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Abstract

This paper presents a new and efficient algorithm for the decomposition of 3D arbitrary triangle meshes and particularly optimized

triangulated CAD meshes. The algorithm is based on the curvature tensor field analysis and presents two distinct complementary steps: a

region based segmentation, which is an improvement of that presented by Lavoue et al. [Lavoue G, Dupont F, Baskurt A. Constant curvature

region decomposition of 3D-meshes by a mixed approach vertex-triangle, J WSCG 2004;12(2):245–52] and which decomposes the object

into near constant curvature patches, and a boundary rectification based on curvature tensor directions, which corrects boundaries by

suppressing their artefacts or discontinuities. Experiments conducted on various models including both CAD and natural objects, show

satisfactory results. Resulting segmented patches, by virtue of their properties (homogeneous curvature, clean boundaries) are particularly

adapted to computer graphics tasks like parametric or subdivision surface fitting in an adaptive compression objective.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The context of this work is the Semantic-3D project

(http://www.semantic-3d.net), supported by the French

Research Ministry and the RNRT (Réseau National de

Recherche en Télécommunications). The objective is the

low bandwidth transmission of CAD triangulated models,

coming from the car manufacturer Renault, with multi-

resolution and adaptivity properties. The original NURBS

information is not always available thus we cannot use it;

the main reason is that many models are designed by

subcontractors which provide only optimized triangulated

meshes. In this context, a 3D compression algorithm is

necessary but the optimized tessellation and the need of a

low bandwidth transmission make this issue quite complex.

The chosen approach is to convert the original triangulated

object into a set of patches represented by subdivision

surfaces and therefore associated with a smaller amount of
0010-4485//$ - see front matter q 2004 Elsevier Ltd. All rights reserved.
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data. This representation will bring a high compression rate

adapted to a low bandwidth and to a multi-resolution

displaying because of subdivision properties. This piece-

wise subdivision surface approximation requires a prior

decomposition of the meshes into adapted surface patches.

Within this framework, we present a curvature tensor based

triangle mesh segmentation method, particularly adapted to

optimized triangulated CAD objects, which decomposes a

3D-mesh into regions with homogeneous curvature and

clean and smooth boundaries. Resulting patches are thus

particularly adapted to subdivision surface fitting, on top of

dealing with the reverse engineering problem. Section 2

details the related work about mesh segmentation, while the

overview of our method is presented in Section 3. Sections 4

and 5 deal with the two distinct steps of our method: the

region segmentation and the boundary rectification.
2. Related work

There has been a considerable research work relevant

to the problem of 3D-object segmentation. However,
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the majority of these methods concern range images [2–4] or

3D point clouds [5,6]. Only few studies concern triangle

meshes which is nevertheless the most widespread represen-

tation for 3D-objects. Garland et al. [7] present a face

clustering of which aim is to approximate an object with

planar elements; this algorithm is especially adapted for

radiosity or simplification. Benko and Varady [8] consider a

mesh decomposition approach specifically adapted for

reverse engineering by applying a hierarchy of tests to

recognize conventional engineering objects (extrusions,

surfaces of revolution,.). Several approaches use discrete

curvature analysis combined with the Watershed algorithm

described by Serra [9] in the 2D image segmentation field.

Mangan and Whitaker [10] generalize the Watershed method

to arbitrary meshes, using the Gaussian curvature or the norm

of covariance of adjacent triangle normal vectors at each

mesh vertex as the height field. Sun et al. [11] use the

Watershed with a new curvature measure based on the eigen

analysis of the surface normal vector field in a geodesic

window. More recently, Razdan and Bae [12] propose a

hybrid method which combines the Watershed algorithm

with the extraction of feature edges by the analysis of

dihedral angles between faces. Zhang et al. [13] use the sign

of the Gaussian curvature to mark boundaries, and process a

part decomposition. These approaches extract only regions

surrounded by high curvature boundaries and fail to

distinguish simple curvature transitions. Lavoué et al. [1]

present a classification based method which allows to detect

these transitions; the first part of this paper is an improvement

of this work. In a different way, Li et al. [14] use

skeletonization to obtain nice segmentation results, however

their method induces a smoothing effect which can make

disappear certain features.

Most of these cited approaches have a major short-

coming: the boundaries between patches are not correctly

handled because they represent a minor problematic in these

algorithms. As a result, either they are fuzzy (because only

vertices are considered) [11,13], or they are jagged and

present artefacts [1,10,12], or they are too straight and do

not fit to the model [14]. Only Katz et al. [15] specifically

handle the boundaries by using a fuzzy decomposition.

