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Abstract

Following the recent progress of surface acquisition systems, geometry processing
algorithms quickly evolve to deal with the variety of data types and acquisition quality.
This habilitation manuscript details some recent approaches to tackle this challenge.
First, for low-quality data, it is necessary to improve the measure by denoising
or super-resolution algorithms. Self-similarity analysis yields efficient methods for
improving the acquisition quality either for real object surfaces, or generalized
shapes (shapes whose intrinsic dimension is not constant). Beyond low-resolution
acquisition, taking this similarity into account also permits to compress point set
surfaces, that can then be resampled during decompression. While geometric data
are per se a research topic, additional image data or other type of measures can
be acquired simultaneously, which allows to complete or augment the geometric
information through a joint analysis. This manuscript addresses this multi-captor
data problem to augment urban scenes point sets by using a collection of pictures,
which permits to colorize point clouds, once images are accurately registered. Finally,
for specific purposes, it is interesting to represent surfaces as polygonal meshes
potentially replacing several points by a single planar facet. To do so, this manuscript
describes an Optimal Transportation metric between the initial point cloud and
a mesh. The reconstruction and optimization of the mesh is then driven by the
minimization of this distance.

Keywords: Geometry Processing, Surface Self-Similarity, Geometric Modeling, local
surface description, surface reconstruction
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Résumé

Face à l’explosion des systèmes d’acquisition de surfaces, les algorithmes de traite-
ment numérique de la géométrie évoluent rapidement pour s’adapter à la diversité
des types de données et des qualités d’acquisition. Tout d’abord, pour des données
de qualité moindre, il est nécessaire d’améliorer la mesure par des processus de
débruitage et de super-résolution. L’analyse de l’auto-similarité des surfaces per-
met de développer des approches d’amélioration de la mesure que ce soit pour
des surfaces d’objet réel ou des formes généralisées (des formes dont la dimension
intrinsèque peut varier). Au delà des données basse-résolution, la prise en compte
de cette similarité permet également de compresser efficacement des données de
surfaces, que l’on peut ensuite rééchantillonner pendant la décompression. De plus,
si les données géométriques sont en elles-mêmes un sujet d’étude, elles peuvent être
accompagnées de données d’image ou d’autres mesures, qui permettent de compléter
ou d’augmenter les données géométriques par une analyse jointe. Cette habilitation
aborde ce problème de la fusion de données multi-capteur pour enrichir des nuages
de points représentant des scènes urbaines par une collection de photos, qui, une fois
correctement recalées permettent par exemple de coloriser le nuage de points. Enfin,
la dernière partie de cette habilitation s’intéresse à la reconstruction de maillages
surfaciques. Pour certaines applications il est en effet intéressant de représenter une
surface sous forme de maillage, et de remplacer ainsi localement plusieurs points
par une unique facette plane. Pour cela, il est possible de quantifier la distance de
transport optimal entre le nuage de points initial et un maillage. La reconstruction
et l’optimisation du maillage peut être ainsi guidée par la minimisation de cette
métrique.

Mots-clé: Traitement numérique de la géométrie, auto-similarité des surfaces, mod-
élisation géométrique, descriptions locales de surfaces, reconstruction de surfaces
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Introduction (Français)

Cette Habilitation présente les recherches effectuées depuis la fin de ma thèse au
Centre de Mathématiques et Leurs Applications à l’Ecole Normale Supérieure de
Cachan. Elles ont été menées d’abord à l’INRIA Sophia Antipolis (post-doctorat) puis
au LIRIS à l’Université Lyon 1 en tant que chargée de recherche du CNRS.

Mes travaux se sont essentiellement centrés sur l’analyse formes, en suivant plusieurs
directions. La première est l’analyse non-locale de surfaces et de formes généralisées,
à travers notamment l’ANR Patch-aware processing of surfaces (PAPS), débutée en
2015, que je porte. La seconde concerne la fusion d’informations géométrique et de
photos de scènes urbaines, un projet mené dans le contexte de la thèse CIFRE de
Maximilien Guislain avec l’entreprise Technodigit. Enfin je reviens dans ce document
sur un projet issu de mon post-doctorat qui est l’utilisation du Transport Optimal
pour mesurer la distance entre une surface définie par un nuage de points et une
surface définie par un maillage pouvant n’avoir qu’un recouvrement partiel.

Le chapitre 1 présente un état de l’art de l’analyse de formes depuis l’analyse
différentielle locale jusqu’à l’analyse de collections de formes et l’apprentissage, et
contextualise les travaux que j’ai pu mener. Les chapitres 2, 3, 4 et 5 présentent
ensuite mes différents travaux. Le chapitre 6 conclut le manuscript en ouvrant sur
les perspectives que je souhaite explorer dans un futur proche.

Descriptions locales et auto-similarité des surfaces
(Chapitre 2)

La première partie de mon travail a été de définir et de prendre en compte l’auto-
similarité de surfaces définies par des nuages de points ou des maillages. En effet,
les systèmes d’acquisition de surfaces ont largement évolué depuis les débuts de la
numérisation 3D, et se sont globalement scindés en deux catégories: d’une part des
instruments précis mais coûteux et lents et d’autre part des instruments à bas coût,
rapides mais très imprécis. Ainsi, il est important de pouvoir générer des modèles
tridimensionnels les plus précis possible avec des outils d’acquisition parfois moins
précis. Pour pouvoir effectuer cette montée en qualité, je propose dans cette première
partie de m’intéresser à l’auto-similarité des surfaces. En effet, la plupart des formes,
qu’elles soient naturelles ou fabriquées, possèdent une forte auto-similarité, venant
de leur structure naturelle ou du processus de fabrication : régularité de l’outil de
sculpture ou de la machine-outil. Des exemples de surfaces auto-similaires sont
présentées Figure 0.1.

La clé de ce type d’approches est d’éviter de traiter les nuages de points dans leur
ensemble, comme c’est généralement le cas dans la littérature. Nous proposons
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Fig. 0.1: Exemples de formes auto-similaires à différentes échelles, naturelles ou fabriquées.

au contraire un traitement non-local en encodant des descriptions de voisinages
de points (patches) et en analysant la forme directement dans l’espace de ces
descriptions. Travailler directement dans cet espace de descriptions permet de
réveler l’auto-similarité des surfaces, puisque des points très éloignés sur la surface
peuvent avoir des descriptions de voisinages très proches.

Après avoir rigoureusement défini l’auto-similarité, nous nous intéressons à différents
types de descripteurs de voisinages locaux de points sur une surface. Le premier est
un champ de hauteur par rapport au plan tangent échantillonné sur une grille, cette
description en champs de hauteur locaux se rapproche de la définition des patches
dans les images, en remplaçant la couleur des pixels par la hauteur par rapport
au plan tangent. Deux applications sont développées, le débruitage non-local et la
compression de nuages de points.

Dans le premier cas, la surface est décomposée en une forme lisse (donc intrinséque-
ment débruitée) et un champ de vecteurs qui contient donc le bruit et les détails de
la surface. Ce champ de vecteur est ensuite débruité en utilisant tous les points de la
surface et en pondérant leur contribution au débruitage par leur similarité mesurée
comme la distance entre les descripteurs locaux. Les cartes de hauteurs, outre qu’elles
permettent de décrire localement la forme, permettent aussi de rééchantillonner
localement la surface. J’ai donc proposé une approche de compression qui prend
un ensemble de descriptions couvrant la forme, encode ces descriptions de manière
parcimonieuse sur un dictionnaire, et obtient une représentation économique de la
forme sous-jacente qu’il est ensuite possible de rééchantillonner. Il est important de
noter que cette approche encode bien la forme continue sous-jacente et qu’elle ne
permet pas de retrouver l’échantillonnage donné au départ.

Il est vite apparu que ces cartes de hauteur ne permettaient pas de rendre compte
efficacement de propriétés différentielles supérieures à l’ordre 2. En effet, dans ce
cas les courbures prédominent dans la comparaison entre les patchs si bien que
des détails similaires portés par des surfaces de courbures différentes ne sont pas
bien exploités. Nous avons donc pu construire une description locale, efficace à
calculer, basée sur la hauteur relative à une surface d’ordre plus élevé qu’un plan:
une quadrique. Ceci a permis de mettre en relation des détails similaires portés par

2



Fig. 0.2: Les amants de Bordeaux (15.8 million de points). Modèle compressé à 1.15 MB. (à
gauche: nuage de points original - à droite: nuage de points décompressé).

des surfaces lisses de courbure différente. De cette manière nous avons pu aborder
la super-résolution n’utilisant qu’un seul scan. Au lieu de recaler plusieurs scans
pour en obtenir un seul de meilleure qualité, la mise en relation de détails similaires
issus du même scan permet d’améliorer la résolution de cette surface scannée.

Finalement, au delà de ces descripteurs sous forme de champ de hauteur que ce
soit au dessus d’un plan ou d’une quadrique, nous avons développé à travers la
thèse de Yohann Béarzi une nouvelle base de fonction, les Wavejets, pour décrire les
variations locales de la surface en mettant en évidence les propriétés fréquentielles
angulaires des surfaces et le comportement polynomial radial. En analysant finement
le développement de Taylor local de la surface, nous pouvons quantifier théorique-
ment l’influence d’une mauvaise normale sur ces coefficients des Wavejets. Il est
ainsi possible de dériver un algorithme pour corriger normales et coefficients. Une
première application est l’exagération ou la modification de détails, en se servant
d’invariants intégraux, faciles à calculer dans cette base de fonctions. Cette nouvelle
base pourra par la suite servir à mettre en correspondance des détails locaux de
formes.

Description locale et auto-similarité des formes
généralisées (Chapitre 3)
Si les solutions présentées dans le chapitre 2 sont efficaces sur des nuages de points
échantillonnant des surfaces elles ne peuvent s’étendre aux formes généralisées,
c’est à dire des formes qui comportent à la fois des parties surfaciques et des
courbes, voire même des zones avec des échantillons répartis de manière isotrope.
Ce type de données ne peut être représenté par des cartes de hauteur. Même les
formes purement surfaciques sont parfois difficilement représentables par des cartes
de hauteur de rayon fixé (Figure 0.3), même si l’on peut donner des conditions
théoriques sur le rayon pour éviter cet écueil.

Dans le cas de données géométriques hétérogènes, qu’il est impossible de traiter avec
des descripteurs type carte de hauteur, j’ai donc introduit un autre type de descripteur
qui permet de représenter de manière fiable les données curvilignes ou isotropes
tout en adoptant un comportement proche d’une carte de hauteur dans les zones
correspondant à l’hypothèse surfacique. En analysant ensuite conjointement ces
champs de vecteur, par un processus d’optimisation de la similarité, les descripteurs
de zones se ressemblant s’alignent, pour finalement permettre plusieurs applications
comme le débruitage ou le rééchantillonnage de ces formes de dimension non
constante.

3
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Fig. 0.3: Exemple de cas où la représentation par une carte de hauteur n’est pas appropriée.
À cause de la forte courbure, le voisinage (en vert) de p ne se projette pas sur tout
le disque contenu dans le plan tangent, les valeurs de la cartes de hauteur en ces
zones non couvertes seront extrapolées, et non nécessairement représentatives.

(a) Original (b) Bruité
(RMSE = 0.124)

(c) Débruité par LPF
(RMSE = 0.017)

Fig. 0.4: Débruitage d’une forme généralisée (400K points).

Outre ce projet PAPS qui a très largement structuré mes activités de recherche de
ces dernières années, ce manuscript décrit également deux projets menés, pour
l’un au cours de mon post-doctorat et pour l’autre dans le cadre d’un partenariat
industriel.

Analyse jointe de nuages de points et de collections
d’images (Chapitre 4)
Dans le cadre de la thèse CIFRE de Maximilien Guislain avec l’entreprise Technodigit,
nous nous sommes intéressés à la fusion de données 3D urbaines et de collection
de photos acquises au même moment (thèse co-encadrée avec Raphaëlle Chaine).
Le contexte était celui de la numérisation des villes. En effet, les technologies
permettant la numérisation d’espaces urbains connaissent un développement rapide
ces dernières années. Des campagnes d’acquisition de données couvrant des villes
entières sont couramment menées en utilisant des scanners LiDAR (Light Detection
And Ranging) installés sur des véhicules mobiles, couplés avec des camera prenant
des photos à intervalles fixes. Les résultats de ces campagnes sont des nuages de
millions de points et un ensemble de photographies dont les poses sont connues par
l’intermédiaire de coordonnées GPS. On s’intéresse ici à l’amélioration du nuage de
points à l’aide des données présentes dans ces photographies, à laquelle ce projet
apporte plusieurs contributions notables.

La position et l’orientation des images acquises sont généralement connues à l’aide
de dispositifs embarqués, mais elles sont souvent imprécises, ce qui peut être dû à
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un défaut de calibration ou à des vibrations causées par le mouvement du véhicule.
Pour obtenir la pose précise d’une camera dans un nuage de points, nous proposons
un algorithme en deux étapes, faisant appel à l’information mutuelle normalisée
et aux histogrammes de gradients orientés (Figure 0.5). Cette méthode permet
d’obtenir une pose précise même lorsque les estimations initiales sont très éloignées
de la position et de l’orientation réelles.

Une fois les images recalées, il est possible de les utiliser pour inférer la couleur de
chaque point du nuage en prenant en compte la variabilité des points de vue. Pour
cela, nous nous appuyons sur la minimisation d’une énergie prenant en compte les
différentes couleurs associables à un point et les couleurs présentes dans le voisinage
spatial du point. Cependant le nuage de points colorisé est très fortement influencé
par l’illumination, une information purement extrinsèque. Une conséquence de cette
illumination est la présence dans la colorisation des ombres portées dépendantes de
la position du soleil. Il est donc nécessaire de détecter et de corriger ces dernières.
Nous avons introduit une méthode qui s’appuie sur l’analyse conjointe des variations
de la réflectance mesurée par le LiDAR et de la colorimétrie des points du nuage.
En détectant suffisamment d’interfaces ombre/lumière nous pouvons caractériser la
luminosité de la scène et la corriger pour obtenir des scènes sans ombre portée.

