling the filtered image by a
factor of 2 until scale M . While contrast and structure are
computed at each scale, another feature called luminance
l is computed only on the smallest scale (M ) as described
below:

lM (I, I ′) =
2µIµI′ + c3
µ2
I + µ2

I′ + c3
. (4)

where µ∗ is the luminance mean. The MS-SSIM score
is obtained by computing and combining the aforemen-
tioned features on local image patches i at different
scales j, as described by equation 5.

MS−SSIMi = [lM (Ii, I
′
i)]
αM

M∏
j=1

[c(Ij,i, I
′
j,i)]

βj [s(Ij,i, I
′
j,i)]

γj

(5)
Exponents αM , βj and γj are used to adjust the rela-

tive importance of the different features. The weighting
values are obtained by means of a psycho-physical study
conducted with a panel of ten observers. These local
scores are then averaged into a single score per image.

3.3 FSIM: Feature Similarity Index Metric
Zhang et al. proposed to exploit two important features
of the HVS, namely phase congruency (PC) and gra-
dient magnitude (GM) [36]. The former, PC, originates
from the idea that features are considered as notice-
able at points where the phase is maximal for Fourier
components. This is confirmed by physiological and
psychophysical studies on how the mammalian visual
system detects and identifies salient features in an image.
The latter feature, i.e. GM, is used to cope with the fact
that PC is contrast invariant while the HVS is sensitive
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to image local contrast and this important feature has to
be taken into account.

Based on the above description, Zhang et al. formu-
lated their proposed metric, based on phase congruency
and gradient magnitude, as given by equation 6.

FSIM =

∑
i Si · PCmaxi∑
i PC

max
i

(6)

where
∑
i represents a summation over local im-

age patches i; PCmaxi = max(PCIi , PCI′i) and Si =

[SPCi
]α[SGMi

]β is the weighted combination of PC and
GM similarities between the original image patch Ii and
the impaired one I ′i . While α and β may be used to give
more importance to one feature or another, the author
chose to give them equal importance. Similarity between
PCs (SPC) and GMs (SGM ) is expressed as follows:

SPC =
2PCI · PCI′ + c1
PC2

I + PC2
I′ + c1

, (7)

SGM =
2GMI ·GMI′ + c2
GM2

I +GM2
I′ + c2

. (8)

Constants c∗ are used for computation stability.

3.4 Visual information fidelity: VIF
Based on the information theory, Sheikh et al. proposed
a visual fidelity metric for image quality assessment [11].
It is seen as a measurement used to quantify the level
of information that can be extracted by the brain from
a given scene. This metric thus relies on natural scene
statistics (NSS), HVS properties and a distortion model.
This metric comes from the extension of a previous work
by the same authors [37] in which they proposed an
information theoretic criterion for image fidelity based
on NSS.

The assumption behind the VIF metric is that the ran-
dom field (RF) from a wavelet decomposition subband
of an image, RFI′ , can be defined as:

RFI′ = G.RFI + V (9)

where RFI is the random field of the subband from
the reference image, G is a deterministic scale gain field,
and V is a stationary additive zero-mean Gaussian noise
random field.

We have chosen to shorten the description of this
metric because its mathematic demonstration is long and
is difficult to summarize. The reader can refer to papers
[11], [37] for a complete description and demonstration.

3.5 Information weighted SSIM: IW-SSIM
Several works have been proposed to improve compu-
tational metrics such as MSE, PSNR or SSIM by adding
a weighting/pooling stage that makes behavior closer
to human judgement. Information weighted SSIM intro-
duced by Wang et al. [38] is one of them and is based on
the information theory under the assumption that image

components containing more information would attract
more visual attention. Based on the multi-scale extension
of SSIM including the weighting factors β∗, it can be
expressed as follows:

IW−SSIM =

M∏
j=1

(IW−SSIMj)
βj . (10)

By considering Ij,i and I ′j,i the ith local image patches
at the jth scale, and Nj the number of windows at a
given scale, the jth scale IW-SSIM is defined by (see
section 3.2 for the definition of the different features),

IW−SSIMj =

∑
i wj,ic(Ij,i, I

′
j,i)s(Ij,i, I

′
j,i)∑

i wj,i
, (11)

when j < M and,

IW−SSIMj =
1

Nj

∑
i

l(Ij,i, I
′
j,i)c(Ij,i, I

′
j,i)s(Ij,i, I

′
j,i),

(12)
when j = M . wj,i is the information content weight

obtained at the ith spatial location in the jth scale. These
weights are derived by modeling the distortion channel,
the perceptual channel and by considering the mutual
information between the images. For more information
on how to derive the aforementioned weights from the
information theory, the reader is referred to the original
paper [38].

3.6 Visual difference predictor (VDP): HDR-VDP-2

The VDP metric introduced by Scott Daly [8] using an
interesting HVS simulation, is only applicable to low-
dynamic range (LDR) images and its complexity is a
real issue. An extension of VDP to higher dynamic
ranges, called HDR-VDP, has been proposed by Mantiuk
et al. [39], [40]. While it operates on the full range of
luminance, it cannot be applied to strongly distorted
images, since it is considered as a near-threshold metric.