Their method, based on geodesic distances and convexity

aims to extract high level sub-objects from a given model

(for example, the arms of a body). Therefore, their method is
Fig. 1. The two steps of the method. (a) Constant curvatu
not adapted to our task which is rather to extract quite low

level sub-surfaces from a CAD object in our surface fitting

objective.
3. Method overview

We present a decomposition algorithm of arbitrary

triangle meshes into near constant curvature surface patches

with clean and smooth boundaries. We address particularly

the problem of CAD models, but natural objects are also

considered. Our approach is based on two steps (see Fig. 1).

A curvature based region segmentation: firstly, a pre-

processing step identifies sharp edges and vertices (see

Section 4.1). This information is necessary for the

continuation of the algorithm, particularly in the case of

optimally triangulated meshes. Secondly, the curvature

tensor is calculated for each vertex according to the work of

Cohen-Steiner et al. [16]. Then vertices are classified into

clusters (see Section 4.2), according to their principal

curvature values Kmin and Kmax. A region growing

algorithm is then processed (see Section 4.3) assembling

triangles into connected labelled regions according to vertex

clusters. Finally, a region adjacency graph is processed and

reduced in order to merge similar regions (see Section 4.4)

according to several criteria (curvature similarity, size and

common perimeter).

A boundary rectification: firstly, boundary edges are

extracted from the previous region segmentation step. Then

for each of them, a boundary score is calculated (see Section

5.2) which notifies a degree of correctness. According to this

score, estimated correct boundary edges are marked and are

used in a contour tracking algorithm (see Section 5.3) to

complete the final correct boundaries of the object.

The contributions introduced in this paper include:
†

re r
The use of a K-Means classification applied to vertex

principal curvatures which allows a very fine region

segmentation by detecting smooth curvature transitions

and inflexion points and not only regions surrounded by

high curvatures like other curvature based methods.
†
 The growing method extracts triangle regions from

vertex curvature information, even for bad tessellated

CAD objects, by taking into account sharp edges.
egion segmentation. (b) Boundary rectification.
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†

Fig

(b)
The merging process is a non-trivial adaptation of an

Image Processing method, taking into account common

perimeters of the regions.
†
 The boundary rectification method is an original

algorithm, using principal directions of curvature,

which gives very good results by extracting quite smooth

and clean boundaries.
4. The region segmentation process
4.1. Sharp feature detection

Our segmentation algorithm is based on the analysis of

the curvature of each vertex. As a preliminary step, we must

detect and take into account sharp edges, especially for

CAD objects. Indeed even if, in practice, a curvature value

is associated to sharp edges, the curvature is not theoreti-

cally defined on these features. We cannot consider a sharp

edge like any other high curvature edge; it defines only a

boundary and not a region. That is why we process a sharp

feature detection. A sharp edge is defined as follows: an

edge shared by two triangles whose normal vectors make an

angle higher than a given threshold. Vertices that belong to a

sharp edge are considered as sharp vertices (nevertheless an

edge shared by two sharp vertices is not necessarily a sharp

edge).

This sharp feature detection is useful within the region

growing process (see Section 4.3) and as a pre-processing

step to process a mesh enrichment on bad tessellated

objects, particularly optimized triangulated CAD objects.

For each triangle associated with three sharp vertices, we

cannot evaluate its curvature or associate it with a region; it

ties up with the ‘no hard boundary’ problem risen by Razdan

and Bae [12]. Therefore, we subdivide these sharp triangles

by adding a new vertex at the centre (see Fig. 2). The region

segmentation is thus applied on this modified mesh and

added vertices are removed at the end of the algorithm.
4.2. Vertex classification

Vertices of the mesh are classified according to their

principal curvatures Kmin and Kmax. Moreover, as the

boundary rectification process (see Section 5) needs

principal curvature directions dmin and dmax, we have to
. 2. The mesh enrichment process. (a) Triangle with three sharp vertices.

Associated subdivided triangle.
calculate the curvature tensor for each vertex of the input

mesh.
4.2.1. Discrete curvature estimation

A triangle mesh is a piecewise linear surface, thus the

calculation of its curvature is not trivial. Several authors

have proposed different evaluation procedures for curvature

tensor estimation [16–18].

We have implemented the work of Cohen-Steiner et al.