(a) Recalage grossier (b) Recalage
grossier+fin

(c) Recalage grossier
(détail)

(d) Recalage
grossier+fin

(détail)

Fig. 0.5: Résultats de recalage, avec uniquement le recalage grossier (à gauche) et la
combinaison recalage grossier puis recalage fin (à droite)

Mise en correspondance de formes par le transport
optimal (Chapitre 5)
Dans le cadre de mon post-doctorat, j’ai développé, en collaboration avec Pierre
Alliez, David Cohen Steiner, Mathieu Desbrun et Fernando de Goes une méthode de
comparaison de formes décrites sous forme d’un complexe simplicial et d’un nuage
de points par l’intermédiaire d’un calcul de transport optimal entre des mesures
portées par les deux formes. Notre approche consiste à considérer le nuage de points
en entrée comme une mesure discrète (une distribution de masses), et à calculer
la distance de transport optimal à une mesure constante par morceaux portée par
les simplexes d’un complexe simplicial. L’originalité est ici que la mesure portée
par le complexe simplicial doit être également optimisé. La distance entre les deux
mesures est calculée par une approximation du transport optimal se basant sur une
optimisation linéaire. Cette métrique peut être utilisée pour guider la reconstruc-
tion de maillages de formes lisses par morceaux ou l’amélioration d’un maillage
défectueux. Pour la reconstruction, le complexe simplicial est obtenu par décimation
et optimisation d’une triangulation de Delaunay guidée par la métrique de transport.
La distance utilisée est robuste à la fois au bruit et aux données aberrantes. De
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plus, elle préserve les arêtes vives et les bords des formes à reconstruire (Figure
0.6). Cette distance peut également servir comme outil de post-traitement sur des
surfaces lisses reconstruites avec des méthodes par fonction implicite, en optimisant
la position des sommets.

Fig. 0.6: Reconstruction d’un cône (à gauche: nuage de points initial, à droite: surface
finale).

Données
Dans ce document, les expériences sont réalisées sur des données des dépôts suiv-
ants: AIM@shape, du Stanford Digital Michelangelo Project [Lev+00], des Farman
institute 3D point sets [Dig+11a], du Robotic 3D Scan Repository (University of
Osnabrück), et du KITTI dataset [Gei+13].
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Introduction (English)

This manuscript describes the research projects carried out since the end of my
PhD thesis at the Centre de Mathématiques et Leurs Applications at École Normale
Supérieure de Cachan. These research projects were carried out first at INRIA
Sophia-Antipolis (post-doctoral position) and then at LIRIS - University Lyon 1 as a
junior CNRS researcher.

My work has mainly focused on shape analysis following different directions: The
first one is non-local analysis of surfaces and generalized shapes, through the PAPS
ANR Grant Patch-aware processing of surfaces, started in 2015, that I am leading. The
second one deals with the joint analysis of 3D geometric data and photos of urban
scenes, a project conducted in the context of PhD thesis of Maximilien Guislain, a
joint industry-academic thesis with the Technodigit enterprise. The last research
project described in this manuscript was led during my post-doctorate. It defines an
optimal transport-based distance between a surface defined by a point cloud and a
surface defined by a mesh that can have only a partial overlap.

Chapter 1 gives a state-of-the-art on shape analysis covering a wide range of methods
from differential analysis to shape collections analysis and learning in shapes, giving
an overview of the field. Chapters 2, 3, 4 and 5 describe my different contributions
and Chapter 6 concludes the manuscript and describes some interesting perspectives
that I plan to work on in a near future.

Local Descriptions and surface self-similarity
(Chapter 2)

The first part of my work deals with the definition and exploitation of self-similarity
for surfaces given by point sets or meshes. Indeed, acquisition devices have changed
a lot since the beginning of 3D scanning, they have splitted into two categories: on
the one side accurate but slow and expensive, and on the other side low-cost devices
that are fast but inaccurate. Therefore, it is important to be able to generate accurate
3D models from acquisition devices that are less accurate. To increase the quality of
3D models, I proposed to investigate self-similarity of surfaces. Most surfaces, be it
from natural objects or from industrial design, exhibit a strong self similarity, that
come from their natural structure or the fabrication process: regularity created by
the sculpting process or by the machining tool. Examples of self-similar surfaces are
presented on Figure 0.7.

The key to these approaches is to avoid processing point sets in their entirety. We
instead introduce non-local shape processing methods by encoding point neighbor-
hoods (patches) and by analyzing the shape directly in the space of descriptions.
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Fig. 0.7: Self-similar shapes examples.

Working directly in this description space permis to unveil surface self-similarity since
points that lie far away on the surface can have close neighborhood descriptions.

After defining mathematically self-similarity, we investigate different local surface
descriptions. The first one describes the neighborhood as a height map over the
tangent plane sampled on a regular grid. This description permits to be closer to
the image case, by replacing the image colors by the height over the tangent plane.
Two applications are developed based on this first description, non-local denoising
and point set compression. For denoising purposes, the surface is decomposed into
a smooth surface (intrinsically noise-free) and a residual vector field that contains
the noise and the details of the surface. Hence only the vector field needs to be
denoised, which is done in a non-local manner by aggregating contributions of points
depending on their similarity. Not only do height maps permit to describe locally the
shape, but they also permit to resample it. This can be exploited for compression
purposes by considering a set of neighborhoods that cover the shape and encoding
these descriptions as sparse decompositions over an optimized dictionary. This
yields a compressed representation of the shape that can be easily sampled from.
Importantly enough, this approach encodes the mathematical surface underlying the
current sampling but it cannot recover the initial sampling and will only provide an
alternative sampling (Figure 0.8).

Fig. 0.8: The lovers of Bordeaux (15.8 million points). Point set compressed to 1.15 MB.
(left: original point set - right: decompressed point set).
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However similar details might be distorted over a surface by global scale curva-
tures. In this case large-scale principal curvatures dominate the comparison of
planer+height patches, so that a detail distorted according to different curvatures
will not be deemed similar, and will not be exploited in any further processing. We
therefore modify the local description by considering a height field with respect to
a quadric surface. This simple modification (which has numerical consequences)
permits to unveil similarities between details born by smooth surfaces with different
curvatures. A direct application of this method is surface super-resolution by analyz-
ing a single scan. Instead of registering several scans to obtain a single one with a
higher quality, considering similar details from a single scan permits to increase the
resolution of the point set, with relevant information.

Besides these descriptions as height fields over a plane or a quadric, we have
developed a different type of descriptions, in the course of Yohann Béarzi’s PhD
thesis, as a new function basis, called Wavejets, to describe the local variations of the
surface by emphasizing the angular oscillations and a radial polynomial evolution of
the surface locally around a point. By analyzing the local Taylor expansion of the
surface, we can write theoretically the influence of a bad normal on these coefficients.
Hence we derive an algorithm to correct the normal and Wavejets coefficients. A first
application of this new basis is to define and compute integral invariants efficiently
and use them for detail enhancement and modifications. It could serve in a near
future to put local shape details in correspondence.

Local descriptions and self-similarity of generalized
shapes (Chapter 3)
While the solutions described in Chapter 2 are efficient on point sets which sample
objects surfaces, they can not extend easily to generalized shapes, that is, shapes that
have surface parts and curve parts or even areas with isotropic point distributions.
These shapes have non-constant local intrinsic dimension and cannot be represented
by height maps everywhere. Height maps might even be inappropriate for surfaces
with constant dimension if they are computed with a fixed radius (Figure 0.9), even
if it is possible to give theoretical conditions on the radius to avoid these situations.

p

Fig. 0.9: Example where the representation as a height map is not well-suited. Because of
the high curvature, the r-neighborhood (green) of point p does not project on the
whole disc in the tangent plane, the height values in the non covered areas will be
extrapolated and will introduce a bias in any further processing.

In the case of generalized shapes, which cannot be described locally via height maps
over some smooth surface, we have introduced a different type of descriptor that
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can reliably represent curves or isotropic shape parts while mimicking a height map
in areas where the surface assumption holds. By analyzing jointly these vector fields
through a similarity optimization process, the descriptors of similar areas tend to
align. Two applications are derived from this optimization process: denoising and
resampling of generalized shapes (Figure 0.10).

(a) Original (b) Noisy
(RMSE = 0.124)

(c) Denoised using LPFs
(RMSE = 0.017)

Fig. 0.10: Denoising a generalized shape (400K points).

Apart from this PAPS project that has mainly structured my research activities of
these past years, this manuscript also describes two other projects: one led in the
context of an industrial partnership and the other one led during my post-doctoral
position.

Joint Analysis of point sets and image collections
(Chapter 4)

In the joint industry-academic PhD thesis of Maximilien Guislain with the Technodigit
firm, we investigated the merging of urban 3D point sets and photo collections
acquired simultaneously (thesis co-advised with Raphaëlle Chaine). The context
for this work is urban scene acquisition which has gained a lot of interest lately.
Acquisition campaigns covering entire cities are often led by combining LiDAR
scanners (Light Detection and Ranging) set up on moving vehicles, and cameras
taking pictures at fixed intervals. These campaigns result in millions of points and
a set of pictures whose poses are known by GPS positioning. The goal of this
project was to improve the images and the point sets by combining the two types of
information. We proposed several contributions to answer this challenge.

The position and orientation of the embedded cameras are generally known through
embedded positioning devices, which are often inaccurate, due to calibration errors
or to vibrations of the moving vehicle. To obtain an accurate camera pose, we
propose a two-steps algorithm, that rely on Mutual Information and Histograms of
Oriented Gradients. The coarse step permits to efficiently narrow down the search
space for the pose, while the fine step permits to increase the registration accuracy
(Figure 0.11). This method computes an accurate pose even if the initial estimates
are far away from the actual position and orientation.

Once camera poses are estimated, it is possible to use the images to infer the color
of each point of the point set by projecting the colors from the images to the points.
However different images might propose different colors for a single point, be it
because of a residual registration error or because of some illumination difference or
occlusion. To overcome this problem, we rely on an energy formulation that takes
into account all the proposed colors for a single point, as well as the colors in the
spatial neighborhood of a point.
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The resulting colored point cloud is still influenced by scene illumination which is
an extrinsic information, depending only on the time of the acquisition and not on
the scene itself. In particular cast shadows depend on the sun position and alter
the colors a lot. It is therefore necessary to detect and correct these shadows. We
propose a method that rely on the joint analysis of LiDAR reflectance and the color
of the points in the point set. By detecting enough shadow/light interfaces, we are
able to characterize the illumination of the scene and correct it to obtain shadow-less
point sets.

(a) Coarse
registration

(b) Coarse+fine
registration

(c) Coarse
registration

(detail)

(d) Coarse+fine
registration

(détail)

Fig. 0.11: Registration result, with coarse registration only (left), and coarse + fine regis-
tration (right).

Shape correspondence using Optimal
Transportation (Chapter 5)

Fig. 0.12: Cone reconstruction (left: input point set, right: final surface).

In the course of my post-doctorate position, in collaboration with Pierre Alliez,
David Cohen Steiner, Fernando de Goes and Mathieu Desbrun, we developed a
method for comparing shapes described as a mesh (or more generally a simplicial
complex) and a point set, by means of an Optimal Transportation computation
between measures defined on the two shapes. Our approach considers the input
point set as a discrete measure (a set of Dirac masses) and the simplicial complex
as a piecewise constant measure defined on its simplices. The originality is that the
measure on the simplicial complex is optimized for. The distance between the two
measures is computed as an approximation of the optimal transportation problem
using linear programming. It permits to reconstruct meshes of piecewise smooth
surfaces and to guide a post-processing application of defect-laden meshes. The
reconstructed simplicial complex is obtained by decimation and optimization of
a Delaunay triangulation guided by the Optimal Transport metric. An important
feature of this distance is its robustness to noise and outliers. Furthermore, it also
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preserves sharp edges and boundaries for open surfaces (Figure 0.12). Another
application of this distance is as a post-processing tool for smooth surfaces built
using implicit surface reconstruction methods by vertex position optimization.

Data
In this manuscript, experiments are performed on the data from various repositories:
AIM@shape, Stanford Digital Michelangelo Project [Lev+00], Farman institute 3D
point sets [Dig+11a], Robotic 3D Scan Repository (University of Osnabrück) and
KITTI dataset [Gei+13].
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1Shape Analysis - some
background

1.1 Shape representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Local shape analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Shape descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Non-local shape analysis . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5 Shape Collection Analysis . . . . . . . . . . . . . . . . . . . . . . . . 25

3D Shape Analysis is a wide area of Computer Graphics. It ranges from local
differential geometry estimation to semantic interpretation and classification. In
this chapter we give an overview of the major approaches by restricting it to local,
non-local, and shape collections analysis. To keep this overview focused, we do not
address functional maps [Ovs+12] and manifold harmonics analysis [LZ10]. We
also refer the reader to the state of the art [Ber+17] for surface reconstruction, to
[Bot+10] for a more general introduction to the field of polygonal mesh processing
and to [Ber03] for an overview of Riemannian geometry.

After briefly discussing the shape representation problem, we divide shape analysis
methods in three categories. First, local analysis methods are focusing on differential
quantities. Taking the analysis one step further, non-local analysis aggregates local
information from all over the surface and jointly exploits it for denoising, inpainting,
or to extract the global shape structure. The last category is an expanding trend of
geometry processing that considers shape collections to build templates, improve
shape modeling, and more recently applies modern machine learning techniques to
extract all kinds of information. This chapter follows hence a small-to-large scale
methods classification.

1.1 Shape representation
From a theoretical point of view, the objects studied in this manuscript are Rie-
mannian surfaces. As a reminder, a Riemann surface S is a connected Hausdorff
space such that, for every point p ∈ S there is a neighborhood N (p) containing p,
homeomorphic to the open unit disk of the complex plane. These homeomorphisms
are called charts. The transition maps between two overlapping charts are required
to be holomorphic.

In Geometry Processing, a surface is generally an Orientable Continuous 2D manifold
embedded in 3D [Bot+10]. Intuitively this means that a surface is the boundary (or
a part of the boundary) of a non-degenerate 3D volume. Surfaces can for instance
be a set of a physical measures of a real object surface, the result of a 3D modeling
software or even the output of some simulation.
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There are several ways to represent geometric shapes. We restrict the following
chapter to two common representations used widely in Computer Graphics and
Geometry Processing: point clouds and surface meshes. Point clouds are the raw
output of most 3D scanners: each point corresponds to a measure given by an
acquisition device (such as a laser scanner). This representation does not provide any
further interpretation on the surface data, such as topological cues. However many
applications require high level information which is usually provided by polygonal
meshes. Polygonal meshes are piecewise linear approximations of a shape. It is a
set of polygons linked by their edges. The simplest polygonal mesh is triangular:
each point on the surface can be expressed in terms of barycentric coordinates of
the three vertices of the facet it belongs to. Surfaces represented as meshes are
usually 2-manifold surfaces: at each point, the surface is locally homeomorphic to a
disk (or half disk if the vertex lies on the boundary) i.e. there exists a continuous
map between the local neighborhood and a disk that has continuous inverse. This
property, translated for surface meshes, states that each edge must be adjacent to
at most two triangles, furthermore two surface sheets cannot meet at a vertex. If,
in addition, we are dealing with a closed surface, each edge must have exactly two
adjacent facets.