Despite its name, HDR-VDP-2 is considered to be a
breakthrough solution in comparison to the aforemen-
tioned metrics [12]. It provides three types of maps and
relies on both a comprehensive model of HVS character-
istics and a sound extension to a broad range of viewing
conditions. Hence, the visual difference predictor models
the optical and retinal pathway taking into account 1)
the light scattering occurring at various levels, especially
with HDR scenes, and 2) the spectral sensitivity of rods
and LMS cones in addition to the luminance masking
effect due to their regulation of the incoming light.
At a higher level of the HVS, HDR-VDP-2 considers
the overall noise affecting each subband of the multi-
scale decomposition as an accumulation of: 1) a signal
independent noise obtained from the contrast sensitivity
function measurements, and 2) a signal dependent noise
related to contrast masking.
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In this paper, we used the output Q described by
equation 13 derived from the pooling strategy proposed
by the authors.

Q =
1

F.O

F∑
f=1

O∑
o=1

wf log

(
1

I

I∑
i=1

D2[f, o](i) + ε

)
, (13)

where i is the pixel index and I is their total number.
D[f, o] is the noise-normalized signal difference for the
f th spatial frequency band and oth orientation, wf is
the per-band weighting and ε = 10−5 is used to avoid
computation instabilities.

4 PARAMETERS OF THE STUDY

In the image-based comparison scenario, the resulting
correlation with mean opinion scores (MOS) (i.e. the vi-
sual fidelity prediction performance) may be influenced
by several parameters, such as the rendering algorithm
used, the number of 2D views or the lighting conditions.
The goal of the present study is to evaluate the impact of
these parameters on the performance of the image-based
metric and to provide the set of values achieving the
highest possible correlation with the MOS over all the
available databases. Our study considers a set of cameras
uniformly distributed around the object with different
ways of combining their results, different positions of
light sources and different means of computing mesh
normals for rendering. The following subsections present
details on these parameters.

4.1 Generation of 2D views and lighting conditions
In all our experiments we used 42 cameras placed uni-
formly around the object using a one-level dyadic split
of a regular icosahedron. Each view contained a single
white directional light source, fixed with respect to the
camera. The used light directions were front ([0, 0,−1]),
top ([0,−1, 0]) and top-right ([1,−1,−1]). Apart from
these three possibilities, we also evaluated the perfor-
mance of the metrics using all three conditions together
(i.e we consider the mean of quality scores from the
three light directions). Figure 2 illustrates some lighting
conditions.

4.2 Image rendering protocols
Since a particular choice of a rendering protocol may
emphasize some particular artifacts, it seems reason-
able to expect that the best results will be obtained by
replicating the rendering scenario used to gather the
subjective data. On the other hand, the intrinsic visual
quality of a mesh is intuitively independent from the
used rendering parameters. In most of the databases
of subjective experiments, similar conditions were used
to render the images that were presented to the users,
although there were some minor differences. Generally,
we follow the common scenario used to gather sub-
jective data. We have thus chosen to use a Phong-like

local illumination shading model, with no specular and
ambient reflection. We render the objects with uniform
white surface reflectivity. Our rendering algorithm does
not compute shadows in any form, and does not involve
any kind of global illumination or texture. The resolution
of the rendered images is 1024× 1024.
None of the subjective experiments in the databases used
normals that were explicitly stored, normals were always
computed from the meshes. Some of the experiments
used the standard DirectX routine for normal compu-
tation (referred to as n0 below). In our experiments, this
method has produced some small rendering artifacts, es-
pecially in the vicinity of small and elongated triangles.
Other possibility is to compute the normals by averaging
the normals of triangles incident each vertex (method
n1). While this approach produced artifact-free results,
it is questionable whether or not it justifies applying it
instead of the method used in the user studies. We have
therefore decided to perform the experiments with both
algorithms. Figure 2 illustrates the effects of these two
normal computation methods.
These rendering parameters may seem naive respect to
modern rendering pipelines. However, when evaluating
the quality of a 3D model, one generally does not know
the future complex shading or lighting which will be
used in the real use case of this model. Hence, the
most convenient approach for estimating this visual
quality using an image-metric is to consider the simplest
possible rendering.

Fig. 2. Different rendered views of the 3D Bimba model
with noise (object from the Masking Database [41]). From
left to right: front lighting and n0 normal computation, front
lighting and n1 normal computation, top-right lighting
and n1 normal computation, top lighting and n1 normal
computation

4.3 Pooling algorithms
For a given pair of 3D objects to compare, we apply
2D metrics on the 42 pairs of corresponding views
(for a given lighting condition and normal computation
parameter. However since we have to derive one single
visual distortion score from this set of 2D measurements,
we need some pooling algorithms. We propose using
the Minkowski norm, very popular for spatial pooling in
quality metrics, defined as follows:

dmod =

(
1

42

42∑
i=1

∣∣dimi ∣∣p
) 1

p

(14)
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where dmod is the final 3D distortion score for the pair
of 3D models and dimi the distortion score obtained for
the ith pair of images. In our study we consider p = 1,
p = 2, p = 3 and p = ∞ (i.e. we consider the maximum
image distortion score).
The views that we consider for applying the 2D metrics
are regularly sampled over a bounding sphere. How-
ever some views may be far more visually important
than others and thus should have more weight on the
distortion/fidelity prediction. To test this hypothesis we
also considered a weighted pooling (noted as pw in the
experiment section):

dmod =

∑42
i=1 wid

im
i∑42

i=1 wi
(15)

where wi is the weight assigned to the ith pair of images.
To compute these weights, we rely on a recent work
on automatic viewpoint preference selection [42]. The
authors determine, using learning, a set of attributes
highly relevant for predicting the best viewpoint of a
given 3D model. We use the most efficient attribute,
which is surface visibility, introduced by Plemenos and
Benayada [43]. It refers to the ratio of visible surface in
the view, to the total surface of the 3D object. In practice,
to compare a distorted model with a reference one, we
compute these weights on the views of the reference
model. Figure 3 illustrates these weights for different
views of the Bimba 3D model.