[16], based on the Normal Cycle. This estimation procedure

has proven to be the most efficient and stable among the

others and gives very satisfying results even for bad

tessellated objects. It relies on solid theoretical foundations

and convergence properties. Moreover, the tensor can be

averaged over an arbitrary geodesic region, like in [19];

therefore it is independent of the sampling and it offers

the possibility to filter noisy objects or to consider only a

queried size of details extraction for the segmentation

method.

For each vertex, the curvature tensor is calculated and the

principal curvature values Kmin, Kmax and directions dmin,

dmax are extracted. They correspond, respectively, to the

eigenvalues and the eigenvectors of the curvature tensor,

with switched order (the eigenvector associated with Kmin

is dmax and vice versa).

Fig. 3 presents samples of these fields for the ‘Plane’

object. On the edges of the wings, we have a high maximum

curvature, whereas Kmin is null, it is a parabolic region.

Kmin is positive on elliptic regions, like at the end of the

wings, and negative in hyperbolic regions like at the joints

between the wings and the body of the plane. The figure

displays the absolute value of Kmin on the figure (its sign is

not taken into account in our algorithm). The principal

curvature directions have significance only on anisotropic

regions (elliptic, parabolic and hyperbolic) where they
Fig. 3. Curvature fields for the 3D object Plane. (a) Kmax, (b) Kmin

(absolute value), (c) dmax, (d) dmin.



Fig. 4. Vertex classification of the Plane mesh in five curvature clusters.
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represent lines of curvature of the object. On isotropic

regions (spherical, planar), they do not carry any

information.
4.2.2. Curvature classification

Vertices are classified according to the values of their

principal curvatures Kmin and Kmax (see Fig. 4), associated

with the Euclidian distance (in the curvature space). This

classification is independent of the spatial disposition of the

vertices. More complex and complete comparative

measures exist between two tensors [20,21], but for our

purpose we just need to consider a basic curvature

information and not complex tensor features like shape or

orientation. Besides, Kmin and Kmax carry complementary

information. Kmin can be negative, but we consider only its

absolute value, as it is not necessary for us to differentiate

elliptic (positive values) from hyperbolic (negative values)

regions, which have the same visible curved aspect.

The clustering is done via a K-Means algorithm (a fast

least-squares partitioning method) [22] allowing to divide

vertices into K groups. At the end of the algorithm each

vertex is associated to a Cluster Ci (among K) and an

associated classified curvature value ci (ci is in fact a two

scalars vector which contains classified values for Kmin and

Kmax) which is the centroid of the associated cluster.

Starting from K initial seeds, randomly chosen, the

algorithm iterates between two simple steps:
†
 Assign each vertex to the nearest seed.
†

Fig. 5. The three seed triangle situations (a)–(c) and an undetermined

triangle (d).
Compute cluster centroids and use them as new cluster

seeds.

The number of clusters K, in the curvature space, is set by

the user but is not critical for the final segmentation result

because of the region growing and merging steps (see

Section 4.3.2 and Table 2). The K-means algorithm is

followed by a cluster regularization (merging of small or

similar clusters) which gives K 0 final clusters. Fig. 4 shows

the vertex classification process applied to the Plane object
(2506 vertices). The number of clusters in the curvature

space was fixed to 5 for this example (cluster colors are

yellow, orange, blue, dark blue and green).
4.3. The region growing process

Once vertices have been classified, we aim at recovering

triangle regions with similar curvature. We have a set of

curvature clusters (groups of similar vertices in the

curvature space), and we want to recover spatial regions

(connected groups of triangles). This transmission of the

curvature information from vertices to triangles is not a

trivial operation. A triangle growing and labelling operation

is performed as follows: for each triangle of which curvature

is completely defined (seed triangle), a new region is

created, labelled and extended. This process is repeated for

every other seed triangle still unlabelled.
4.3.1. The seed triangle determination

There exist three situations where a triangle is considered

as a seed (see Fig. 5):
†
 Its three vertices belong to the same cluster Ci, thus the

curvature value ci of this cluster is assigned to the

corresponding created region (see Fig. 5a).
†
 It contains two sharp vertices, thus the curvature value ci

of the third vertex is assigned to the created region (see

Fig. 5b).
†
 It is composed of two vertices from the same cluster Ci

and a sharp one. Hence, ci is assigned to the created

region (see Fig. 5c).

In every other case (see Fig. 5d for example), we cannot

assign a curvature value to the triangle, thus we cannot

consider it as a seed to grow a region.



Fig. 6. Considered features for the region growing process.