On digitized surfaces, local analysis requires the definition of a neighborhood, to
evaluate differential quantities or shape variations. For a mesh, the neighborhood
of a vertex can be the one-ring (set of vertices connected to the center vertex by an
edge), the barycentric cell (adjacent triangles barycenters are connected), Voronoi
cell (triangles circumcenter instead of barycenter) or a mix of the two (mixed Voronoi
cell). For a point cloud, one can choose either the k nearest neighbors or all points
lying inside a ball of given radius r - or a mix of the two (e.g. k-nearest neighbors
clamped by a maximum distance).

In this manuscript, we will use both mesh and point set representations: Chapters
2, 3 and 4 will mostly represent shapes as point sets. Indeed, applications shown
in Chapter 2 focus on improving the quality of the point coordinates measure and
thus targets point sets. Chapter 3 deals with generalized shapes that cannot be
represented by meshes. Chapter 4 tackles urban data, for which mesh reconstruction
would be too expansive and not necessarily doable as there might be missing data, or
non surface parts (e.g. due to vegetations). Finally, Chapter 5 presents a surface mesh
reconstruction method from an input point set and thus uses both representations.

1.2 Local shape analysis
Local shape analysis estimates local quantities such as differential properties (nor-
mals and curvatures). It can serve as a starting point for more sophisticated pro-
cessing such as ridge and crest lines detection or shape matching based on local
descriptions. It is important for many applications: crest lines help for shape seg-
mentation, compression of flattening. Curvatures variations are also useful for shape
description and shape matching.

1.2.1 Pointwise differential quantities estimation

The most straightforward information of a geometric shape is the set of positions
that define the surface. However, it is hardly sufficient: even from a simple visualiza-
tion perspective, human eyes are far more sensitive to surface normals variations
than coordinates variations. Consequently, 3D renderers always require pointwise
normals to the surface. Furthermore, the normals are often required to be oriented
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consistently, i.e. all normals should point inwards or outwards of the shape. This
orientation is of utmost importance for rendering, but also for a whole class of mesh
surface reconstruction methods that use the orientation to discriminate between
points in the ambient space lying inside or outside of a closed surface [Hop+92;
KBH06; KH13].

For meshes, the normal to a triangle can be computed as the normal to the plane
the triangle belongs to. One can deduce the normal to each vertex as a weighted
average of the normals of its incident facets. If the mesh is oriented, triangle vertices
(vi, vj , vk) are given in a chosen order (clockwise or counter-clockwise), the output
normals will be consistently oriented.

Estimating normals on point clouds is a widely studied research topic. Several
methods stem directly from Computational Geometry. On a dense enough point
set, one can observe that Voronoi cells tend to elongate in normal directions, hence
the normal direction can be estimated as the cell elongation direction [AB98]. By
considering unions of cells, instead of single cells, Alliez et al. made this method
robust to noise [All+07]. Mérigot et al. [MOG11a; MOG11b] formally linked curva-
ture and the shape of Voronoi cells, and introduced a method (Voronoi-covariance
measure - VCM) to compute normals and curvatures and detect sharp features under
the Hausdorff noise assumption.

A different, and popular, way of computing normals is by Least Squares fit of a plane
around each point. This is done by building the local centered covariance matrix and
extracting its eigenvector associated to the least eigenvalue as the normal [Hop+92].
Intuitively, this eigenvector is the direction in which the neighborhood of the points
spreads the least. Mitra et al. [MN03] showed that the normal estimation error
depends on the surface curvature, the neighborhood radius and the noise magnitude.
In a similar manner, Pauly et al. [PMG04] used weighted covariance matrix to
compute the normals. The weights are obtained through a measure uncertainty
estimation.

This normal estimation relies on a local planar hypothesis: locally the surface is
well approximated by a plane. However higher order polynomial can lead to more
accurate normals. In that spirit, Cazals et al. [CP03] fit a high order polynomial, in
the form of a truncated Taylor expansion, locally to the surface. This polynomial
is called an osculating jet of given order n. Since the Taylor expansion coefficients
are directly linked to the surface derivatives, normals can be directly deduced from
the coefficients. Such surface fitting methods work well for smooth surfaces but fail
for surfaces that are only piecewise smooth (e.g. a cube). In the latter case, they
result in a smooth transition between normals across the edge, the width of the
transition being more or less controlled by the neighborhood radius. To overcome this
limitation, a common idea is to cluster points across the edges [Zha+13; Liu+15].
An alternative is to rely on noise scale estimation and robust statistics to fit a plane
and deduce the normal, at the cost of a large computation time [Li+10]. Another
alternative to deal with sharp edges is to work in the Hough plane parameter space
[BM12], or apply Deep Learning techniques to this parameter space [BM16]. By
nature, these methods discretize the parameter space, and the obtained normals are
thus dependent on the discretization precision. Several normal estimation methods
are compared on Figure 1.1.

Although normals are one of the most useful differential quantities that can be
computed on a surface, higher order derivatives also convey very important infor-
mation on the shape. In particular the principal curvatures and principal curvature
directions are useful to detect creases on a mesh, which, in turn, can improve its
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PCA 2-jet 5-jet VCM Hough Hough CNN

Fig. 1.1: Normal estimation on two intersecting cylinders creating a sharp edge. 2-jets
fitting [CP03] and PCA smooth out the normals direction over the whole shape
and blur the edge. Although 5-jets and VCM [MOG11b] produce narrower normal
transitions, they still fail at producing a normal discontinuity. Hough [BM12]
and Hough-CNN [BM16] produce sharper transitions at the cost of a normal
discretization. (Image: Yohann Béarzi)

compression or its rendering. Because of the heterogeneous nature and quality of
the processed surfaces, there is no global consensus on the best way to estimate the
curvatures.

Polynomial fitting methods naturally provide estimates for the principal curvatures,
for point clouds or meshes. This idea dates back to Chen [CS92] and Hamann
[Ham93] who fit a least squares regression quadric whose coefficients give in closed-
form the principal curvatures. Goldfeather and Interrante [GI04] propose to use
either osculating circles on the surface normal slices, parabola or cubic surfaces
regression to estimate the Weingarten map and principal curvatures. Interestingly
they conclude that although the curvatures are linked with order two coefficients in
the regression polynomial, fitting a cubic surface yields more accurate curvatures, a
property that is formally proven for Osculating Jets. Indeed, Cazals et al. [CP03]
prove that estimating a k order derivatives with a n-jet in a neighborhood of radius
r is performed through this method with a precision in O(rn−k+1). For example,
normals depend on first order derivatives and can thus be estimated in O(rn) while
curvatures are estimated in O(rn−1).

More generally curvature tensor estimation has raised a lot of interest. The Curvature
Tensor is a symmetric 3× 3 matrix C whose eigenvalues are the principal curvatures
and 0: (κ1, κ2, 0) and eigenvectors are the principal curvature directions and the nor-
mal (t1, t2,n). Curvature tensor estimation was pioneered by Taubin [Tau95], who
expressed the curvature tensor at a vertex of a mesh by integrating the directional
curvatures around it. The directional curvature is approximated between the point
and each of its neighbors as the normalized scalar product of the normal with the
vector to the neighbor. Tang and Medioni explored a related estimation in the tensor
voting framework which works indifferently for meshes or point sets [TM02], an
idea also developed by Page [Pag+01]. This approach was later made multiscale
[TT05]. Theisel et al. also estimate the curvature tensor, by working directly on
triangle meshes [The+04] and noticing that the Weingarten map coefficients can be
expressed in terms of normal derivatives and surface derivatives. Thus for a given
point on a triangle, normals are interpolated linearly on each triangle, leading to
normal derivatives which, combined with surface derivatives yield the curvature
estimation. Similarly, Rusinkiewicz [Rus04] propose a finite elements approach to
evaluate the curvatures by estimating the second fundamental form on each face and
deducing the values at each vertex. An extension to third order derivative tensors is
also proposed. These methods can be sensitive to noise and outliers, which can be
alleviated by using adaptive neighborhoods given by M-estimators [Kal+07].

Discrete exterior calculus [Mey+02] also provide curvature estimations: the mean
curvature is obtained as the integral of the Laplace-Beltrami operator applied to the
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point positions in a small area around the vertex, and the Gaussian curvature as
the angle default to 2π around the vertex. The directional curvatures can then be
deduced. Another thread of work estimate the curvature tensor using normal cycles
[CM03].

Surfaces can be corrupted by noise which is amplified through an explicit derivation.
On the contrary, averaging over noisy quantities will tend to remove the noise,
under an additive centered noise assumption. In that spirit, Pauly et al. [PKG03]
introduce a shape feature called surface variation based on the local covariance of
the shape as the least eigenvalue of this matrix normalized by the sum of all the
eigenvalues. Surface variation is easily computed and, as such, can be used as a
mean curvature surrogate. It is also possible to link some differential quantities
such as the mean curvature to integrated quantities, called Integral Invariants. The
most famous integral invariants is the volume of the intersection of a ball with
chosen radius and the interior of a surface. Integral Invariants have been used
for 2D shape matching in images [Man+06], or 3D surface matching [Pot+07;
Pot+09]. Instead of computing these integral quantities on point positions, Digne et
al. [DM14] propose to compute the covariance matrix of point normals and link it
to principal curvatures and principal directions. Importantly enough, several works
have investigated optimal scale detection without having to manually set the feature
scale [LLZ11; KST13].

Principal curvature and directions yield important information on the shape yet they
remain local. Mesh processing often requires to detect features not only as pointwise
measures but as feature lines (edges of a cube or maximum curvature lines), based
on curvatures estimation.

1.2.2 Feature line extraction

Different feature lines can be extracted from a shape.

Ridge-valley lines detection. Ohtake et al. [OBS04] define ridge lines as the loci of
points where the positive (negative) variation of the surface normal in the direction
of its maximal change attains a local maximum (minimum). Curvature derivatives
are usually computed at each vertex by surface fitting [OBS04; SF04; YBS06] and
thresholded to get feature points that are then connected. Lai et al. [Lai+07] use
the idea of integral invariants [Man+06] to detect feature points.

Parabolic curves detection. Parabolic curves partition the surface into elliptic and
hyperbolic regions. They are closed curves bounding convex, concave and saddle-
shaped regions. They can be detected from rendered images, as critical points of the
radiance, and are thus useful for shape from shading applications [Koe90; KDP13].

Demarcating curves. Demarcating curves are zero crossings of the curvature in the
curvature gradient direction [KST08; KST09], they segment the shape into ridge
areas and valley areas. As such, they can be considered as dual to ridge and valley
lines. Curvature level lines [ZTS09; Dig+10] also permit to segment regions based
on curvature values

While all these methods are defined on surface meshes, which makes it easy to
provide smooth feature curves using the mesh connectivity, some methods address
the feature line detection directly on point clouds, by extracting subgraphs of neigh-
borhood graphs based on curvature values [GWM01; PKG03; Dem+06; Dem+07],
or using a Voronoi diagram of the points [Kal+09].

17



Fig. 1.2: Ridge and valley lines detected by the method of Ohtake et al. Image reproduced
from [OBS04].

In a quite different direction, some applications benefit from view-dependent feature
lines, for example by drawing lines that permit to best grasp the volume of the shape
when it is rendered. These suggestive lines can be thought of as what an artist
would produce if asked to draw the shape [Col+08]. Several such view-dependent
feature lines have been investigated over the last two decades, such as occluding
contours [Her99; HZ00], or suggestive contours [DeC+03; DFR04]. Interestingly,
view-dependent feature extraction can be thought of as the reverse operation to
sketch-based modeling, a completely different yet very active research field.

Although feature lines extraction aggregates local information and outputs a global
result, it still considers local neighborhood relationships and propagates the infor-
mation across the neighborhoods. However, many objects have repeated details
over their surface, be it at the same scale or at a different scale. This idea is well
known by the image processing community and is at the heart of non-local analysis
[BCM05a]. However the lack of a standard representation makes the adaptation to
surfaces difficult. This requires a efficient local shape descriptions, reviewed in next
section.

1.3 Shape descriptors
Geometric information permits to detect feature points on a shape, but it can also be
used to match shapes. Either to match full or partial scans under a rigid transform
hypothesis, or to match shape that have undergone an intrinsic isometry.

1.3.1 Descriptors robust to rigid deformation

In the context of shape matching (be it complete shape matching or partial scan
matching), several descriptors have been proposed.

Global shape descriptions. Some descriptors account for entire shapes and target
full shape matching and database retrieval. Horn was one of the first to propose such
a shape descriptor, Extended Gaussian Images [Hor84] that map the surface normals
to a sphere. Histograms of shapes have proven quite successful for shape represen-
tation in the early years of shape classification research [Ank+99]. Among others,
Shape contexts are histogram representations of a surface point, by considering the
vectors to several anchor points on the shape. It has been used successfully for 2D
curves [BMP02] and for 3D surfaces [Kör+03]. Snapshots [Mal07] are another
example of a descriptor computed at an anchor point but requiring the complete
shape. It consists in computing a rendered image of the surface using a virtual
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camera positioned at an anchor point with an axis orthogonal to the surface. Spin
Images [JH99] were initially defined for complete shapes, each point being described
by a 2D histograms of the radial and normal distance to each of the shape vertex or
point (Figure 1.3).

Other global shape descriptions do not need an anchor on the shape. For example,
symmetry descriptors [Kaz+03] focus on achieving invariance to symmetries. In a
similar spirit, rotation invariant descriptors [KFR03] permits to avoid solving for the
aligning rotation when comparing two models. Skeletons are also good candidates
for shape representation, and they have been used successfully for shape retrieval
[Sun+03]. Zernicke polynomials, primarily designed for lens distortion analysis
were also used as shape descriptors [NK03], as were spherical moments [SV01] and
spherical harmonics [KFR03]. Shapes can also modeled by probability distributions
of global geometric shape features [Osa+02]. In a quite different approach, Liu et
al. [Liu+09] proposed to rely on the shape diameter function, to define a metric
between shapes taking subregions structure into account.
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Fig. 1.3: Spin Image of the mask shape computed at one point of the mask (marked in red
on the left).

Local Shape Description. Other descriptors rely rather on a local neighborhood
around each point and aim at capturing the geometric variations of the shape in
a patch around a point. These are particularly useful for registering partial scans
of an object and turn them into a complete model. Geodesic fans can be used
to characterize local neighborhoods [ZG04]. Geodesic Fans sample the surface
information (color, texture maps) at a given geodesic distance at regularly spaced
angles around the center points. Gatzke [Gat+05] further pushed the idea by
sampling the curvatures instead of some texture. Similarly, Point’s Fingerprints are
geodesic circles projected onto the tangent plane [SA01]. Local shape description
can also be done via Spin Images [JH99], restricted to a small neighborhood around
each point. Li and Guskov [LG05] represent local neighborhoods by computing the
Fourier Transform of the normal variations on a disk around a point. Combined with
an efficient feature detection, their descriptions yield an efficient registration (Figure
1.4). Gal and Cohen-Or [GC06] describe the points by their curvatures using quadric
fitting.