Fig. 3. Different rendered views of the 3D Bimba model
with noise (object from the Masking Database [41]). From
left to right, viewpoint importance weights are equal to 1,
0.65 and 0.47.

5 MEAN OPINION SCORE DATABASES

In order to assess and compare the performance of
quality assessment metrics (image-based and model-
based), we compute correlation of metric predictions
with average human opinion. Human opinion is
represented by mean opinion scores (MOS) obtained
through subjective rating experiments. To the best of our
knowledge, there are currently four publicly-available
subject-rated 3D model databases, all of which we
consider in our comparisons. These databases, detailed
below, contain different categories of distorted and
reference objects, as well as the corresponding mean
opinion scores reflecting their qualities collected from

human subjects.

The LIRIS/EPFL General-Purpose Database [44] was
created at the EPFL, Switzerland. It contains 88 models
with between 40K and 50K vertices generated from
4 reference objects (Armadillo, Dyno, Venus and
RockerArm). Two types of distortion (noise addition
and smoothing) are applied with different strengths
and at four locations: uniformly (on the whole object),
on smooth areas, on rough areas and on intermediate
areas. These distortions aim at simulating the visual
impairment of generic geometric processing operations
(compression, watermarking, filtering). 12 observers
participated in the subjective evaluation; they were
asked to provide a score reflecting the degree of
perceived distortion between 0 (identical to the original)
and 10 (worst case).

The LIRIS Masking Database [41] was created at the
Université of Lyon, France. It contains 26 models with
between 9K and 40K vertices generated from 4 reference
objects (Armadillo, Bimba, Dyno and Lion) specifically
chosen because they contain large smooth and rough
areas. The only distortion is random noise addition,
applied at three strengths. However, it is applied either
on smooth or rough regions. The specific goal of this
database was to evaluate the visual masking effect.
It turns out that the noise is indeed far less visible
on rough regions. Hence, metrics should follow this
perceptual mechanism. 11 observers participated in the
subjective evaluation.

The IEETA Simplification Database [45] was created at the
University of Aveiro, Portugal. It contains 30 models
generated from 5 reference objects (Bunny, Foot, Head,
Lung and Strange), with a complexity ranging from
2K to 25K vertices. The reference models have been
simplified using three different methods at two levels
(20% and 50% of the original number of faces). 65
observers participated in the subjective evaluation; they
were asked to provide a score from 1 (very bad) to 5
(very good).

The UWB Compression Database [15] was created at the
University of West Bohemia, Czech Republic. It contains
68 models created from 5 reference meshes. For each
reference mesh, all the model versions share the connec-
tivity of the original. The main purpose of the database
is to evaluate different kinds of artifacts introduced by
different compression algorithms. In contrast to previous
experiments, instead of scoring, a binary forced choice
paradigm has been adopted when collecting the user
opinions. This meant that for each of the 69 users in
the test, triplets of meshes were presented, with one
mesh designated as original, and two randomly chosen
distorted versions. The users were asked to select the
preferred version of the two distorted ones. The collected
data are available both in terms of user choices and in
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scores computed from the choices in a manner described
in [15].

6 RESULTS AND EVALUATION

In this section, we first provide a statistical and quan-
titative analysis of the effect of the different parameters
involved in image-based quality assessment. This study
provides useful recommendations concerning the best
parameters to use in order to obtain optimal image-based
metrics. We then provide a comprehensive comparison
of these optimal image-based metrics with the best state-
of-the-art model-based metrics.

6.1 Analysis of the parameters
After presenting the methodology of our statistical anal-
ysis, the following subsections evaluate the impact of
each image generation parameter on the performance of
image-based quality assessment.

6.1.1 Data and methodology
Our study shares many similarities with full factorial
experiments [46] (also called fully crossed experiments)
considerably used in statistics to study the effect of
different factors on a response variable. In this case
we consider four factors: the metric (7 possible values),
the lighting (4 possible values), the pooling (5 possible
values) and the rendering (2 possible values). For each
of the 7 × 4 × 5 × 2 = 280 possible combinations, we
obtain one metric and thus one visual fidelity value for
a given pair of 3D models compared. Our goal is to find,
for each factor, the values providing the best results (i.e.
the best metrics, lighting conditions, etc). In practice, for
each of the 280 possible combinations of parameters, we
compute the Spearman’s rank order correlation between
the obtained fidelity scores and the mean opinion scores
over the objects of each of the four databases presented
in the previous section. For each database, we consider
two response variables that correspond to two scenarios:

1) The Spearman correlation computed over the
whole set of 3D models. Note that the compression
database is not considered here because the data
acquisition procedure used to obtain this database
does not capture inter-model relations.

2) The Spearman correlation is computed separately
for each class of objects (a class of objects is a
set of distorted versions of a single original). The
correlations are then averaged. This corresponds to
an easier scenario for the metrics, since they do
not have to rank different objects with different
distortions, but only evaluate different distortions
applied to a single object.

We thus have three Spearman coefficients for each
parameter combination in the case of scenario-1
(one per database, the compression database is not
suitable for this scenario), and four in the case of
scenario-2. We consider the Spearman correlation as

our performance indicator since it is widely used to
assess the performance of quality assessment metrics
for image, video and graphics.