G. Lavoué et al. / Computer-Aided Design 37 (2005) 975–987 979
4.3.2. The growing mechanism

When a seed triangle is encountered, a new region is

created, containing this triangle, associated with a new label

L and a curvature value cL.

Then a recursive process extends this region (see

Fig. 6): for each triangle tL belonging to the region, for

each non-sharp edge ei of this triangle, we consider the

associated neighbouring triangles ti and their opposite

vertex vi. If vi is a sharp vertex or if it has the cL curvature

value, then the considered triangle is integrated into the

region (the curvature associated with the region remains

the same).

This growing algorithm is repeated for every other triangle

marked as seed and still unlabelled. With this process, it

remains, sometimes, not labelled triangles at the end of the

algorithm (for example, triangles with three vertices from

different curvature clusters). In practice these holes appear

only for a few triangles and often near of the boundaries

between regions. A simple crack filling process fits them by

integrating these triangles to the most represented regions of

their neighbourhood. Fig. 7 shows the region growing process

for the ‘Fandisk’ object, starting from a 18 clusters vertex

classification. The region growing extracts 128 connected

regions (region colors are randomly chosen).

The growing algorithm depends on the number of curvature

clusters. Moreover, a fixed value of K for the K-Means

classification algorithm can generate different sets of clusters

because of the random choice of the K initial seeds. Thus for a

given K, the growing step can give different results in term

of number and localization of extracted regions. In order

to reduce this dependence on the number of curvature clusters
Fig. 7. The region growing process for the Fandisk mesh (region colors are

randomly chosen).
and on the choice of the K initial seeds, a region merging

process was developed in order to unify results.

4.4. The region merging process

The region merging process aims at:
†
 Reducing the over-segmentation resulting from the

growing step.
†
 Reducing the algorithm dependence to the number of

curvature clusters issued from the K-Means vertex

classification.
4.4.1. The region adjacency graph

The data scheme strongly contributes to the efficiency of

an algorithm. The purpose here is to merge adjacent similar

regions. Consequently, a good representation is a region

adjacency graph (RAG), a data scheme used in image

segmentation [23,24] and by Garland et al. [7] for their face

clustering algorithm. This algebraic structure contains a set

of nodes and a set of edges. Each node represents a

connected region (i.e. a connected subset of the mesh), and

each edge represents an adjacency between two regions.

Edges are evaluated by a similarity distance between the

two corresponding regions.

4.4.2. General algorithm

Once connected regions have been extracted by the

region growing algorithm, the RAG is processed, and

distances between adjacent regions are calculated. Then the

reduction of the graph is processed: at each iteration

the smallest edge of the graph is eliminated, thus the

corresponding regions are merged; then the graph is updated

(recalculation of the adjacency relations and of the

similarity distances of the resulting region with its

neighbours). When two regions are merged, their curvatures

are merged proportionally to their areas to give the

curvature of the resulting region. This graph reduction

ends when the number of regions reaches a queried value

chosen by the user, or when the weight of the smallest edge

is larger than a given threshold.

4.4.3. Region distance measurement

The region distance Dij used in our method is equal to the

curvature distance DCij, between the two corresponding

regions Ri and Rj weighted by two coefficients: Nij, which

measures the nesting between the two corresponding

regions and Sij the aim of which is to eliminate the smallest

regions

Dij Z DCij !Nij !Sij (1)

Each coefficient is detailed in the following paragraphs.

The curvature distance DCij is processed using the

curvature values ci and cj of the two corresponding regions

and the curvature value cij of their boundary



Fig. 8. Representation of the vertices taken into account for the calculation

of the mean curvature cij of the boundary between Ri and Rj. Fig. 10. The region merging process for the Fandisk mesh.
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DCij Z kci KcijkCkcj Kcijk (2)

ci and cj come from the region growing step. cij is the

average of the curvatures of the vertices belonging to the

boundary between the two regions. Only vertices with two

incident edges separating these regions (real boundary

vertices) are taken into account (see Fig. 8), in order to

consider only the real boundary between them.

It is important for the calculation of the curvature

distance between Ri and Rj to consider not only their

respective curvatures ci and cj but also their boundary one

cij, because two situations may happen between these

regions. Either regions have different curvatures and no

precise boundary (see Fig. 9a), or regions have almost

the same curvature but a very significant boundary (see

Fig. 9b).