A problem for designing local descriptors is that there is no natural way to describe
the neighborhood around a point: if the underlying surface is smooth enough, the
surface can be seen as a local graph over the point’s tangent plane. But there
remains the ambiguity as to how to parameterize the tangent plane. To avoid this
parameterization Spin Images rely on radial+normal descriptors [JH99] (Figure 1.3),

19



Fig. 1.4: Registration via multiscale feature point detection and description using the
method of Li and Guskov [LG05]. Image reproduced from [LG05].

while snapshots [Mal07] use the principal axis of the global shape to alleviate the
rotation ambiguity. Integral Invariants [Man+06; Pot+07; Pot+09] free themselves
from such a choice by relying on volume or area estimation which is intrinsically
pose-invariant. Li and Guskov [LG05] avoid this parameterization problem by
computing a radial Fourier transform, hence turning a rotation of the tangential
parameterization into a phase shift.

These descriptors are primarily meant for partial shape matching, to match two
partial scans of an object to build a complete model. When gathering these local
descriptors into a bag of features, they can serve for shape retrieval. In this setting,
it is necessary to be able to describe local neighborhoods of points but also to detect
points that are important, in a SIFT-like manner [Low04]. Zaharescu et al. [Zah+09]
proposed a mesh feature detection and description based on scale space extrema and
histograms of gradients. Li and Guskov [LG05] and Gal and Cohen-Or [GC06] also
proposed feature selection either as scale space extrema or as curvature extrema.
The partial scan registration task has recently been achieved using congruent point
sets [AMC08; MAM14], that do not necessarily require feature description, but local
shape descriptors are still highly relevant for other tasks such as non-local analysis
as will be seen in the next chapters.

1.3.2 Shape signatures robust to non rigid deformations

Fig. 1.5: Heat Kernel Signature for small and large scale. Using a small scale, the four paws
are similar, whereas a larger scale discriminate between front paws and hind paws.
Image reproduced from [SOG09].

A huge research effort has been devoted to finding pose-oblivious shape descriptors,
to match a human model to another human model even if one is standing and the
other kneeling, or to match a stretched-out arm to a bending arm. The deformations
underlying such a pose change are intrinsic isometries: bijective mappings between
shapes that preserve geodesic distances. The Laplace-Beltrami eigenfunctions and
eigenvalues are isometry invariants [Ber03] and are thus particularly well suited to
the design of such descriptors.
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Pioneering this field, Elad and Kimmel [EK03] used the geodesics’ invariance to
intrinsic isometries to design an isometry-independent shape signature, by first com-
puting a set of geodesics between various surface points and using Multi-Dimensional
Scaling (MDS) to extract a shape representation that could be then compared using
Euclidean distances. Shape Contexts were also adapted to the nonrigid deformation
setting [Kok+12]. A different approach used the Shape Diameter Function together
with the centricity of the shape gathered in 2D histograms [SSC08], serving as
isometry-invariant shape descriptors. The Laplace-Beltrami spectrum, i.e. the vector
containing its eigenvalues has also been used as a fingerprint for shape recognition
[RWP05]. Rustamov proposed a descriptor computed per point by scaling the values
of the Laplace-Beltrami eigenfunctions by the corresponding eigenvalues [Rus07],
permitting to cluster shapes corresponding to a single object undergoing an intrinsic
isometry.

Following this trend, a major milestone was set by the development of the Heat Ker-
nel Signature (HKS), proposed independently by Sun [SOG09] and Gebal [Geb+09]
(Figure 1.5). The Heat Kernel Signature describes points on the shape in a stable,
efficient, multiscale way, by computing the amount of heat on a shape over time,
starting with an input heat distribution. Under mild assumptions, HKS is invariant to
intrinsic isometries. A scaled version of the Heat Kernel Signature was later proposed
[BK10] allowing to compare shapes undergoing both an isometric deformation and
a scaling. Ovsjanikov et al. further proved that under mild genericity conditions the
knowledge of a single correspondence can be used to recover an isometry defined
on entire shapes [Ovs+10]. In a similar spirit, Aubry et al. [ASC11] developed
another descriptor, using the Schrödinger equation governing the temporal evolu-
tion of quantum mechanical particles instead of the Heat diffusion equation. Both
descriptors can be easily written with respect to the Laplace-Beltrami eigenfunctions,
Litman and Bronstein proposed a method to learn an optimal descriptor, provided it
can be decomposed on the manifold harmonics basis [LB14].

This thread of work led to the development of Functional Maps [Ovs+12], which
provides a way to turn the point-to-point correspondence problem into a function-
to-function correspondence problem, hence enjoying the benefits of linearization.
This was later used for the shape correspondence problem when the input is two
shapes segmented into sets of regions [Pok+13]. Functional maps are to this day a
very active research field with both theoretical and numerical progress made every
year.

1.4 Non-local shape analysis
Object surfaces often exhibit repetitive structures and statistical properties that are
interesting to exploit in a shape analysis framework. Such a point of view is called
non-local: it aggregates local information from all over the surface. Non-local shape
analysis is usually performed as a way to enhance or denoise the surface but it can
be useful to extract global shape structure.

1.4.1 Non-local analysis for shape enhancement

The idea emerged in 2005 by the introduction of the Non-Local Means [BCM05a;
BCM05b] which described a way to denoise a pixel p by looking for pixels with
neighborhoods similar to p’s neighborhood. This simple formulation allowed to
reach state-of-the-art results in denoising in particular for the preservation of edges
and details. While patch-based approaches had been already proposed for texture
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synthesis [EL99], it was the first time that it was used for image denoising. The
non-local filter can be seen as the limit of the neighborhood filters, since the neigh-
borhood used for the denoising is no longer the euclidean local neighborhood but a
neighborhood in the space of patches. This idea was used to make the computation
faster [Ada+09; PD09], by working directly in the space of image patches. The
reason for the success of the non-local means algorithm lies in the fact that it takes
advantage of the self-similarity of natural images. Throughout this manuscript,
self-similarity will refer to the property of a signal (image or surface) to exhibit neigh-
borhoods at different locations that are close with respect to a distance between
neighborhoods and will be formally defined in Chapter 2. In Image Processing, this
distance can be the sum of squared differences distance between image patches.

Fig. 1.6: Fandisk denoising using Non-Local Means for meshes. Images reproduced from
[YBS06].

Following this success, similarity based denoising has been proposed for surface
meshes [YBS06], by defining local approximations of the mesh as a combination of
a polynomial and a sum of radial basis functions centered at each of the data points
(Figure 1.6). This approximation permits to compare neighborhoods as height field
differences with respect to the local tangent planes. However this representation
has to be built around each vertex and the comparison with respect to another
vertex cannot be replaced by a simple `p distance, since the neighborhoods are
not described in the same basis. Although this method was designed for meshes,
it could be extended to point clouds by redefining neighborhoods. Dong et al
[Don+08] extended the non-local denoising methods to level-set surfaces using
a variational formulation [KOJ05; GO09]. Guillemot et al. proposed a surface
reconstruction method with a non-local flavor [GAB12] in the well-known Point Set
Surface framework [Ale+01]. Self-similarity was also used to consolidate scans or
urban scenes, by explicitly modeling repetitive elements and consolidating them
[Zhe+10] (Figure 1.7).

Fig. 1.7: Non-local consolidation of urban scans. Image reproduced from [Zhe+10].

More generally, self-similarities of surfaces have been used for geometric texture
synthesis using local volumetric grids either local [BIT04] or global [LDD05], by
geometric patches matching and deformation [Zho+06] or by piling discrete ele-
ments [MWT11]. Instead of generating the texture directly on the shape, Lai et al.
[Lai+05] proposed to use standard texture image synthesis and a geometry image
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Fig. 1.8: Shape structure detection found by analyzing similarity preserving transforms.
Image reproduced from [Pau+08].

to get a per-pixel displacement modeling the geometric texture. Acknowledging
the limitation of the height field representation to model a texture, Andersen et al.
proposed a pseudo-height field to encode a texture superimposed over a smooth
surface [And+09]. This pseudo height field encoding height and tilt permits to
represent in particular textures with overhanging parts. Self-similarities have been
used for addressing the inpainting problem [SAC04; BF08], by first filling the gaps
with a smooth surface and then copy-pasting geometric patches. Such geometric
synthesis approaches can be extended to synthesize whole models and not only local
geometric textures. Merrell [Mer07] used an improved texture synthesis approach to
build a large-scale model from a small example mesh using a conflict discovery strat-
egy to prevent conflicting examples to be pasted nearby. Example-based methods
permit to provide a vast variety of results while, by definition, enforcing resemblance
to the input model [MM08]. Dekel et al. proposed an approach midway between
local and global scale [Dek+15] by analyzing non-local similarities to correct or
exaggerate discrepancies.

Apart from shape analysis or geometric texture synthesis, non-local approaches are
useful for surface modeling. For example, in an interactive shape modeling session,
one might want to avoid repetitive editing tasks, by constraining similar parts to be
deformed similarly. Such approaches were proposed using Geodesic Fans [ZG04]
or radial/normal distance histograms of neighborhoods [GTB14], which is in fact a
local computation of Spin Images [JH99].

Similarity based approaches require an efficient similarity detection method. Many
methods strive to stay close to Image Processing and Vision concepts define both
a neighborhood description and a distance between them [YBS06; ZG04; GTB14].
However some other methods propose to free themselves from such constraints. For
example, Berner et al. [Ber+11] proposed to detect similarities by introducing the
concept of subspace symmetry, stating that similar parts are related through non
rigid transforms spanning a low rank subspace, and introducing an optimization
procedure to detect these parts and their transforms.

While non-local analysis takes advantage of local variations of the shape, another
related thread of work, exploits the explicit structure of the shape (symmetry, paral-
lelism) to analyze or correct the shape.

1.4.2 Shape structure analysis

Exploring shapes by looking for structures and repetitions is a fast-developing trend
in Computer Graphics.

Several works on shape analysis are dedicated to finding generalized symmetries
between parts of a shape. The knowledge of symmetries in a model can be used to

23



abstract it by encoding only a small part of it and re-instantiating the whole shape
by iterative symmetries [MGP06]. For each point, a signature is computed, either
as a ratio of the principal curvature or as the pair of principal curvatures, these
signatures are used to pair points, and estimate a consensus symmetry which yields
the consensus using the RANSAC algorithm [FB81]. Symmetric shapes can also be
corrected, i.e. if their symmetrical axis is a curve, by straightening this curve, the
shape can be rendered straight-axis symmetric [MGP07]. A survey on symmetry and
applications can be found in [Mit+13]. Going further than symmetries, the discovery
of structures induced by orientation preserving similarity transforms has been also
studied [Pau+08] (Figure 1.8). In this work, the model is first regularly sampled
and points are paired. Pairwise transformations are clustered in the transform space
to get generators finally yielding the regular structure of the model. Structure
extraction can also be performed through the extraction of a skeleton [TZC09;
Cao+10]. Pose-independent symmetries have also been addressed: the left and right
arms of a human model are indeed intrinsically symmetric, independently of the
pose [OSG08; Xu+12].

A direct application of structure detection is to complete or correct partial acquisi-
tions. Chauve et al. [CLP10] detect planar primitives and expand them, relying on
point cloud voxelization to overcome scanned data anisotropy, however this voxeliza-
tion generates artifacts. Boul’ch et al. further improved the method by avoiding the
voxelization and deducing a surface reconstruction by energy optimization [BLM14].
The planar primitives can be either detected by region growing [CLP10] or using
an accelerated RANSAC procedure [SWK07]. The set of detected primitives can be
used for shape completion and reconstruction [SDK09; LA13]. As an alternative
to RANSAC, the PEARL algorithm [IB12] formulates the problem as a multilabel
optimization problem and solve it using an α-expansion algorithm on the pointset
triangulation.

Geometric primitives can also be corrected or regularized by taking into account
their geometric relationships. GlobFit [Li+11] starts with geometric primitives
detection (spheres, cylinders and planar primitives) using RANSAC, then uses con-
strained optimization to align the primitives to global mutual relations (such as
parallelism, orthogonality or position) and iterates. O-snap [Ari+13] is another
way of discovering structural relationships, restricted this time to planar primitives,
by detecting planar primitives boundaries and snapping corresponding polygon
vertices of nearby primitives. This kind of constraints can also be embedded into an
interactive reconstruction method, by making user-drawn boxes snap when some
regularity constraint is met [Nan+10]. Rapter3D [Mon+15] starts with a set of
planes obtained by region growing, adds planar primitives to the candidate set by
enforcing relationships between primitives and finally selects the relevant primitives
and relationships by solving a Mixed Integer Programming optimization. Detection
and regularization of planar primitives can also be done in tandem [OLA16], by
directly taking into account the geometric relationships in the fitting process.

Fig. 1.9: Plane detection in an input point cloud and shape reconstruction guided by the
detection. Image reproduced from [Ari+13].
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Some regularities are context specific and can thus be modeled explicitly. For
example, for aerial LiDAR building acquisition, roof regularity can be exploited for
building modeling [Zho12]. In the context of indoor/outdoor building acquisitions,
Xiao and Furukawa [XF14] proposed a bottom up Constructive Solid Geometry
approach to first extract planar museum maps from point cloud horizontal slices
then aggregate it into a 3D model to be later textured. The Manhattan structure of
cities can be used to extract the structure from LiDAR point clouds [VAB12].

Taking the problem one step further, the idea to analyze a shape by considering its
large scale structures leads to analyzing shape collections to find relevant structures
or class characterization.

1.5 Shape Collection Analysis
A lot of valuable geometric information can be gathered not only by studying a shape
locally or non-locally but by considering its relationships with several other shapes.
This often requires computing correspondences between shapes which can be done
in several ways, including using local or global shape descriptors listed above. For a
more complete survey on shape correspondence we refer the reader to [Kai+11].
More recently Xu et al. proposed an overview on data-driven shape analysis [Xu+16;
Xu+17]. We recall here some important principles.

1.5.1 Shape Retrieval

Fig. 1.10: An example of a shape modeling application driven by shape retrieval in a
database. Image reproduced from [Fun+04].

The most studied topic of shape collection analysis this category is shape retrieval,
with various purposes. The goal is to find the shapes in a database that are the
closest to an input query shape. The study of shape retrieval in shape collections
started in the early 2000s [Fun+03; Shi+04].