In practice, for a given factor associated with n pos-
sible values, we have n sets of 280×3

n (in the case of
scenario-1) or 280×4

n (in the case of scenario-2) paired
Spearman coefficients that we can analyze and com-
pare. These sets of coefficients are paired, since they
correspond to the same combinations of the remaining
factor’s values. To estimate the effect of a given factor
on objective metric performance, we conduct pairwise
comparisons of each of its values with the others (i.e.
n(n−1)

2 comparisons). Since the corresponding sets of
Spearman coefficients are paired, we can conduct a more
thorough analysis than simple mean or median com-
parison. To assess the superiority of some factor values
among others, we first consider a statistical significance
test. Usually, a paired Student’s t-test is used for this
kind of analysis, however our data are not physical or
experimental measurements but correlations and thus
do not satisfy the normality assumption. Hence, we
consider instead the non-parametric equivalent which
is the Wilcoxon signed-rank test [47].To obtain more
quantitative information, we also compute the median
of paired differences, as well as the 25th and 75th
percentiles. These measurements are used to quantify
the relative efficiency of each factor value against the
rest. Results are presented in matrix form in the tables
below. Medians and percentiles are multiplied by 100 to
improve legibility. Factor values are ranked in the first
column regarding their superiority to others (i.e. each
ranked metric has a positive median of differences with
all metrics below). For each factor value presented at
the left of each row, the medians of paired differences
against the others are listed in the rest of the row. Cases
for which the difference is statistically significant with p-
value below 0.05 are highlighted in gray. The following
sections present the results of this analysis for each
factor.

6.1.2 Influence of the metrics
Tables 1 and 2 detail the median of Spearman correlation
differences for each value pair of the metric factor. It is
interesting to observe that the ranking remains similar
in both scenarios. In the more difficult one (presented in
table 1), IW-SSIM outperforms all the other metrics at a
statistically-significant level; in particular, it shows a me-
dian improvement of Spearman correlation of 0.085 and
0.095 compared to MS-SSIM and FSIM which are ranked
just behind. When correlations are computed separately
for each class of objects (see table 2) the differences
between metrics are attenuated. These three metrics (IW-
SSIM, MS-SSIM and FSIM) are significantly better than
MSE and PSNR with more than 0.10 median Spearman
improvement in both scenarios. The cases of VIF and
HDR-VDP-2 form a particular case since these metrics
produced very heterogeneous results, as illustrated by
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the percentiles, depending on the considered database.
In practice, the VIF metric yielded very good results for
the Masking database but poor results on the others. On
the contrary, HDR-VDP-2 outperformed its counterparts
for the Compression database but produced the worst
results for the Masking one.
The ranking that we obtain is coherent with recent
studies that evaluate the performance of 2D metrics on
databases of natural images [30], [36]; in these evalua-
tions, the best results are obtained by IW-SSIM, FSIM
and MS-SSIM, which are significantly better than VIF,
and also significantly better than PSNR. The HDR-VDP-
2 metric was shown to outperform MS-SSIM for natural
images in [12]. However, this metric is based on a
complex visual model of early human vision and seems
to be not adapted to the specificity of some geometric
artifacts. In particular, we noted a high sensitivity to how
the normals are computed.

6.1.3 Influence of lighting
Table 3 presents the median of correlation differences for
the lighting factor, for correlations computed over whole
corpuses. In contrast with the metrics, the difference in
performance between the different parameters is much
less. However, we can still draw some interesting conclu-
sions. Indirect illuminations (Top and Top-Right) provide
significantly better results than direct ones (Front). This
appears reasonable, since it emphasizes artifact visibility,
a fact also observed in the study conducted by Rogowitz
and Rushmeier [5]. If we look at the median difference
of the Spearman correlation, the Top lighting condition
is better than the Top-Right one, however the median
of correlation differences is very low (0.007) and the
Wilcoxon test is not significant (p-value=0.77). Besides
the fact that indirect lighting facilitates the task of the
metrics by emphasizing the artifacts, this superiority of
the Top lighting condition could be linked to previous
perception results [48], [49] demonstrating that the visual
system assumes light is above when viewing the image
of a shaded 3D surface. Hence people could be more
sensitive to artifacts emphasized by lighting from the
top.
We do not include the table for correlations computed
and averaged per class of models, since in this case the
lighting conditions influence the results even less and no
significant difference is observed.

TABLE 3
Median of differences between Spearman correlations
for the different pairs of lighting conditions. Correlations

are computed over the whole set of models for each
database.

Top-Right Mean Front
1 Top +0.7 [-1.3;2.4] +0.6 [-1.1;2.2] +1.1 [-1.5;7.2]
2 Top-Right +0.1 [-0.9;1.3] +1.3 [-0.7;4.3]
3 Mean +0.7 [-0.7;4.7]
4 Front

6.1.4 Influence of pooling
Table 4 presents the median of correlation differences
for the pooling factor, when correlations are computed
and averaged per class of models. The main conclusion
that can be drawn is that, for this setting, pw, p1, p2
and p3 are significantly better than p∞. There is no
statistically significant difference between p1w, p1, p2 and
p3. In particular, the weighted pooling does not improve
the results. Note that we conducted tests by taking w2

i

as weights in order to enhance their influence, however
the results were similar.
When we consider the correlations computed over the
whole set of models, then no significant differences are
observed between the different conditions (p-values are
all above 0.45). It is actually difficult to determine a
best pooling parameter in an absolute way because this
best parameter greatly depends on the metrics and their
respective sensitivity. For IW-SSIM, MS-SSIM and FSIM
the best setting is p∞. On the contrary, this setting
produces the worst setting for HDR-VDP-2, VIF, MSE
and PSNR.
The previous study by Cleju and Saupe [7] about image-
based 3D model quality evaluation only considered the
p1 case.