The Nij coefficient measures the nesting between the two

corresponding regions

Nij Z
minðPi;PjÞ

Pij

(3)

with Pi (resp. Pi) the perimeter of the ith (resp. jth) region

and Pij the size of the common border between the ith and

jth regions. This coefficient was introduced in image

processing by Schettini [25] for color image segmentation.
Fig. 9. The two different situations between two adjacent regions. (a) No

boundary but a curvature difference, (b) no curvature difference, but a

significant boundary.
The aim of the Nij factor is to consider the spatial disposition

of the regions in the merging decision. Regions with a large

common border are more likely to belong to the same

‘meaningful’ part of the object, thus their similarity distance

is reduced.

The Sij coefficient tends to better group smallest regions

Sij Z
3 if ðAi !Amin or Aj!AminÞ

1 else

(
(4)

where Ai (resp. Aj) is the area of the ith (resp. jth) region,

Amin is a minimum area set by the user and 3 is a near 0

positive value. The Sij factor can be considerate as a filtering

factor. When a region area is smaller than Amin, it is

considered as too small, hence its distance with its adjacent

regions is reduced by the Sij coefficient, equal to 3; the

considered region will be more easily merged with another.

This method aims at eliminating the smallest regions. The

value of Amin depends on the queried size (or number) of

final regions. The value of 3 is fixed to 1!10K5. This value

accelerates the fusion of the smallest regions, while keeping

the merging order.

Fig. 10 shows the merging process. The initial pre-

segmented object was obtained after the classification step

in the curvature space (18 curvature clusters), and after the

region growing step (see Fig. 7). It contains 128 connected

spatial regions. After the merging process, the final region

number is 25. The merging threshold was fixed to 5 (every

object is scaled to a bounding box of length equal to 1).
4.5. Experiments and results

Our segmentation method was tested on several different

objects. Examples are given for several basic common 3D

CAD elements (see Fig. 11) and for three objects from

different natures (see Fig. 12): a rather smooth object

(Pawn), a mechanical highly tessellated object (Fandisk)

and an optimized triangulated CAD object (Swivel).

Fig. 11 presents segmentation results for the 3D basic

elements. Their decompositions are intuitively correct and

adapted to our constant curvature region extraction and

surface fitting objectives.



Fig. 11. Segmentation results for several basic 3D elements. (a) Cylinder (three regions), (b) cone (two regions), (c) cube (six regions), (d) smooth cube (seven

regions).
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For the Fandisk object (see Fig. 12b), we obtain patches

with almost constant curvature as for the ‘Pawn’ (see

Fig. 12a). Our method allows detecting curvature transitions

or inflexion points and not only regions separated by high

curvature boundaries, or sharp boundaries, like traditional

watershed methods. Even for the bad tessellated ‘Swivel’

object (see Fig. 12c), we obtain good results after the

enrichment of detected sharp triangles.

We have studied the computational cost of the algorithm;

examples are presented in Table 1. All experiments were

conducted on a PC, with a 2 GHz XEON bi-processor.

Let n be the number of triangles, K the number of curvature

clusters and R the number of curvature classification

algorithm iterations. Thus complexities are the followings:
Fig. 12. Segmentation of Pawn (a), Fandisk (b) and Swivel (c) objects. The r
O(n) for the curvature computation and O(nRK) for

the vertex classification. Considering the region growing

and merging steps, the processing time depends on the

grown region number and on the region removal number.

On the whole, the entire process is rather fast and an online

utilisation is realistic.

We have also studied the dependence of the algorithm

on the number of curvature clusters K which parameters

the K-means algorithm within the vertex classification

procedure. We have conducted tests with several objects;

results for Fandisk are shown in Table 2. The vertex

classification was processed with different values for K

(K 0 is the cluster number after regularization) and a

unique threshold fixed to 50 was chosen for the region
egion merging threshold is 5 for Fandisk and Swivel, and 20 for Pawn.



Table 1

Computing times of the different steps of our segmentation algorithm for the objects presented in Fig. 12

Object Curvature pro-

cessing time (s)

Vertex classifi-

cation time (s)

Region growing

time (s)

Region number

after growing

Region merging

time (s)

Region number

after merging

Total (s)

Pawn 31!10K3 78!10K3 15!10K3 23 16!10K3 10 156!10K3

Fandisk 78!10K3 281!10K3 62!10K3 46 203!10K3 23 624!10K3

Swivel 31!10K3 47!10K3 16!10K3 18 15!10K3 13 109!10K3
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merging step. Results show that of course K influences the

number of regions created after the growing step (besides,

this number can vary for a same K, because of the random

choice of the K initial seeds for the K-Means algorithm)

but the final region number is regularized by the merging

algorithm and the resulting segmented regions are almost

identical. It happens because the merging process is

strongly linked to the curvature values of the regions.