Shape retrieval can be performed in various ways. The most straightforward way
involves computing shape descriptors and describing each shape by its set of de-
scriptors, thus embedding the shape in a high-dimensional descriptor space. The
queries are then done directly in this set of descriptions. This embedding in the
descriptor space can be performed using Spin Images [Ass+07], Zernicke moments
[NK03], or any descriptors described in section 1.3. In this feature space shape,
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query is performed by nearest neighbor search which can be done efficiently using
approximate neighborhoods query algorithms (e.g. [ML14]) or priority-driven search
[FS06]. This bag-of-features approach has been applied to the special case where
the query is a single sketch, using line features [Eit+12]. ShapeGoogle [Bro+11]
represents shapes through multiscale heat kernel signatures, and converts it to a
binary code using metric learning. This algorithm permits to achieve fast shape
retrieval performance on the SHREC benchmarks [Bro+10; Boy+11].

1.5.2 Applications of shape retrieval

Shape retrieval has many applications. For example, to complete a partial scan,
one can look for similar shapes in a database [Pau+05]. If additional informations,
such as a semantic labeling, are known, shapes can be completed by assembling
labeled parts of shapes gathered in a collection [She+12]. If shape retrieval is
performed during the 3D acquisition, it can provide user guidance to improve
the acquisition quality [Kim+12b; Kim+13b]. Joint shape segmentation can also
be achieved by considering collections of shapes. Several methods proposed to
optimize over possible segmentations of individual shapes simultaneously with
the correspondence between segmented parts of a collection of shapes [GF09;
HKG11]. Imposing that the maps between shapes should be consistent renders
the process more robust [Ngu+11; Hua+12]. Instead of solving for alignments,
Sidi et al. proposed to perform this co-segmentation by embedding the shapes in a
pose-oblivious descriptor space [Sid+11]. Wang et al. proposed a semi-supervised
approach for shape segmentation by working in the feature space and having the user
add separation or aggregation constraints iteratively [Wan+12]. When analyzing
a scene, the segmentation and classification can also be interleaved by growing a
segmented region only by adding regions that increase the likelihood of the model.
This can be achieved by learning a model descriptor through a Random Decision
Forest Classifier [NXS12].

Using shape collections also permit to design clever shape modeling tools (Figure
1.10), by assembling segmented parts [Fun+04; Cha+11] or to model virtual
environments [FSH11]. The prior shape part segmentation can be done using
hierarchical decomposition and cuts [KT03]. Kalogerakis et al. [Kal+12] propose to
infer new shapes by learning the probabilities of part relationships. This principle
has also been applied to scene modeling by segmenting objects in an acquired indoor
environment and retrieving nearest models in the collection to model the 3D scene
[Sha+12].

Shape collections permit to discriminate between shape properties that are shared
throughout the collection and properties that are specific to a single shape. For
example, a shape collection can be made of several poses of a shape. In that case a
careful collection analysis permits to extract the shape skeleton [SY07], or to design
a template as a representative shape for the collection [Kim+13a]. Interactive shape
collection exploration tools have also been designed using fuzzy correspondences
[Kim+12a], by template deformation [Ovs+11] or using functional maps [HWG14].
Finally shape collection analysis permits to transfer information between shape
representation with different modalities. For example, one can derive image depth
by looking for corresponding objects in a collection [Su+14].
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Fig. 1.11: Shape retrieval from a sketch using a multiview Convolutional Neural Network.
Image reproduced from [Su+15]

1.5.3 Learning in shape collections

Following the success of new machine learning techniques in image recognition and
vision, several attempts have been made to design neural networks adapted to 3D
surface data. However a huge challenge for learning on such data is the absence of
a regular structure to encode the information. While images intrinsically encode
neighborhoods due to their grid structures, this is not the case for geometric data.
It is however possible to use geodesic radial patterns to design neural networks on
manifold meshes [Mas+15].

To work in the ambient space, and avoid the sampling bottleneck, several methods
turn the data into a grid structure. Volumetric CNN are a natural generalization of
Convolutional Neural Networks for images. Wu et al. [Wu+15b] introduced the
ShapeNets method, which encodes shapes as a binary voxel grid interpreted as a
probability distribution and applies it to shape completion, shape recognition or
view-selection. An alternative to turn irregular surface data into the classical image
grid space is to use multiview rendering and design CNN networks on these rendered
images. Su et al. proved that multiview CNNs actually provide better classification
and recognition results than Volumetric CNN [Su+15] (Figure 1.11). Delanoy et al.
[Del+17] uses a picture-to-picture network [Iso+16] to infer a geometric shape from
multiview sketches, while Huang et al. learned local shape descriptors [Hua+17]
using multiview CNN. Style metrics of shapes can also be learned using multiview
renderings and triplet networks [LGK16]. One can also use depth images in place of
shape renderings [Xie+15]. Multiview approaches have been mixed with volumetric
approaches [Qi+16] and combined with surface-based Conditional Random Field
for shape segmentation [Kal+17]. By defining coarse signatures for shapes sets of
bounding boxes, Li et al. [Li+17] encode the shape manifold and are able to infer
new shapes on this manifold, defined at a high level by a hierarchy of bounding
boxes and at a fine level by inferring the shape using a volumetric neural network.

Precomputing a set of feature vectors and feeding these representations to the
neural network permit to use classical learning techniques. However this embedding
choice has an impact on the result quality which is sometimes hard to predict.
Some methods focus on learning the local representation adapted to specific tasks.
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DeepShape [Xie+17] is a shape descriptor learning network for shape recognition.
The DeepShape network has a classical encoder-decoder architecture taking as
input the histograms of Heat Kernel Signatures over the shape for a set of chosen
time values. The training is performed by minimizing the intra-class distance and
maximizing the inter-class distance of the descriptors, obtained as the values of
the smallest hidden layer (i.e. the bottleneck). These descriptors applied for shape
classification outperform the results of ShapeGoogle [Bro+11].

Going in a quite different direction, attempts are made to work directly on unstruc-
tured data and especially point cloud data by redefining max-pooling operators to
be independent of the sample order and number. In particular Qi et al. [Qi+17a]
proposed to replace the max-pooling operation by a maximum over all points of each
feature coordinate independently. This simple operator permits to handle point sets
of various sizes independently of the ordering. Since then, a more local variant has
been proposed [Qi+17b] and successfully applied to surface curvature estimation
[Gue+18].

Conclusion
The works presented in this Habilitation and in particular those related to the PAPS
project (Chapters 2 and 3) fall within local and non-local shape analysis. They could
be used in bag-of-features types approach or even provide description to be fed
to a machine learning method for tasks such as shape recognition or classification.
However this goes beyond the scope of my work described in this manuscript.
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Most shapes studied in Geometry Processing and Computer Graphics follow strict
mathematical assumptions: shapes are assumed to be 2-manifold surfaces in R3. In
this setting it is always possible to express a surface locally as a height field over
a parameterization plane. This chapter describes contributions on local surface
descriptions that are then used to revisit various surface processing tasks under the
self-similarity hypothesis, that is emphasized by the descriptions. In a nutshell a
self-similar surface is such that local patches are repeated with small variations on
the surface. Many object surfaces share this property which finds its source in the
natural structures of objects but also in the fabrication processes: regularity of the
sculpting technique, or machine tool. This property can be found in natural images
as well: Glasner et al. [GBI09] showed that over 90% patches from natural images
(out of 300 images) have more than 9 other similar patches within the same image.
While such a thorough analysis has not been performed for surfaces yet, image
self-similarity is strongly correlated with object surface self-similarity.

Self-similarity as we define it in this manuscript is considered at constant scale which
is quite different from its definition for fractal curves or surfaces. We first give a
mathematical definition of self-similarity, and then exploit it for various purposes:
surface filtering, compression and super-resolution. This chapter describes several
results obtained mainly during the PAPS project funded by the ANR (Patch-Aware
Processing of Surfaces). This work was done in collaboration with Yohann Béarzi,
Raphaëlle Chaine and Sébastien Valette. It is based on [Dig12; DCV14; HDC17;
BDC18].

2.1 Characterizing self-similarities

2.1.1 Definitions

Let S be a surface defined in R3. Let us denote by BR(p) a ball centered at a point
p ∈ S with radius R.
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Fig. 2.1: Self-similarity based super-resolution of a single scan of the Maya point set. Left:
initial scan, right: super-resolution.

Definition 1. Let p ∈ S, p is ε-similar at a resolution R to S if there exists a point
q ∈ S distinct from p such that:

d(BR(p) ∩ S,BR(q) ∩ S) < ε

where d is a well-chosen metric.

Building a metric d directly on neighborhoods is a non trivial task making Definition
1 impractical. A common solution to this problem is to build an embedding operator
H which maps a surface neighborhood BR(p) ∩ S to a vector in a vector space of
arbitrary dimension k. This vector is called neighborhood description and many
embedding operators building a description have been proposed (see Chapter 1). In
this context, Definition 1 becomes:

Definition 2. Let p ∈ S, and H an embedding operator, then p is ε-similar at a
resolution R to S if there exists a point q ∈ S distinct from p such that:

d(H(BR(p) ∩ S),H(BR(q) ∩ S)) < ε

where d is a well-chosen metric.

In the above definitions we omitted the rigorous definition of the used metric. Since
H is an operator defined from the set of neighborhoods to Rk, the distance is now
computed between vectors of Rk, and can thus be a usual distance such that `p
p ≥ 1. In this chapter, we will consider this distance to be `2, as is also the case for
many patch-based algorithms for image denoising [BCM05a] or 2D texture synthesis
[Kwa+05]. Figure 2.2 shows the distance field between an edge point and all points
on a shape using the descriptor of section 2.2.

Although using a `p distance might not be an optimized choice, it is interesting for
numerical reasons. Given a patch description at point p: H(Br(p) ∩ S), querying
for a similar patch would normally require traversing all patches, yielding a O(N)
complexity (with N the number of patches in the surface). However, using a spatial
search structure such as a kd-tree reduces the complexity to O(logN) per point, a
much more tractable complexity. Even faster computation times could be reached
using Gaussian Kd Trees, at the cost of some approximation [Ada+09]. Another
acceleration strategy would be to take into account the manifold neighborhood struc-
ture as is done with the PatchMatch algorithm [Bar+09] for 2D images. However,
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Fig. 2.2: Similarity of all points of the shape to a point on an edge of the shape (red if the
point is very similar to the edge point and blue otherwise).

this would require building a constant neighborhood structure over the manifold,
which is difficult to do for surface point sets.

If all points on the surface S are ε-similar to S, then the surface itself is ε-self-
similar.

Definition 3. A manifold S is ε-self-similar at a given resolution R iff for all p ∈ S p
is ε-similar to S at resolution R.

In practice, as Glasner [GBI09] suggested for the 2D image case, not all points of S
are ε-similar to S. As will be seen in the further developments of this chapter, if no
similarity is found then the hypothesis will not be enforced and the processing will
be adapted. In most practical cases, working under the self-similarity assumption
still allowed for efficient shape processing algorithms. Figure 2.1 shows an example
application: point set super-resolution.

2.1.2 Local Parameterization

To be able to detect surface similarities, we need to describe local surface neigh-
borhoods to make them comparable. A common requisite of all the local shape
descriptors presented in this chapter is a robust local parameterization. A solution
is to compute the principal directions of the surface, for which many estimation
algorithms have been proposed (see Chapter 1). Here we rely on the local normal co-
variance matrix as explained in [DM14]. For each point p, we thus have a coordinate
frame (t1(p), t2(p),n(p)). Given the oriented normal and the principal directions,
there remains an ambiguity on the principal directions orientations. While two
possible frames are possible, the choice between them needs to be consistent over
the surface. To avoid having to choose between two orientations, when an explicit
similarity search is performed, we introduce two possible descriptors for each point,
each one corresponding to a different orientation of the frame. Although it increases
the total number of patches, it will barely affect the search for similarities, since
this search is done in a kd-tree and is therefore of logarithmic complexity w.r.t. the
number of patches.

2.2 Plane+Height description

2.2.1 Planar Patch description

The most naive surface patch description is a rasterized height field over a tan-
gent plane, encoded as a local image. Despite its simplicity, we will see that this
description already provides good results.
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Fig. 2.3: The 4× 4 patch of a point located near an edge of the faceted sphere 2.8, color
valued (left) and 3-dimensional (right).
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Fig. 2.4: Local neighborhood description: a height map over a radial grid

Given a local frame at a surface point p, the coordinates of each neighbor q are
expressed in this local coordinate frame, yielding a set of height values for irregularly
sampled points on a plane. These irregular height values are interpolated on a grid
using Radial Basis Function interpolation. Figure 2.3 shows an example of a patch
near an edge of a diamond shape.

This grid representation amounts to sampling the height field on a grid aligned
with the principal directions. The sampling process, however, can be performed
on a different point distribution (which we will call sampling pattern), for example
a random set of points in the parameterization plane. However once a sampling
pattern is chosen, this pattern should be the same for the whole surface, in order
for neighborhoods to be comparable. If descriptors are not computed for each point
but on a subset of the points with a coverage constraint (to ensure that all shape
variations are accounted for), it might be better to resort to a radial grid (see Figure
2.4). This radial pattern is well adapted to this setting since more points are sampled
near the seed, where it is likely that there is less multiple coverage.

Importantly enough, in order for the descriptor to remain local, the radius of the
neighborhood and the size of the grid must be small in comparison to the object
feature size. Furthermore, to build a representative descriptor, it is necessary to
allow for a number of points in the sampling pattern corresponding to the surface
resolution. A good choice is to set the size of the sampling patterns to be close to
the size of the neighborhood (number of points if the surface is represented as point
cloud, number of vertices if the surface is represented as a mesh).

In the remainder of this chapter we will denote by HP(p) this plane+height descrip-
tor.

2.2.2 Application to Point Set denoising

When dealing with acquired data sampled on a real object surface, denoising is a cru-
cial step of the processing pipeline. The idea is to separate the input signal between
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Fig. 2.5: A point cloud and its similarity-based denoising (AIM@shape repository)

S

Ssmooth

V

Fig. 2.6: Example of a decomposition of an input surface (red) into a smooth surface (blue)
and a height vector field (black arrows)

a flawless surface and a noisy component which is almost always considered additive
because of the simplicity and relative good result this approximation provides. A
challenge is to robustly distinguish between the shape and the noise, so as to remove
noise without smoothing out sharp features or geometric textures which can have
frequency properties similar to noise.