TABLE 4
Median of differences between Spearman correlations
for the different pairs of pooling conditions. Correlations

are computed and averaged per class of models for each
database.

p1w p2 p3 p∞
1 p1 +0 [-0.1;0.5] +0 [0;0.3] +0 [0;0.5] +1.7 [-0.4;4.9]
2 p1w +0 [-0.3;0.3] +0 [-0.4;0.3] +1.5 [0;4.9]
3 p2 +0 [0;0.1] +1.8 [-0.3;4.6]
4 p3 +1.4 [-0.2;4.6]
5 p∞

6.1.5 Influence of normal computation
For normal computation, the best parameter is n0 (i.e.
DirectX routine), with a median of correlation differences
equal to +1.4 [-0.8; 3.3] (values are multiplied by 100
as in the tables). These values are obtained when cor-
relations are computed over the whole corpuses. If we
consider per-class correlations, the rank is the same but
the difference is less: +0.7 [-0.3; 2.9]. Just as for lighting,
this relative superiority is explained by the fact that
the n0 condition emphasizes artifact visibility. However
for these two scenarios, the superiority of n0 does not
reach statistically significant levels (p-values resp. equal
to 0.69 and 0.73). Just as for pooling, the main reason for
these high p-values is that the best parameter greatly
depends on the metric: all metrics, except HDR-VDP-
2, are better with the n0 parameter which emphasizes
artifact visibility. However HDR-VDP-2 is too sensitive
to evident artifacts due to normal flips (as illustrated in
figure 2, left) and thus yields much better results when
normals are slightly smoothed (n1 parameter).
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TABLE 1
Median of differences between Spearman correlations for the different pairs of metrics (25th and 75th percentiles are

also presented in brackets). Correlations are computed over the whole set of models for each database. For
readability, medians and percentiles are multiplied by 100. We highlight in gray cases for which the difference reach a

statistically-significant level.

MSSIM FSIM VIF HDR-VDP-2 MSE PSNR
1 IW-SSIM +8.5 [-0.9;11.3] +9.5 [0.9;13.9] +3.5 [-7.9;21.5] +12.4 [3.8;24.1] +11.3 [5.1;31.6] +12.2 [6.4;31.0]
2 MS-SSIM +2.5 [-1.2;5.3] +7.0 [-21.3;13.9] +9.6 [-2.4;17.4] +7.5 [2.2;23.0] +10.3 [1.0;22.7]
3 FSIM +5.4 [-18.1;8.6] +8.7 [-4.4;17.3] +9.3 [2.2;18.0] +11.3 [3.3;17.6]
4 VIF +6.5 [-11.6;32.9] +10.4 [1.6;15.9] +10.1 [3.8;15.6]
5 HDR-VDP-2 +0.2 [-13.2;21.9] +2.1 [-12.0;21.6]
6 MSE +0.0 [-0.5;0.8]
7 PSNR

TABLE 2
Median of differences between Spearman correlations for the different pairs of metrics. Correlations are computed

and averaged per class of models for each database.

MSSIM FSIM VIF HDR-VDP-2 MSE PSNR
1 IW-SSIM +0.0 [-1.1;2.4] +1.1 [-1.4;7.9] +6.9 [-2.2;14.9] +2.4[-6.9;24.0] +8.6 [3.0;19.2] +10.7 [2.3;20.3]
2 MS-SSIM +1.1 [0.0;4.1] +6.9 [-2.0;12.6] +1.1 [-6.6;22.3] +11.0 [1.4;16.9] +11.5[1.4;17.8]
3 FSIM +5.7 [-4.3;8.4] +0.2 [-9.8;19.7] +9.2 [1.1;14.3] +10.4 [-1.1;14.4]
4 VIF -8.0 [-16.7;20.6] +2.6 [-4.6;10.8] +3.6 [-3.4;14.4]
5 HDR-VDP-2 +10.0 [-17.4;24.2] +9.7 [-17.1;25.4]
6 MSE +0.0 [0.0;1.5]
7 PSNR

6.1.6 Recommendations
The results presented above draw some conclusions re-
garding the image-based evaluation of 3D visual fidelity:
• IW-SSIM yields the best results. Simple measure-

ments like PSNR and MSE should be avoided.
• VIF and HDR-VDP-2 may produce excellent results

depending on the database.
• For lighting, an indirect illumination (top or top-

right) should be preferred since frontal lighting
tends to mask the artifacts.

• p∞ pooling yields the worst results for MSE, HDR-
VDP-2 and VIF and the best ones for IW-SSIM, MS-
SSIM and FSIM. Viewpoint weights bring no gain.

• DirectX normal computation yields better results
than simple face normal averaging, since it also
tends to emphasize the visual artifacts. However,
HDR-VDP-2 prefers the second method since it
removes some rendering artifacts due to degenerate
triangles.

6.2 Comparison with model-based metrics
Now that we have analyzed the influence of the different
image generation parameters for the task of image-based
quality assessment of 3D graphical objects, our goal is
to compare the performance of this framework with the
best existing model-based metrics.

6.2.1 Methodology
To measure the performance of the metrics, we consider
the correlations with mean opinion scores for the
four databases presented in section 5 and used above.