Indeed, the different sets of regions associated to different

values of K for a same object, keep practically the same

curvature distribution.

Thus we have strongly reduced the algorithm depen-

dence to the number of curvature clusters; it does not have to

be considered as a critical parameter for the method.
5. The boundary rectification process
5.1. Objective

Our purpose is to obtain clean patches with constant

curvature in a subdivision or parametric surface fitting

objective. Our region segmentation method extracts near

constant curvature, topologically simple patches from the

3D-objects, and gives good qualitative results in terms of

general shape and disposition of the segmented regions.

Nevertheless, boundaries of the extracted patches are often

jagged, like for most of the existing segmentation methods

and present artefacts particularly when we consider a high

number of curvature clusters (like in Fig. 10). Fig. 13

presents examples of artefacts, blue and pink regions in the

red ellipse are not correct (see Fig. 13a), their boundary is

not straight. In Fig. 13b, green and blue regions are not

complete regarding to the original object and the green one

presents a discontinuity.
Table 2

Influence of the cluster number K of the classification algorithm, on the

number of final regions for a given threshold

K K 0 (regularized) NbReg after

growing

NbReg after

merging

5 5 46 15

10 7 62 15

10 9 99 15

15 9 76 15

20 11 84 15

20 17 116 15
In this context, the objective of the boundary rectification

process is to suppress these artefacts, in order to obtain clean

and smooth boundaries corresponding to real natural

boundaries of the object. The rectification method is

composed of two principal steps: firstly, segmented region

boundary edges are extracted and for each of them a

correctness score is processed (the Boundary Score). Then,

starting from the estimated correct boundary edges, the final

boundaries of the patches are completed using a contour

tracking algorithm.
5.2. The boundary score definition

The goal of this score is to define a notion of correctness

for each boundary edge extracted from the region

segmentation. For this purpose, we consider the principal

curvature directions dmin and dmax (see Section 4.2.1)

which define the lines of curvature of the object. Indeed,

they represent pivotal information in the geometry descrip-

tion [19]. The curvature tensors at the natural boundaries of

an object tend to be anisotropic with a maximum direction

following the curvature transition and therefore orthogonal

to the boundaries. Thus the boundaries will tend to be

parallel to the lines of minimum curvature.

Fig. 14a shows a natural hand made segmentation of a

smooth cube object into homogeneous curvature patches.
Fig. 13. Zoom on artefacts for the segmented Fandisk object.



Fig. 14. Natural constant curvature patches of the ‘Smooth cube’ object (a)

and its principal curvature directions (b), dmin in red and dmax in blue.
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Fig. 14b shows maximum and minimum curvature

directions.

The boundaries of the patches follow the minimum

directions, except around isotropic regions (at the corners of

the cube). Therefore, the angles between a boundary edge

and the minimum curvature directions of its vertices can

represent a good evaluation of its ‘correctness’.

The boundary score S2[0,90], calculated for an edge ei,

is:

SðeiÞ Z
SaðeiÞCuc !ScðeiÞ

1 Cuc

(5)

Sa2[0,90] depends on the angles between the edge and

its vertices curvature directions. This value is homogeneous

to an angle value in degrees. Sc considers a curvature

difference; it is also normalized in [0,90]. uc is a weighting

coefficient which is fixed to 0.5 in our examples. Sa and Sc

are detailed in the following paragraphs.

The angle score Sa considers the angles qmini1 and

qmini2 (see Fig. 15) between the edge ei and the minimum

curvature directions of its vertices Vi1 and Vi2. The score

also considers the angles qmaxi1 and qmaxi2 between the

edge ei and its vertices maximum directions, weighted by

the values of the principal curvatures Kmin and Kmax in

order to take into account isotropic regions, like the

corners of the smooth cube, for instance (see Fig. 14).

Thus the angle score Sa2[0,90] is processed according to
Fig. 15. Elements taken into account for the calculation of the Boundary

Score of the edge ei.
the following equation

SaðeiÞ Z
1

2

ðqmini1 !Kmaxi1 Cqmaxi1 !Kmini1Þ

Kmaxi1 CKmini1

�

C
ðqmini2 !Kmaxi2 Cqmaxi2 !Kmini2Þ

Kmaxi2 CKmini2

�
(6)

with qmini1, qmini2 and qmaxi1, qmaxi2 are the respective

angles in degrees (2[0,90]) of the considered edge ei with

the minimum and maximum curvature directions of its

vertices. Kmini1, Kmini2 and Kmaxi1, Kmaxi1 are the

respective values of minimum and maximum curvatures

of the vertices of the edge ei.