Surface denoising is a long studied topic of Geometry Processing methods have also
been introduced for meshes and point sets. Gaussian filters or Mean Curvature Mo-
tion filters remove all details and sharp features since they denoise indiscriminately
noise and features: clearing the shape of all its high frequencies. To avoid that,
different strategies have been proposed. The bilateral filter, for example, uses non
isotropic neighborhoods to preserve features, the neighborhood becomes adaptive:
not taking into account only distance between the points but also shape properties of
the neighborhoods of the points [FDC03]. Another type of approach for this problem
is to find an equation of the locally underlying surface and project the point cloud
on it. This approach was developed extensively through the MLS (Moving Least
Squares) method [Lev98; Ale+01], with robust variants [GG07; OGG09]. From a
more global perspective, [Wan+14] proposed to decouple noise from surface by
extracting a smooth surface and denoising the residual using `1 decomposition. This
efficient denoising technique however relies on Laplacian decomposition, which
is computationally intractable for large point sets. Similarly [SSW15] proposes to
denoise a point set by first denoising the normals based on the `0 norm and then
denoising the points positions using the estimated normals. This type of denoising is
particularly well suited for piecewise planar surfaces. Such a two-step strategy was
also adapted in a Total Variation framework [Zha+15]. Other approaches include
explicit feature detection before denoising [LDC16], or taking advantage of both
facet and vertex normals in the mesh case [Wei+15].

The point denoising method based on local shape description can be summed up as
follows:

1. The input surface S is decomposed into a smooth base and a height vector
field ~V , S = Ssmooth + ~V .

2. For each point p, a local descriptor HP(p) is computed.

3. The height vector is denoised based on the similarity between the descriptors
and point positions are updated accordingly.
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Surface decomposition. If the surface is decomposed into a smooth part and
a vector field containing the sharp features, the details, but also the noise, then
one needs only to denoise the vector field and not the smooth part. To achieve
decomposition of the surface into a smooth basis and a high frequency vector field
(Figure 2.6), the mean curvature motion filter is iterated over the shape S until all
noise and sharp features are removed, yielding a smoothed shape Ssmooth. The high
frequency is the residual of the smoothing: ~V = S − Ssmooth. Since there is a one to
one correspondence between the points of the initial surface p ∈ S and the points of
the smoothed surface pS ∈ Ssmooth, one can compute for each point p of S the high
frequency ~V (p): ~V (p) = p− pS .

Description. The next step (step 2) builds a planar+height descriptor with a grid as
sampling pattern HP(p) around each point p, as described in section 2.2.1.

Denoising. The high frequency vectors are denoised in a non-local way, using
other similar points regardless of where these points lie. Let p be a point in S, pS
its corresponding point on the smooth surface Ssmooth and ~V (p) = p − pS . We
denote by HP(p) the local descriptor of p expressed in the local intrinsic coordinate
system t1(p), t2(p),n(p). The update equations for point p then writes: p′ =
pS + δp. The update δp = (δpx, δpy, δpz) is expressed in the local coordinate system
(t1(p), t2(p),n(p)) as:

δpx =
∑

q∈S wpq〈~V (q), t1(q)〉∑
q∈S wpq

,

δpy =
∑

q∈S wpq〈~V (q), t2(q)〉∑
q∈S wpq

,

δpz =
∑

q∈S wpq〈~V (q),n(q)〉∑
q∈S wpq

,

where wpq is the similarity of points p and q: wpq = exp−dist(HP (p),HP (q))2

σ2 .

Parameters. The parameters of this method are the following: processing radius,
number of iterations for determining the high frequency term, grid size and standard
deviation of the similarity weights. The processing radius is set so that a ball centered
on each point contains 30 points (average). For this denoising application, the size
of the local descriptor should remain small, the typical value used is 4× 4 or 3× 3.
The important parameter is the standard deviation of the Gaussian for the similarity
weight. A large value will yield a less discriminant comparison and the filter will
behave more like an isotropic filter. A small value will set all weights close to 0,
except for the weight of the patch itself, and the pointset will barely be denoised
(Figure 2.7).

Results. Figure 2.8 shows a shape with natural acquisition noise and sharp creases.
On such simple geometric shape, the bilateral filter [FDC03] and the similarity based
filter tend to work equally well. By construction of the bilateral filter this good
behavior is not surprising: it is especially designed to preserve points around an
edge. In contrast the Mean Curvature Motion removes all sharp features and APSS
[GG07] fails at removing the noise.

Figure 2.9 shows the performance of the filter in the case of a rather smooth surface
with only some engravings. It shows clearly that the details are preserved by the
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(a) Original (b) 0.01 (c) 0.1 (d) 1 (e) Error

Fig. 2.7: Evolution of the denoising with the parameter σ, when σ is large the denoising is
brutal, whereas a small σ will have almost no effect on the shape. Fig 2.7e shows
the evolution of the measured error with respect to the σ parameter.

(a) Initial shape

(b) Mean Curvature (c) APSS (d) Bilateral (e) Similarity

Fig. 2.8: From left to right: a shape with natural acquisition noise, its denoising via Mean
Curvature Motion, projection on the algebraic point set surface [GG07], bilateral
filter [FDC03] and similarity based denoising.

filter while the rest of the shape is denoised. Figures 2.5 and 2.10 show how the
denoising allows for detail preservation even for noisy shapes with boundaries and
sampling variations.

Limitations The denoising algorithm is expected to behave well when dealing with
reasonable point densities. In sparsely sampled areas, the descriptors may fail to
capture local properties of the shape. The algorithm can also generate artifacts
near open surface boundaries. Another limitation for this algorithm lies in the case
of a very structured noise: the algorithm can not distinguish between texture and
noise and will likely enhance the noise pattern. Finally this algorithm is rather slow:
denoising a 5 million points surface, with an octree of depth 7 takes of 2 minutes on
a consumer laptop, which makes it a rather time-consuming algorithm.

More examples and details on this similarity based denoising method can be found
in [Dig12].

2.2.3 Application to Point Set compression

The second application of self similarity based on planar+height patches is point set
compression. In contrast with the denoising application, it will not require explicit
nearest patch search, but will rather rely on dictionary analysis.

3D compression has been deeply explored during the last two decades. For our pur-
pose, we can split 3D compression in 3 different categories : point cloud compression,
mesh compression and shape compression. Point cloud compression approaches
have mostly dealt with coordinates quantization via recursive space partitioning
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Fig. 2.9: Denoising of a pointset with boundaries, details and holes (shape courtesy of Lau-
rent Saboret, INRIA (AIM@shape repository), the pointset used in this experiment
is the set of vertices of the raw mesh. Top: initial scan, bottom: similarity-based
denoising.

Fig. 2.10: Denoising of a data set acquired with a range laser scanner (left: original, middle:
similarity-based denoising, right: bilateral filter). In the sparsely sampled area in
front of the car, similarity-based denoising tends to create spurious artifacts.
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[GD02; SK06; Hua+06; SPS12]. In a nutshell, these approaches consist in inserting
the points in a space partitioning data structure (e.g. octree, kd-tree) of given depth,
and to replace them by the center of the cell they belong to. Other approaches
encode the shape represented by the point cloud and use this encoding to generate
a different point cloud in the decompression phase. Kalaiah et al.[KV05] propose
to define a level-of-detail hierarchy of the point cloud by computing the PCA of the
points and splitting along the axis corresponding to the largest variation. The final
points are then generated by Gaussian sampling. Schnabel et al. [SMK08] segment
the point cloud into canonical geometric shapes. Each part is then efficiently encoded
individually using vector quantization. Our approach also uses local height maps,
but no segmentation or model regression is needed. Instead, the shape will define its
own analysis space by itself. Compression based on surface similarity was proposed
in [Hub+08], a work which bears some resemblance to the method presented in
this section. It uses K-means to cluster surface patches and derives an efficient point
set rendering method. In comparison our dictionary-based approach is less strict
since each patch is a combination of several patches and not a single one. When
shapes are represented by meshes, many methods exist using, among others, spectral
analysis [KG00], Wavelets [KSS00; Gus+00; GGH02] and bandelets [PM05]. These
approaches can also be progressive [AD01].

Working assumptions

The compression algorithm takes as input a point cloud S which is supposed to be
dense enough to unambiguously represent an interpolating surface S at a fixed reso-
lution coarser than the point set density. It can handle possibly non-oriented point
clouds, by estimating possibly inexact normal directions from local neighborhood. If
the input data is provided with oriented normals, instead of estimating the normal
directions, the provided ones are used.

The algorithm also requires a radius R that corresponds to the scale at which the
self-similarity of the surface is to be analyzed. Several assumptions are made on
R:

• Topological condition: R must be set such that S can be covered by the set of
R-neighborhoods corresponding to a subset of seed points in S. Additionally,
each R-neighborhood should delimit a topological disk on the underlying
surface S (to enable parameterization over the tangent plane).

• Sampling condition: The R-neighborhood of a seed point must contain enough
points so that a meaningful patch of surface can be computed. R should hence
be sufficiently large with respect to the scanner resolution.

• Noise level: The method assumes that noise magnitude is below radius R.

The compression algorithm relies on dictionary learning, which is seen as another
way to emphasize self-similarity: a small dictionary is enough to represent most
surface variations.

Dictionary learning. Our method relies on the K-SVD algorithm. K-SVD is a method
for building representations of finite discrete signals as sparse linear combinations
over an ad hoc dictionary. It was introduced in [AEB06], and has since then been used
for various purposes including denoising [EA06] and image analysis [Mai+09b].

Let Y be a k × n matrix, whose columns are n training signals (yi)i=1,···n, each of
them represented by k samples. The idea is to find a dictionary D, composed of d
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Fig. 2.11: The Lovers of Bordeaux (15.8 million points). Exploiting self-similarity in the
model, this point set is compressed down to 1.15 MB. The resulting model (right)
is very close to the original one (left), as the reconstruction error is less than the
laser scanner precision (0.02 mm) for 99.14% of the input points.

signal atoms, over which each signal yi can be represented as a linear combination
of the dictionary atoms dj . In other words, one can find a vector of coefficients xi
such that yi = D · xi. Let us call X the d× n matrix whose columns are the xi, then
both X and D (k × d) are solved for by computing:

min
D,X
‖Y −DX‖ s.t. ∀i, ‖xi‖0 ≤ T0 (2.1)

The ‖‖0 represents the number of nonzero coefficients in xi. It measures the sparsity
of a decomposition (a decomposition is said to be sparse if a lot of coefficients are
zero and thus its `0 “norm” is small). T0 constrains explicitly the number of nonzero
coefficients.

K-SVD alternates between finding the best sparse representation for Y on D using a
pursuit algorithm (e.g. orthogonal matching pursuit) and updating the dictionary.
The dictionary update consists in considering iteratively each atom dk from the
previous step, building a restricted error and using SVD to find the atom update.
This iterative process needs an initial dictionary which can be a random subset of
the input training signals (yi)i=1···N . We use here a fast version of this algorithm,
with complexity O(2n2d) [RZE08].

Compression . The compression algorithm consists in three successive steps: the
first one selects a subset of points (the seeds) that will serve as center points to cover
the surface with patches. The second one computes a discrete description of the local
neighborhood around a seed. This patch description is obtained by sampling the local
surface height over a local frame: each neighborhood is resampled and described
as a height map over a radial grid (Fig. 2.4). Finally, the third step compresses the
description of the patches by exploiting their self-similarity and building a custom
dictionary, over which all descriptors will be decomposed sparsely.

The seed selection step is performed using a dart-throwing algorithm: all points are
first added to the seeds set, then the algorithm iterates selecting randomly a point
in the set and removing its neighbors from the set until the seed set is stable. The
seeds positions are encoded using a kd-tree based approach [GD02], and the seed
positions are updated to their quantized positions. Once seed positions are selected,
their local coordinate frames are computed. The Euler angles difference between the
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Fig. 2.12: Dictionaries built for two different shapes: a geometrical one (the mire, left) and
a fine art one (the Lovers, right). The atoms are shown by order of importance
(total absolute weight in the linear decompositions).

coordinate frames computed using covariance analysis on the seeds only and on the
full point set are computed and compressed using arithmetic coding. For the Lovers
of Bordeaux (Figure 2.11), bitstream sizes are 312KB for the seeds coordinates and
297KB for the angle differences, both quantized on 8 bits.

Using these seeds and parameterizations, we use a plane+height description on
a radial grid (Figure 2.4). To exploit self-similarity between neighborhoods, our
approach builds a dictionary and decomposes the patches sparsely on it, using the
K-SVD algorithm [AEB06] explained above. This algorithm yields sparse linear
decompositions of the patches (i.e. with few nonzero coefficients). In addition, the
nonzero coefficients distribution presents itself with a sharp peak centered around 0,
and can then be efficiently encoded using scalar quantization followed by entropy
coding to compress the coefficients. Besides reducing the file size, this quantization
improves the sparsity of the coefficients. On the Lovers point set, the percentage of
nonzero coefficients goes from 30% before quantization to 20% after quantization
(on 8 bits). Figure 2.12 shows examples of built dictionaries for two shapes. For
the Lovers of Bordeaux, the dictionary and coefficients are respectively encoded on
18KB and 507KB.

Parameters. The compression is driven by 5 parameters, the patch radius R, the
patch discretization size Nbins, the number of atoms in the dictionary Natoms, and
the quantization for the seeds coordinates and patch coefficients. In all presented
experiments, Nbins = 16 (i.e. the average number of points per neighborhood is
around N2

bins) and the radius is set so that the resolution of the sampling is close
to the resolution of the scanner. The number of atoms is also easy to set: it will
impact directly on details preservation. It is set between 16 and 32 depending on the
level of details of the shape. Finally, the quantization was set to 16 bits for the seeds
coordinates and 8 bits for the patch coefficients.

Decompression. The decompression algorithm consists in decompressing the
patches given the dictionary and the coefficients and sampling the final point cloud
from these decompressed patches. The reconstructed patches are computed as
Yrec = D ·X, yielding a decompressed patch per seed. A naive decompression would
add a point per sample of the sampling pattern by combining the position on the
tangent plane and the height encoded by the decompressed patch. Two artifacts can
appear in this naive decompression: in overlapping areas, decompressed patches
might not agree and in those areas point density would be higher. In order to
avoid these flaws, a consolidation is performed in these areas. When adding a
naively-decompressed point p, we optimize its position so that it minimizes the error
to neighboring patches. More precisely, the position of p is found as the one that
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Fig. 2.13: Compression and decompression of the Anubis point set (Left and top right:
original, Middle and bottom right: decompression). R = 0.7mm,Nbins = 16.

Fig. 2.14: Original point set (left) and decompressed Stanford St Matthew (right), both
have 93.4 million points. R = 3mm,Nbins = 16.

minimizes the distance between all the proposed positions, with a higher weight
given to patches whose seeds are close to p.