We consider the Spearman Rank Order Correlation
Coefficient (SROCC), which measures the monotonic
association between the MOS and the metric values
and the Pearson Linear Correlation Coefficient (LCC),
which measures prediction accuracy. The Pearson
correlation is computed after performing a non-linear
regression on the metric values as suggested by the
video quality experts group (VQEG) [50], using a
cumulative Gaussian function. This serves to optimize
the matching between the values given by the objective
metric and the subjective opinion scores provided by
the human subjects. This step allows the evaluation
to take into account the saturation effects typical for
human senses.
Just as when analyzing image-based parameters,
we consider two scenarios: either the correlation is
computed by considering all classes of objects from
the corpus together, or by considering one class at
a time and then averaging the results. In the latter
case, the metrics produce better results, since they
only have to evaluate and predict distortions applied
on the same reference object. Both scenarios represent
realistic use-cases. Results for these two scenarios are
presented in tables 5 and 6. For image-based metrics
we present two correlation values per column: the main
one is obtained by learning the parameters (pooling,
lighting, rendering) using a n-folds cross validation
on the databases (n = 3 or n = 4 depending on the
scenario), while the values in brackets are computed
for the best parameter configuration. The n-folds cross
validation is performed as follows: for each metric
and each database, we consider the parameters that
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TABLE 5
Performance comparison of model-based (top) and image-based (bottom) metrics on 3 benchmark databases. For

each database, correlations are computed over all models.

Masking Simplification General Purpose
SROCC LCC SROCC LCC SROCC LCC

RMS 48.8 41.2 64.3 58.6 26.8 28.1
MSDM2 [17] 89.6 87.3 86.7 89.2 80.4 81.4

FMPD [20] 80.2 80.8 87.2 89.3 81.9 83.5
DAME [15] 68.1 58.6 NA NA 76.6 75.2

FSIM [36] 53,2(61) 45,5(54,6) 64,7(79,8) 67,5(76,9) 50,4(55,1) 58(63,3)
IW-SSIM [38] 66,6(68,3) 64,5(67,2) 64,4(82,8) 70,5(79,8) 67,5(69,8) 70,1(73,6)
MS-SSIM [35] 41,6(56,7) 34,8(48,6) 66,5(84,4) 67,9(79,3) 56,1(61) 62,5(68,2)

VIF [11] 75,7(77,1) 76,4(76,7) 64,2(71,2) 62,4(72,1) 45,2(45,9) 49(50,1)
HDR-VDP-2 [12] 32,4(50,1) 26,6(52,7) 60,4(63,9) 66,6(67) 69,6(71,7) 66,3(67,7)

MSE 58,1(62,1) 17,9(36) 61,5(67,1) 61,7(66,3) 34,4(36,8) 38,8(41,2)

TABLE 6
Performance comparison of model-based (top) and image-based (bottom) metrics on 4 benchmark databases. For

each database, correlations are computed per class of models.

Masking Simplification General Purpose Compression
SROCC LCC SROCC LCC SROCC LCC SROCC LCC

RMS 70 58.3 80.6 80.4 40.1 40.5 52 49
MSDM2 [17] 95.7 91.8 85.1 95.4 86.6 86.4 78 89.3

FMPD [20] 94.3 95.9 80.6 91.2 85.3 85.2 81.8 88.8
DAME [15] 93.7 95.7 NA NA 82.3 82.3 85.6 93.5

FSIM [36] 85,7(95,7) 85,5(94,5) 92(92) 92(92,5) 62,1(64) 64,4(64,7) 69,1(73,2) 75,2(76,4)
IW-SSIM [38] 82,9(90) 80,6(89,5) 90,9(94,3) 93,4(94,6) 68,9(74) 72,2(77,5) 65,5(68,9) 73,6(74,2)
MS-SSIM [35] 85,7(90) 79,2(87,9) 90,9(94,3) 93,4(93,7) 67(68,6) 68,5(70,1) 68,5(72,4) 76,6(77,1)

VIF [11] 92,9(92,9) 89,3(90,6) 77,1(87,4) 92(95,8) 52,7(55,6) 57,3(59,6) 53(64,6) 61,7(74,2)
HDR-VDP-2 [12] 55,7(84,3) 59,4(77,9) 89,7(89,7) 93,7(97,4) 77,3(77,3) 73,5(73,5) 74,9(79,3) 78,7(84,3)

MSE 68,6(91,4) 67,2(86,9) 85,1(90,9) 85,4(90,9) 45,8(51,8) 48,7(56,1) 45,7(61,4) 48(64,7)

maximize its performance on the n− 1 other databases.
We present the results for the best model-based metrics
(MSDM2, FMPD and DAME) and best image-based
metrics (IW-SSIM, MS-SSIM, FSIM, VIF and HDR-VDP-
2). We also include results of RMS (model-based) and
MSE (image-based) as baselines. The best performing
image-based and model-based metrics are highlighted
for each database.

6.2.2 Results
The tables confirm the superiority of IW-SSIM; this met-
ric is not always ranked first but produces remarkably
stable results (at least 0.65 correlation whatever the
database or the scenario). HDR-VDP-2 also produces
excellent results that outperform other image-based met-
rics on the General-Purpose and Compression databases,
when correlations are computed per class of models.
However its performance is very poor on the Masking
database. An opposite behavior is observed for the VIF
metric (excellent on the Masking database and very poor
on others).
When comparing the results of image-based and model-
based metrics, we observe that in simple scenarios (per-
class correlation and one single type of distortion),
best image-based metrics perform very well regarding
model-based ones (correlations around 90-95%, see table
6, Masking and Simplification columns). However, for

difficult scenarios, such as evaluating different kinds
of distortions (such as general-purpose and compres-
sion databases) and/or different 3D models together
(as presented in table 5), recent model-based metrics
are significantly better. The best image-based metrics
provide a correlation of around 65-75% as opposed to
85-90% for the best model-based ones. These results
show that image-based metrics are excellent for ranking
different versions of a single object under a single type of
distortion, however, they are less accurate at differenti-
ating the artifact visibility between different distortions,
or distortions applied on different 3D models.