The curvature score Sc considers the curvature variation

between the edge ei and its opposite vertices ViA and ViB

(see Fig. 15). We consider two cases for which the edge

corresponds to a correct boundary:
†
 Curvature of ViA is different from curvature of ViB

(see Fig. 9a), the associated distance is DiAB.
†
 Curvature of ViA (resp. ViB) is different from curvature

of ei (see Fig. 9b), the associated distance is DiAe

(resp. DiBe).

Distances DiAB, DiAe and DiBe are normalized in [0,1]

and processed as follows:

DiAB Z
kKminiB KKminiAkCkðKmaxiB KKmaxiAÞk

maxðKminiB;KminiAÞCmaxðKmaxiB;KmaxiAÞ

For the calculation of DiAe (resp. DiBe), we consider the

distance between ViA (resp. ViB) and ei, as the minimum

of the distance from ViA (resp. ViB) to Vi1 and from ViA

(resp. ViB) to Vi2

DiAe Zmin
jjKminiA KKmini1jjCjjðKmaxiA KKmaxi1Þjj

maxðKminiA;Kmini1ÞCmaxðKmaxiA;Kmaxi1Þ
;

�
jjKminiA KKmini2jjCjjðKmaxiA KKmaxi2Þjj

maxðKminiA;Kmini2ÞCmaxðKmaxiA;Kmaxi2Þ

�

The formula for DiBe is the same with KminiB and

KmaxiB instead of KminiA and KmaxiA.

Knowing that the curvature score Sc is a correctness

indicator and that it must take into account the two cases

described above, thus Sc is defined as follows:

ScðeiÞ Z 1 KmaxðDiAB; DiAe;DiBeÞ (7)

Sc is then normalized in [0,90] to keep the coherency

with the angle score Sa.
5.3. Algorithm

The rectification algorithm is composed of two steps: the

marking of the correct boundary edges coming from the

region segmentation and the contour tracking which

completes final boundaries.



Fig. 16. Three steps (a–c) of the boundary tracking algorithm, with

associated positions of correct boundary edges (CBE), potential edges (PE)

and smallest potential edges, at each iteration.
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5.3.1. Correct boundary marking

For every boundary edges coming from the region

segmentation step, the Boundary Score previously defined is

processed. Then, a threshold ST is chosen (ST is fixed to 5 in

our examples). For each edge, if its Boundary Score is

below ST, the edge is considered as a correct boundary edge

(CBE), else the edge is no more considerate. Figs. 17c and

18c show this marking process, starting from the region

segmentation (see Figs. 17a and 18b), CBEs are represented

in green, and others in red.
5.3.2. Contour tracking

The second step of the rectification algorithm is the

contour tracking. Once CBEs have been extracted, they

form pieces of boundary contours. Our purpose is to

complete these contours to obtain a set of closed contours

corresponding to the final regions boundaries. For each not
Fig. 17. The different steps of the Boundary Rectification for the Fandisk object

curvature directions. (c) Correct boundary edge extraction and marking. (d) Corr
closed boundary contour, we extract the edges potentially

being able to complete it (we call them potential edges).

They are edges adjacent to one CBE at the extremity of an

open contour. Fig. 16a shows a piece of contour formed

by two CBEs (in black), with associated potential edges

(PE; in dotted black) which are candidates to complete the

open contour. Then, each potential edge is associated with a

weight P which will determine its possibilities to be

integrated to the contour; the smallest is this weight, the

more the edge has possibilities to be considered as a CBE.

The weight P of a potential edge ei depends of its score

S(ei)2[0,90] but also of its angle q(ei,eCBE)2[0,180] with

its neighbouring CBE, because we try to limit the deviation

of the boundary
PðeiÞ Z SðeiÞCuq !qðei; eCBEÞ (8)
uq is a weighting coefficient, it is fixed to 2 in our examples.

Once each potential edge has been valuated, we organize

them into a sorted list. Then the contour tracking algorithm

starts; its mechanism is the following: once the potential edge

(PE) sorted list is organised, the PE associated with the lowest

weight P is extracted and integrated to the considered

boundary contour, and therefore this PE becomes a CBE.