Figure 2.13 shows the detail recovery as well as the denoising obtained through a
compression/decompression cycle. One can check that only noise is removed by
comparing the error with the scan resolution: in most cases this error is below the
scanner resolution. Figure 2.14 shows the compression/decompression result on the
dense St Matthew pointset [Lev+00], which has been reduced to 93,4M points due
to memory limitations (4GB). As for computation times, for the 90 million points St
Matthew pointset, the seed selection (800000 seeds) and local patches computations
take around 10 minutes. The K-SVD algorithm takes 3 additional minutes, while the
rest of the operations is almost instantaneous. For the David pointset, the whole
compression takes around 8 min. The decompression step takes more time: while
decoding the coefficients and local patterns is instantaneous, the non-optimized
point generation takes around 15 min for the St Matthew point set and 10 minutes
for the David point set. Due to the locality of this step, further optimizations and
parallelization would undoubtedly drastically reduce decompression time.
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Fig. 2.15: Comparison with kd-tree based coding. Left : original point cloud. Middle: kd-
tree-based compression [GD02], Right: similarity compression. Even with more
bits per point (4.83 against 0.6 in the similarity compression), kd-tree compression
is less accurate than similarity compression. R = 0.7mm,Nbins = 16.
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Fig. 2.16: Comparison with previous works in terms of rate/distortion on the David model.
The different bitrates were obtained by increasing the radii of the patches and
the size of the descriptors.

The approach is compared to a kd-tree based approach [GD02] (Figure 2.15) which
compresses unoriented point clouds. At 4.13bpp, [GD02] yields a RMSE of 0.066mm.
In comparison similarity-based compression gives a RMSE of 0.010mm at 0.6bpp.
Figure 2.16 compares the self-similarity compression with previous works [KV05;
SMK08; Hub+08] in terms of rate/distortion. Several bitrates were obtained by
varying the patch radius R of the local description. Finally, Table 2.1 shows quality
measures for the compression/decompression of several point clouds. In particular,
it shows that the amount of points that have higher decompression error than the
initial resolution is low, illustrating therefore that the compression does not hinder
precision. Figure 2.17 shows the compression results on a very challenging data
set of 70 million points that clearly breaks the working assumptions: some linear
structures exist and there are some low density areas. The result is still valid in
densely sampled areas, but fails in sparsely sampled areas, showing the limits of the
algorithm.

There are several ways in which our compression scheme could be improved. Ex-
ploiting patch-based representation, artifacts may appear in case of boundaries,
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number of compressed size RMSE Percentage of points
Pointset points R (bytes) (% of diagonal) with error above bpp

sampling precision
Anubis 9, 9M 0.7mm 1, 201, 636 0.01mm (0.003%) 1.23% 0.96
Lovers 15, 8M 0.5mm 1, 152, 245 0.01mm(0.006%) 0.86% 0.59
Mire 16, 1M 0.6mm 1, 480, 118 0.03mm (0.011%) 1.30% 0.73

Tanagra 16, 4M 0.7mm 1, 238, 271 0.01mm (0.004%) 1.56% 0.60
David 28, 2M 10mm 2, 150, 711 0.24mm (0.004%) 0.75% 0.61

Bremen 69, 9M 18cm 6, 699, 915 1.48cm (0.005%) not available 0.76
St Matthew 93, 5M 3mm 9, 780, 886 0.05cm (0.002%) not available 0.83

Tab. 2.1: Number of bytes compressed versus decompressed. The last column uses the
acquisition device precision, information that we lacked for both the Bremen and
St Matthew point clouds. The St Matthew pointset (Fig 2.14) was first reduced to
93,4M points due to memory limitations (4GB).

Fig. 2.17: Left : the Bremen point cloud (bottom) and the decompressed result (top). Right :
closeup views : original (bottom) and decompressed (top) R = 18cm,Nbins = 16.
In sparsely sampled areas, two phenomena occur: if the sampling is too low, the
points are removed during the pre-processing step and if the sampling is above
the limit, there is a dilatation effect clearly visible in the closeups (right).

which could be dilated throughout decompression (Figure 2.17). Other seed picking
strategies could be investigated, for example by placing the seeds so that they min-
imize the local error, in the spirit of [OBS06]. Finally, per-point attribute such as
normals and colors could be encoded with the same similarity-based coder. More
experiments and details can be found in [DCV14].

The introduced algorithm proposes a similarity-based approach to the analysis of
surfaces. A strong limitation of this work lies in the height field assumption. Indeed,
if two surfaces exhibit the same kind of details but mapped over a surface of higher
order than a plane this method will not work as well. Next section describes an
approach which overcomes this limitation by considering a regression quadric instead
of plane in the context of super-resolution.
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2.3 Quadric+Height description
While the previous descriptor expressed surface variations over a local tangent plane,
giving hence a high importance to curvatures, it is possible to rather focus on finer
details by expressing what lies above an order 2 surface. Thus details will be found
similar even if they lie in areas with different curvatures, and the similarities will
not be governed by degree 2 differential properties but higher order information.

Figure 2.18 demonstrates empirically the advantage of considering a height field
over a quadric instead of a plane. Indeed the quadric+height descriptor is able to
capture more similarities than its planar counterpart, since it frees itself from the
larger scale curvature of the surface and concentrates on the smaller scale geometric
texture. Two sweep surfaces with similar repetitive details are considered: a sinusoid
mapped onto a plane and the same sinusoid mapped onto a cylinder (Figure 2.18).
Although these shapes are different, their geometric textures are the same. The size
of the patches was chosen so as to cover more than one period of the sinusoid. Then,
for each patch of the cylinder-based shape (respectively the plane-based shape), we
look for its similar patches in the set of patches from the plane-based shape (resp.
the cylinder-based shape). As expected, this number is higher for the quadric+height
descriptor for all similarity radius values. On the contrary, the number of similar
patches is low for the plane+height descriptor since the difference of height over
the tangent plane encodes mostly the difference of curvature.

Similarity radius nber of similar patches - average (std. dev.)
plane+height quadric+height

0.25 0.5(3.9) 57.6(60)
0.30 0.8(4.7) 181.7(114)
0.37 1.3(6.1) 428.1(151)
0.5 3(8.9) 766(152)
0.6 5(12.2) 877(105)
1 18(28.6) 934.7(28)

Fig. 2.18: Two similar synthetic sweep surfaces (left). Right: Average number of similar
patches found by querying a patch from the cylinder-based shape in the patches
extracted from the planar-based shape and vice versa, using various similarity
radii. Much more similar patches are found using a quadric+height descriptor.
The width of the patch is set to 1.5 sinusoid period.

2.3.1 Quadric Patch description

The quadric+height descriptor focuses on the residual part that corresponds to the
details that may not be captured analytically. However, this accuracy gain has a
computational cost since one must perform a quadric regression, and map a grid
onto the quadric. To alleviate the cost of an exact computation we propose a simple
algorithm for building the quadric grids.

First, a quadric regression is performed around each point pi in a radius R around p.
A local coordinate frame is computed using principal component analysis on a local
neighborhood. Expressing the neighboring points (pi)i=1···n in this local coordinate
system as (xi, yi, zi), we look for a regression quadric Q such that ∀i, zi ' Q(xi, yi).
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If the chosen coordinate system is the intrinsic coordinate system given by the
two principal directions and the normal, this quadric is expressed as Q(x, y) =
1
2κ1x

2 + 1
2κ2y

2. This formulation requires the computation of the principal directions
t1, t2 and principal curvatures κ1 ≥ κ2 of the surface at p. Here we compute a
first regression quadric using an outlier-robust norm (`1), use it to estimate the first
and second fundamental forms I and II, and derive the principal curvatures and
directions and thus the local coordinate frame and the quadric coefficients. The `1
minimization is solved by an Iteratively Reweighted Least Squares (IRLS) process
[BBS94].

Once this regression is performed, a grid is sampled on the quadric surface with a
view that adjacent bins centers are geodesically equidistant. Each patch contains
the exact same number of bins, which is necessary for later comparisons. Noticing
that the quadric surface is driven by two curves c1(x) = κ1x

2 and c2(y) = κ2y
2, we

compute the bin centers positions xi, yi such that the distance between c1(xi) and
c1(xi+1) (respectively c2(yi) and c2(yi+1)) over c1 (resp. c2) equals d, the given bin
width. With this definition, the geodesic size of the patch is the same for all patches
but the ambient-space size depends on the local surface curvature. The captured
variations are thus free of any large-scale curvature information, which is inherently
impossible with plane+height descriptors.

The height field is then computed on this grid. The height of bin b is obtained by
Gaussian interpolation of the height of the input points in a very small tangential
neighborhood around b: the size of this neighborhood is comparable with the size d
of the bin. Ideally, this would involve computing the projection qi of each point pi
on the quadric to obtain the height of pi and the geodesic distance between qi and
each bin center. Such computation per patch bin and per point being prohibitive, an
approximation is used instead. Let us consider a bin b of a patch, with normal nb
obtained in closed form as the normal to the quadric surface at the center of b. The
height of bin b is computed as a weighted average of the heights of the neighboring
points pi projected on the plane planeb passing through the center of b with normal
nb (see Fig. 2.19). Thus:

h(b) =
∑
pi w(b,pi) · height(planeb,pi)∑

pi w(b,pi)
(2.2)

where w(b,pi) = exp(−‖pi−b‖
2−〈pi−b,nb〉2
2d2
lr

) is a Gaussian weight decreasing when the

projection of pi moves away from b. To make the process more robust and alleviate
the influence of outliers and noise, we can us an iterative process by decreasing the
weights of outliers, in an IRLS spirit. Each point p ∈ S is finally represented by
quadric coefficients and a quadric descriptor which will be denoted by HQ(p).

One could go further than a quadric surface, and consider a height field over
a cubic surface for which efficient algorithms exist (e.g. [GI04]). However when
increasing the order of the regression surface, more points - and consequently a larger
neighborhood - are required to estimate it efficiently. A quadric is a good compromise
between the capture of high order detail and locality of the description.

2.3.2 Application to point set super-resolution

Quadric patches are used to revisit the point set super-resolution problem, under the
self-similarity hypothesis. While super-resolution (SR) has been extensively studied
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Fig. 2.19: Computation of the height of the bin h(b) over the quadric surface using a local
tangent plane at b, one of the bin of the patch. The center of the patch is marked
with the blue diamond and named O.

in the context of signal and image processing, it has been seldom tackled in geometry
processing. It differs from surface upsampling such as proposed by state-of-the art
point set surfaces methods (APSS [GG07] or RIMLS [OGG09]) since it is not only
based on local analysis but uses additional information coming either from other
scans or, as in our case, from the self-similarity assumption.

Multiple scans super-resolution aggregate several measures of the same object taken
from very close viewpoints [KMA06; Abb+09]. It requires aligning the measures
using global registration and merging the information yielding a mathematically well-
posed problem. On the contrary, single scan super-resolution aims at producing a
high resolution point cloud with insufficient data. Although this problem is ill-posed,
solutions can be found by making some assumptions on the nature of the surface, or
by regularizing the solution (e.g. using Total Variation or Sparse Decomposition).
Here we propose to solve this problem once again under the self-similarity hypothesis.
We further assume that similar details at a given small scale reflect a similarity at a
higher scale. Importantly enough, the resulting enhancement is close to the actual
surface if the ground assumptions is fulfilled, otherwise it will yield a plausible
self-similar surface.

Let S be the original scan and S the set of scans used to enhance S. If a single scan is
used then S = {S}, otherwise S contains all the scans used to enhance S (including
S itself): S = {S1 = S, S2, · · · , Sn}. Quadric surface super-resolution (QSR) can be
summed up as follows:

• For all points of all scans of S, a quadric+height descriptor is computed. Each
descriptor encodes information from a single scan Si.

• For every local descriptor computed at a point of S a similar patch query is
performed among the descriptors of other points of S.

• Similar descriptors are then aggregated non-locally, to produce super-resolution
quadric+height descriptors..

• The last step synthesizes a high resolution sampling over the surface, using
regularization constraints during the merging of neighboring descriptors.
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Descriptors HQ(p), computed as described in section 2.3.1, being vectors in a RN2
bins ,

the similarity between patches centered at points p1 and p2 can be computed using
a slightly modified `2-norm:

dsim(HQ(p1),HQ(p2)) =
∑N2

bins
i=1 δi(HQ(p1),HQ(p2))|HQi (p1)−HQi (p2)|2∑N2

bins
i=1 δi(HQ(p2),HQ(p2))

(2.3)

where δi(HQ(p1),HQ(p2)) is an indicator function that is equal to 1 if the i-th bin is
valid both in HQ(p1) and HQ(p2) and 0 otherwise and HQi (p1) is the ith component
of vector HQ(p1). A bin is deemed valid if it has enough points in its vicinity.
The validity measures whether the height of a bin is reliable or if it is a dubious
interpolation of points lying far away. If both patches do not share enough valid bins
this similarity distance is set to∞. The similarity distance yields a similarity weight
stating how similar the patches are:

wsim(HQ(p1),HQ(p2)) = exp
(
−dsim(HQ(p1),HQ(p2))2

2r2
sim

)
(2.4)

where rsim is the radius for the similarity search.

Pairs of patches might be deemed not similar by the QSR algorithm whereas they
could be considered as such after some reorientation or repositioning of the patches.
This algorithm does not claim to find every instance of self similarity, but enough
of them to work in practice. In Chapter 3, we will see, in a quite different setting,
a position and orientation optimization to highlight the similarity. As illustrated in
figure 2.23, patches corresponding to a similar geometric residue over the quadric
approximation are spread over the surface, which reinforces the hypothesis of self-
similarity on the input point sets. It is also interesting to note that similar details
may be located in areas with different large scale curvatures, as was our intent.

Super-resolution patch synthesis. To each patch HQ0 corresponds a set D0 =
{HQi }i≥1 of its similar patches along with their similarity weights. These similar
patches can be seen as several acquisitions of the same surface detail, which is a
classical super-resolution case (several measures of the same signal are merged to
get a better resolution signal). Recalling that each patch stores the set of points
that were used in its construction, all the points associated to a patch of D0 are
aggregated and combined by Gaussian interpolation in the tangential neighborhood
of a super-resolution bin bsr (size dsr < d), yielding the height ĥ at position bsr as
follows:

ĥHQ0
(bsr) = 1

C

∑
HQi ∈D0

wsim(HQ0 ,H
Q
i )

∑
p∈HQi

w(bsr,p)height(HQi ,p) (2.5)

where height(HQi ,p) is the distance of p to the quadric ofHQi , w(bsr,p) = exp(−‖p−bsr‖
2

d2
sr

)
and C is a weight normalization constant.

Once again the previous development assumes that the similar patches agree well in
the overlapping areas at finer resolution. However, it is more realistic to assume that
some patches might propose different behaviors for the super-resolution surface,
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even if the low-resolution patches match. To avoid such outliers interfering with the
regression, once again we resort to a `1 norm minimization.

As before, computing explicitly the projection of p on the quadric surface is pro-
hibitive. Therefore, we use the same approximation to compute height(HQi ,p)
depending on the considered bin bsr of the finer grid mapped onto the quadric :
height(HQi ,p) = 〈p− bsr,nbsr〉.