6.2.3 Similarities and differences with previous studies
Our results confirm the findings from studies from Wat-
son et al. [6] and Cleju and Saupe [7] showing that, for
simplification artifacts, the image-based MSE performs
better than the model-based RMS. This effect appears
clearly in our results when considering the best set of
parameters for MSE; for the simplification database, we
obtain a Pearson correlation of 0.91 (resp. 0.67) for MSE
against 0.80 (resp. 0.59) for RMS when correlation is
computed per class (resp. over all models). In addition
to this confirmation, our results demonstrate that this
superiority of the image-based MSE over the model-
based RMS is also true for other types of distortions (see
the results for the other databases). However the MSE
is very sensitive to the parameters used for generating
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images as can be seen by the great difference which
may appear between correlation values for the best
parameters and the cross-validation ones.
In the experiments from Watson et al. [6] and Cleju and
Saupe [7], perceptually-based metrics like the Bolin and
Meyer model [23] and SSIM [10] did not demonstrate
any clear superiority over MSE. When looking at the
Simplification database, our results remain quite close to
these observations: the MS-SSIM (multi-scale version of
SSIM) demonstrates a moderate improvement over MSE
while the HDR-VDP-2 (the most closely related to Bolin
and Meyer’s model) remains quite close to MSE. Inter-
estingly, our results show that when evaluating different
kinds of distortions (such as for general-purpose and
compression databases) then the performance of MSE
drops significantly, while perceptual metrics (including
MS-SSIM and HDR-VDP-2) still remain good. As an
illustration, for the Compression database, the Pearson
correlation for MS-SSIM and HDR-VDP-2 is around 0.78
as opposed to 0.48 for MSE.

7 BENEFITS AND APPLICATIONS OF IMAGE-
BASED METRICS
We have shown in the previous section that several
image metrics (e.g. IW-SSIM, MS-SSIM, HDR-VDP-2)
may be excellent predictors of the visual quality of
3D models, depending on the nature of the artifacts.
In spite of the simplicity of the rendering used for
generating images, the performance achieved by these
metrics is comparable with model-based metrics under
certain conditions. That is actually a quite remarkable
finding since a user who has better information on the
character of the final rendering may achieve even better
results. In this section we detail the benefits of the image-
based approach as well as several applications.

7.1 Benefits
In addition to their good performance, image-based met-
rics offer several significant benefits over model-based
ones:
• They are able to handle non-manifold meshes as

well as maps used for simulating geometric de-
tails such as normal maps. They can even evaluate
distortions on other representations than triangular
meshes (e.g. NURBS or implicit surfaces).

• They can compute view-direction specific fidelity
measurements, which may be useful when the con-
sidered object will only be viewed from a particular
direction (e.g. objects standing on the ground in a
virtual scene).

• As stated above, any information about the future
rendering pipeline of the 3D model (lighting, mate-
rial) is easy to integrate to generate the views and
then improve measurement accuracy. Other types
of information can be included easily in the same
framework: texture, colors, etc. without the need for
complex metric combinations.

7.2 Applications
We present below two applications that would be im-
possible to conduct with model-based metrics.

7.2.1 Comparison of simplification algorithms for non-
manifold meshes
In this first scenario, the goal is to compare the perfor-
mance of two edge-collapse simplification algorithms,
applied on a Tree model created using a modeling
software: the first is based on the Quadric Error Met-
ric (QEM) [51], while the second is based on Local
Hausdorff distances (LH) [52]. Model-based metrics (ex-
cept RMS) cannot be applied for evaluating such non-
manifold models, mostly because they rely on differ-
ential geometry operators. IW-SSIM has demonstrated
excellent performance for evaluating simplification arti-
facts (significantly better than RMS). Hence, we consider
this image metric for this task (with n0 normal calcula-
tion, top lighting and p1 pooling as recommended by
our study). Results, illustrated in figure 4, show that in
the simplification range between 20% and 80%, the LH
method [52] performs better than QEM [51].

Fig. 4. Simplification rate vs visual fidelity for two sim-
plification algorithms applied on the non manifold Tree
model. Fidelity is measured using the IW-SSIM image
metric (higher is better).

7.2.2 Evaluation of the visual impact of normal map
compression
In this application, we consider scanned 3D models
defined as manifold meshes along with normal maps.
The need to decrease the data size (for remote Web-
based visualization for instance) requires compression
of the normal map which is often larger in size than
the geometry. However, a model-based metric is not able
to evaluate the impact of normal map compression on
model appearance. In the same way as for the previous
application, we use the IW-SSIM metric for this task.
However, this time, we consider that the material and
lighting environment of the final rendering pipeline and
the preferred viewpoint are known. The curve in figure
5 illustrates the JPEG compressed size of the normal
map versus the measured visual fidelity for the Squirrel
model from the EPFL Computer Graphics and Geome-
try Laboratory. The original sizes of the geometry and
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normal map are, respectively, 230KB (binary PLY) and
2800KB (visually lossless JPEG i.e. Q=100). The figure
shows a quick drop in quality when allocating less than
200-400KB for the normal map, suggesting that such
sizes would lead to a good tradeoff between quality and
transmission time.