Then the list is updated (the PEs are redistributed) and the list

reduction continues until every boundary contour is closed.

Fig. 16 presents three iterations of the contour tracking

algorithm. In Fig. 16a, there are two CBEs which form an open

contour (in black), thus there are six PEs candidates to

complete the contour (in dotted black). The PE inside the red

ellipse is considered as the one with the smallest weight P, thus

at the next iteration it is extracted and integrated to the contour

(see Fig. 16b). The positions and numbers of the PEs are then

updated. The process continues in Fig. 16c, with another PE

integrated to the contour.
with a zoom on an artefact correction. (a) Segmented object. (b) Minimum

ected boundaries after the contour tracking.



Fig. 18. The different steps of the Boundary Rectification for an artificially bad segmented CAD object. (a) Original object. (b) Bad segmented object. (c)

Correct boundary edge extraction and marking. (d) Corrected boundaries after the contour tracking.
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5.4. Experiments and results

The rectification method is especially adapted to CAD or

mechanical objects, where there exist real defined regular

boundaries. On natural or organic objects the fact of

rectifying boundaries does not have a real significance since

even a human hand could not trace precise and smooth

boundaries. We have tested our rectification method on

various models resulting from our region segmentation

algorithm. Fig. 17 presents results for Fandisk. Artefacts

coming from the region segmentation are all suppressed; we

obtain surface patches with very clean and smooth

boundaries, adapted for tasks like parametric or subdivision

surface fitting. We have also conducted tests on artificially

bad segmented objects, in order to see if the rectification

method could repair a bad segmentation and not only

suppress some small imperfections. Fig. 18 shows results on

an artificially bad segmented CAD object.
Fig. 19. The boundary rectification for a large CAD object (40,316

vertices). (a) Original object. (b) Results of the region segmentation. (c)

Results of the boundary rectification.
We can observe that bad boundary edges are eliminated

whereas correct ones are correctly extracted and completed

to give a very satisfying set of surface patches. Even with

very few correct boundary edges, final boundaries of the

object are well extracted. The rectification has also been

tested on large and complex CAD models. Fig. 19 shows an

example for the ‘Sheet’ model which contains about 56,000

triangles (40,316 vertices). Initial extracted regions (see

Fig. 19b) are satisfactory regarding to the global decompo-

sition and final boundaries (see Fig. 19c) are quite smooth

and correct after the rectification.

This rectification process is very fast: 16 ms for Fandisk,

15 ms for Swivel and 94 ms for Sheet, and moreover, it is

independent of the region segmentation method presented in

Section 4; we can imagine using it as a contour tracking

post-process to a hard edge detection algorithm for example.

Finally, Fig. 20 presents some results of the whole

process (region segmentation and boundary rectification)

for three quite complex CAD objects. We have represented

boundaries of the final extracted patches. The decompo-

sition results as well as the boundaries are very satisfying

with regard to our further surface fitting application.
Fig. 20. Three CAD objects, ‘Wheel’ (3721 vertices) (a), ‘Hub’ (1247

vertices) (c), and ‘Clip’ (18,734 vertices) (e), with their resulting patches

after the whole algorithm (b, d, and f).
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6. Conclusion

This paper presents an original segmentation method to

decompose a 3D-mesh into homogeneous curvature surface

patches with clean boundaries. The simple and efficient

curvature classification detects any curvature transition and

thus allows segmenting the object into near constant

curvature regions and not just cutting the object along its

hard edges.

The triangle growing process well transmits region

information from vertices to triangles even for optimized

tessellated CAD objects.

Our original boundary rectification method based on

curvature tensor orientations, allows suppressing bound-

ary artefacts commonly produced by most of the

segmentation algorithms, even if they are important.

We obtain, in the case of CAD or mechanical objects,

the real natural boundaries corresponding to an intuitive

hand made segmentation of the object. This method is

independent of the previous region segmentation and can

be used as a post-process to hard edge detection

algorithms for example, to complete hard edge contours

of an object.

About perspectives, we plan to consider variance and

histogram distribution of curvature, in order to improve the

curvature classification method, and also to be able to

automatically process the region merging threshold which

remains a user defined parameter of our method. This

segmentation method is involved in a larger CAD object

compression scheme. The objective is to fit the segmented

regions with subdivision or parametric surfaces, in order to

obtain the object in the form of a set of light patches, which will

allow adaptive and scalable compression and transmission.
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