Fig. 5. Compressed size vs visual fidelity when compress-
ing the normal map of the Squirrel model (6K vertices).
Fidelity is measured using the IW-SSIM image metric.

8 CONCLUSION

In this paper, we investigated the use of image metrics
for assessing the visual fidelity of 3D graphical objects.
First, we determined the best parameters for this kind of
evaluation (among different types of lighting conditions,
pooling methods, normal computation) and the most
efficient metrics. We then compared this image-based
approach to the best performing model-based metrics for
quality assessment of 3D objects, in terms of correlation
with human judgment.
Our results suggest that, despite the very simple ren-
dering scenario used in the experiment, image-based
metrics perform very well in evaluating the quality of
different versions of a same object under a single type
of distortion. In such scenarios, they come remarkably
close to the performance of model-based distortion mea-
surements. However, they are less accurate in comparing
different distortions or distortions applied to different 3D
models. Hence, for simple use cases (e.g. determining
the best parameters of a compression algorithm), or in
cases when model-based metrics cannot be applied (non-
manifold meshes, meshes with normal maps) image-
based metrics will work very well. However, in scenarios
involving the ranking of different distortions applied on
different 3D objects (e.g. benchmarking different water-
marking algorithms run on different sets of models) the
model-based approaches perform better. These metrics,
however, cannot include other rendering effects, such as
textures or surface shaders, in such a straightforward
way as image-based metrics do. We finally illustrated
several applications for which image-based approaches
are particularly well-suited.
The present study concerns visual fidelity of 3D ge-
ometric objects without texture or complex rendering

attributes (e.g. light fields). A similar study could be
conducted for such complex data. However, our as-
sumption is that our findings should remain valid; i.e.
image-based approaches will certainly have the same
benefits/drawbacks as in our study. Many recent works
concern the quality assessment of images created by
graphic rendering [53], [54], [55]. Their goal is to detect
the artifacts introduced by the rendering pipeline (e.g.
structured noise from approximate global illumination).
In the future, we plan to investigate new kinds of metrics
taking into account both image rendering artifacts and
model artifacts (i.e. distortion on geometry or texture) in
order to produce global fidelity/quality indices.
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K. Wang, “Perceptual Metrics for Static and Dynamic Triangle
Meshes,” Computer Graphics Forum, vol. 32, no. 1, pp. 101–125,
2013.

[3] P. Lindstrom and G. Turk, “Image Driven Simplification,” ACM
Transactions on Graphics, vol. 19, no. 3, pp. 204–241, 2000.

[4] Z. Wang and A. Bovik, Modern image quality assessment. Morgan
& Claypool Publishers, 2006, vol. 2, no. 1.

[5] B. E. Rogowitz and Holly E. Rushmeier, “Are image quality
metrics adequate to evaluate the quality of geometric objects?”
Proceedings of SPIE, pp. 340–348, 2001.

[6] B. Watson, A. Friedman, and A. McGaffey, “Measuring and
predicting visual fidelity,” ACM Siggraph, pp. 213–220, 2001.

[7] I. Cleju and D. Saupe, “Evaluation of supra-threshold perceptual
metrics for 3D models,” in Symposium on Applied Perception in
Graphics and Visualization. ACM Press, Jul. 2006.

[8] S. Daly, “The visible differences predictor: an algorithm for the
assessment of image fidelity,” in Digital images and human vision,
A. B. Watson, Ed. Cambridge: MIT Press, Oct. 1993, pp. 179–206.

[9] J. Lubin, “A visual discrimination model for imaging system
design and evaluation,” in Vision Models for Target Detection and
Recognition, E. Peli, Ed. World Scient. Pub., 1995, pp. 245–283.

[10] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality
assessment: from error visibility to structural similarity,” IEEE
Trans. Image Process., vol. 13, no. 4, p. 600?612, 2004.

[11] H. Sheikh and A. Bovik, “Image information and visual quality,”
IEEE Trans. Image Process., vol. 15, no. 2, pp. 430–444, 2006.

[12] R. Mantiuk, K. J. Kim, A. G. Rempel, and W. Heidrich, “Hdr-vdp-
2 : A calibrated visual metric for visibility and quality predictions
in all luminance conditions,” ACM Siggraph, 2011.

[13] W. Schroeder, J. A. Zarge, and W. E. Lorensen, “Decimation of
triangle meshes,” in ACM Siggraph, 1992, pp. 65 – 70.

[14] P. Cignoni, C. Rocchini, and R. Scopigno, “Metro: Measuring Error
on Simplified Surfaces,” Computer Graphics Forum, vol. 17, no. 2,
pp. 167–174, Jun. 1998.
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rently chair of the IEEE SMC TC on Human Per-
ception and Multimedia Computing and serves
as an associate editor for The Visual Computer
journal (Springer).

Mohamed-Chaker Larabi (M’05-SM’07) re-
ceived his PhD from the University of Poitiers
(2002). He is currently Associate Professor at
the same university. His current scientific inter-
ests deal with quality of experience and bio-
inspired processing/coding/optimization of im-
ages and videos, 2D, 3D and HDR. Chaker
Larabi is a member of MPEG and JPEG com-
mittees. He serves as associate editor for the
Springer SIVP journal and the SPIE/IS&T JEI.
He is a member of CIE and IS&T, and a senior

member of IEEE.
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