Equation 2.5 shows that in order to noticeably contribute to the height of bsr, a
point p must be close to the current bin bsr and originate from a patch strongly
similar to HQ0 . If no similar patch is found, the synthesized high resolution patch is a
plain interpolation of the input points attached to the patch. Thus QSR performs
theoretically at least as well as a local surface Radial Basis Function interpolation.

Sampling the final surface. Once the super-resolution patches are computed, the
final surface Ssr must be sampled from this new information. We define a projection
procedure that projects a point q in the ambient space onto the super-resolution
surface using a partition of unity interpolation approach [Oht+03]. Recall that each
input point p of the low-resolution input scans is the center of a patch that has
been increased in resolution. The projection of a point q onto the super-resolution
surface is computed as a linear combination of its projections on the super-resolution
patches associated with the closest points in the input scans. In order to favor
patches associated with the closest input points, the combination weights decrease
exponentially with respect to the distance to q. This can be summed up as follows:

proj(q,Ssr) = 1/C
∑
p∈S

proj(q,HQ,sr(p))wprox(q,p) (2.6)

where proj is the projection operator, HQ,sr(p) is the super-resolution patch associ-
ated to point p, wprox(q,p) = exp−‖p−q‖2

2σ2 and C is a weight normalization constant.
Although the projection step involves an averaging of point positions, the averaging
scale σ is comparable to the size of the super-resolution bins and avoids therefore
any smoothing or degradation of the details. However, it may happen that the
super-resolution details introduced by neighboring patches do not fit. This is dealt
with by introducing some robustness in the combination. Instead of using directly
Equation 2.6, we use IRLS to give prominence to locally agreeing super-resolution
patches. As in the compression application (Section 2.2.3), the output density is
finally regularized by Poisson Sampling with radius dSR.

Parameters. The QSR algorithm depends on 4 parameters, which should be tuned
carefully depending on the geometry of the shape, and the precision of its sampling.
These parameters are the patch radius r, the grid size for both low nbinslr and
super-resolution nbinssr grids and the similarity radius rsim for the similar query
search. In practice, only two parameters govern the QSR algorithm: the patch radius
and the similarity radius rsim, since the other parameters can be deduced from them.
The patch radius size is related to the size of the details we want to capture, if it is too
small it will fail to capture interesting details, conversely if it is too large, few similar
patches will be found. The number of low-resolution bins nbinslr stems directly from
the patch radius. It is set equal to the mean number of points in a neighborhood
of radius equal to the patch radius, so that the neighborhood will contain as many
points as there are low-resolution bins in average. Using rsim, one can compute the
average number of similar patches and the sum of their similarity weights. This sum
gives an estimate of the mean number K of similar patches that can be obtained in
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Fig. 2.20: Super-resolution of a single scan of the Persepolis point set. Left: initial scan,
right: super-resolution. The shape details appear much sharper after the super-
resolution process. Parameters: R = 4 (Shape diagonal: 114), nbinslr = 64,
nbinssr = 400, rsim = 0.2.

practice. The size of the super-resolution grid can be expressed as
√
Knbinslr. After

the sampling step, the expected resolution gain is thus Knbinslr.

Results. The QSR algorithm implemented in C++ and parallelized with OpenMP,
takes 5 minutes to process an input point set of 100K points. For comparisons with
MLS upsampling schemes, a set of points lying very close to the surface, with the
same cardinality as the QSR results, is generated and projected on the surface using
either RIMLS [OGG09] or APSS [GG07].

Figures 2.1 and 2.20 illustrate the performances of QSR, on a single scan of a
surface. One can see that repetitive textures are well enhanced by QSR. Figure 2.21
compares single-scan QSR with APSS and RIMLS interpolation methods as well as
the super-resolution of Kil et al. [KMA06] using 100 scans. Kil et al. outperform
slightly QSR, which can be expected since it averages over a hundred scans, whereas
our method is performed on a single scan. Both super-resolution methods restore
more precise details as RIMLS and APSS upsampling.

Figure 2.22 shows the downsampling and degradation of a high resolution shape
and its recovery by our super-resolution process. Although features that are clearly
repeated such as the hair patterns are well recovered, less frequent details are lost.
Table 2.2 compares the results with APSS and RIMLS as well as with non-local means
for point sets [Dig12], presented in section 3.3.2, in terms of error w.r.t. the original.
This error is computed as the root mean square error between the points of the
initial full-resolution shape and their nearest neighbors in the resulting point clouds.
Taking into account the non-local information clearly improves the quality. Note
however that the bad performance of non-local means can be expected since it is
purely a denoising method with no upsampling.

Using several scans of the same object can be a clear advantage since their analysis
yields a larger set of patches. Hence using the same similarity radius for the similar
patches query will yield more similar patches than when using a single scan. Figure
2.23, shows the location of similar patches found, as well as the super-resolution
result. In particular feather textures are well enhanced by the single-scan super-
resolution and even better restored by the multi-scans super-resolution.

This algorithm presents several limitations. The first one lies in the choice of the
patch radius. Indeed, if this radius is too large, the method will tend to generate
features near high-curvature edges because of errors in the quadric approximation.
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(a) Raw Scan (b) APSS (c) RIMLS (d) Kil et al. (e) QSR

(f) Raw scan (g) APSS (h) RIMLS (i) Kil et et al. (j) QSR

Fig. 2.21: Comparisons of single-scan QSR method with APSS interpolation [GG07], RIMLS
interpolation [OGG09] and Kil et al. [KMA06] using 100 scans (meshes obtained
by Poisson Reconstruction). Close-ups on a detailed area are shown on the bottom
row. Parameters: R = 4 (Shape diagonal: 323), nbinslr = 64, nbinssr = 400,
rsim = 0.2.

(a) Initial (b) Degraded (c) RIMLS (d) QSR

Fig. 2.22: Groundtruth Comparison: super-resolution of an artificially degraded shape.
The degradation involves a subsampling to 10% of the points and an additional
Gaussian noise of variance 0.001% of the diagonal. Processing radius: R = 0.2
(Shape diagonal: 23.83), nbinslr = 25, nbinssr = 100,rsim = 0.05. Normals
are computed using PCA with 10 neighbors for visualization purpose. Although
QSR successfully enhances some lost features (hair patterns), it fails to recover
features that are not frequent enough (eyes).
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Noise
variance
(% diago-
nal)

Initial
error

QSR APSS RIMLS NLMeans

0.01% 0.044 0.007 0.021 0.013 0.012
0.1% 0.053 0.019 0.049 0.048 0.039
0.5% 0.071 0.059 0.056 0.057 0.060

Tab. 2.2: Comparison of the performance of QSR with other methods on the shape of
Fig.2.22 : APSS [GG07], RIMLS [OGG09] and NLMeans [Dig12]. The test data is
obtained by subsampling an initial point set (700K points) to 10% of its size, and
adding a noise of variance equal to 0.01%, 0.1% and 0.5% of the diagonal.

(a) Input (b) Similar
patches

(c) Input detail (d) 1-scan QSR (e) 4-scans QSR

Fig. 2.23: Parrot super-resolution. From left to right: original scan, original scan detail,
single-scan QSR detail, 4-scans QSR detail, 10 most similar patches found for
the patch shown with a blue diamond. The color scale shows the proximity
to the query patch. Parameters: R = 4 (Shape diagonal: 158), nbinslr = 64,
nbinssr = 400, rsim = 0.2.
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Another failure case of the super-resolution patch generation is when some patches
are similar at the lower scale of the analysis but have inverted details at a higher
scale, however the variety of patches and robust synthesis of the surface limit the
impact of such local behaviors on the final result. More details on this application
can be found in [HDC17].

2.4 Local Frequency description
Although local descriptors have been tackled in this chapter from a similarity search
point of view, they can also serve as a pure local analysis tool. In this section we
show a different type of local shape description, that expresses the surface as a
height field over a tangent plane as in section 2.2, but decomposes it on a function
basis that enhances both the local radial polynomial content and the local angular
oscillations. This section recalls the main results of [BDC18] without giving the full
mathematical proofs which can be found in the publication. This work is part of the
PhD of Yohann Béarzi (co-supervised with Raphaëlle Chaine).

2.4.1 Wavejets definition

φ0,0 φ2,0 |φ2,2| |φ3,1|

|φ3,3| φ4,0 |φ4,2| |φ4,4|

Fig. 2.24: Computation of some values of φk,n(p) for a radius Rφ corresponding to the
height of the eyes of the statue. If k and n do not share the same parity, coefficient
φk,n is zero. For k ≥ 0 and n 6= 0, only the magnitude of φk,n is displayed since
the phase depends on the origin direction of the angles. For k ≥ 0, φk,0 is
real, does not depend on the origin direction, and can be negative. Note that
φ1,1(p) = 0 if the parameterization plane is the tangent plane at p to the surface.
φ0,0(p) measures the offset of the input point p to the surface which can be
nonzero in the practical case where the Wavejets order is too low to catch every
local variation around p.

We introduce a function basis, called Wavejets, emphasizing the local behavior of
the surface, as an alternative to the osculating jets [CP03], described in Chapter 1.
Osculating jets are high order polynomials corresponding to local truncated Taylor
expansions of height field surfaces, thus providing interesting differential properties,
such as the normal and principal curvatures, for smooth surfaces. Wavejets, retain all
nice properties of the osculating Jets but provide in addition a natural interpretation
in terms of local angular oscillations.
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Let S be a smooth surface and p a point on S. Let us assume that S can be locally
parameterized as a height field f(x, y) inside a neighborhood of radius Rφ over a
plane P(p) passing through p. The neighborhood of p can be expressed as a Taylor
Expansion:

f(x, y) =
∞∑
k=0

k∑
j=0

fxk−jyj (0, 0)
(k − j)!j! xk−jyj (2.7)

where fxk−jyj = ∂kf
∂xk−j∂yj

.

Using polar coordinates (r, θ) with (x, y) = (r cos θ, r sin θ) in equation 2.7 and
Euler’s formulas to express cos(nθ) and sin(nθ) as polynomials of cos θ and sin θ
yields:

f(r, θ) =
∞∑
k=0

k∑
n=−k

rkφk,ne
inθ =

∞∑
n=−∞

∞∑
k=|n|

rkφk,ne
inθ (2.8)

with φk,n =
∑k
j=0

1
j!(k−j)!b(k, j, n)fxk−jyj (0, 0). b(k, j, n) is defined as follows :

• b(k, j, n) = 0 if k and n do not have the same parity

• b(k, j, n) = 1
2kij

∑n−k
2

h=0

(
k − j
h

)(
j

n−k
2 − h

)
(−1)h otherwise.

This amounts to decomposing the function on a basis Bk,n(r, θ) = rkeinθ. In other
words, while osculating jets provide arbitrary high order derivatives fxk−jyj (0, 0),
Wavejets provide arbitrary high order Fourier coefficients φk,n(f) as a linear combina-
tion of high order derivatives, combining them in a way that favors the independence
of the coefficients with respect to the origin direction for the phases. More precisely,
a rotation of the origin vector for the angles in the parameterization plane P(p)
induces a phase shift of the coefficients. Figure 2.24 shows the amplitude of the first
Wavejets terms φk,n. Each φk,n is related to an order of radial derivation k and to a
number of oscillations n. A Wavejet of order K is called a K-Wavejet.

2.4.2 Properties

Curvatures. By explicitly writing the link between φk,n and the derivatives of f , the
mean curvature H(p) and the Gaussian curvature K(p) at p can be obtained.

φ1,1 = φ∗1,−1 = 1
2(fx + ify)

φ2,0 = 1
2(fxx + fyy) ; φ2,2 = φ∗2,−2 = 1

4(fxx − fyy + ifxy)
(2.9)

Since both the Gaussian K(p) and Mean curvature (H(p)) can be expressed w.r.t.
partial derivatives of f at p, we get:

K(p) =
4φ2

2,0 − 16φ2,−2φ2,2

(1 + 4φ1,−1φ1,1)2 (2.10)
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H(p) =
2φ2,0 (1 + 4φ1,−1φ1,1) + 4φ2,−2φ

2
1,1 + 4φ2,2φ

2
1,−1

(1 + 4φ1,−1φ1,1)
3
2

(2.11)

If P(p) = T (p), the tangent plane to S at p, then φ1,1 = φ1,−1 = 0, and :

K(p) = 4
(
φ2

2,0 − 4φ2,−2φ2,2
)
, H(p) = 2φ2,0 (2.12)

The principal directions can be found using Wavejets by considering the signal∑2
n=−2 φ2,ne

inθ. This signal contains a constant component φ2,0 and a component
that oscillates twice and whose maximum is aligned with the first principal curvature
direction (corresponding to the phase of φ2,2). Thus the principal curvatures κ1 and
κ2 can also be recovered using Wavejets:

κ1 = 2 (φ2,0 + φ2,2 + φ2,−2) and κ2 = 2 (φ2,0 − φ2,2 − φ2,−2) (2.13)

Stability with respect to the tangent plane estimation. Let T (p) be the true
tangent plane and P(p) the chosen parameterization plane, also passing through p.
Since p belongs to both planes, they intersect along a line T (p)∩P(p) of direction u.
We consider the angle γ such that the rotation of axis (p,u) and angle γ transforms
P(p) into T (p). Let us parameterize T (p) and P(p) so that a point of the surface has
coordinates (x = r cos θ, y = r sin θ, h) over T (p) and (x = R cos Θ, y = R sin Θ, H)
over P(p). Let us first assume that θ (resp. Θ) corresponds to the angular coordinate
of a point on the surface with respect to u in T (p) (resp. to u in P(p)). In this setting,
the surface Wavejets decomposition at point p writes

∑∞
k=0

∑n=k
n=−k φk,nr

keinθ over
T (p) and

∑∞
k=0

∑n=+k
n=−k Φk,nR

keinΘ over P(p).

Theorem 1. The coefficients Φk,n w.r.t to P(p) can be expressed with respect to the
coefficients φk,n in the tangent plane T (p) as follows:

Φ0,0 = 0

Φ1,1 = Φ∗1,−1 = γ

2 e
−iπ2 + o(γ)

Φk,n = φk,n + γF (k, n) + o(γ)

(2.14)

where F (k, n) is a function of the φ coefficients of polynomial order lower than k.

To generalize the theorem to arbitrary origin vectors for the angular coordinates
θ and Θ, recall that a rotation of angle µ of the origin vector in T (p) amounts
to a phase shift µ. Thus, one can always change the origin vector, compute the
Wavejets coefficients φk,n and recover the Wavejets coefficients for origin direction u
as φk,neinµ (similar formulas hold for Φk,n and an origin vector change in P(p)).

Corollary 1. It follows from Theorem 1 that |Φ1,1| = 1
2γ + o(γ) and arg(Φ1,1) =

π
2 + o(γ). Thus if γ is small enough, the phase of Φ1,1 shifted by π/2 in the plane
P(p) corresponds to the axis of rotation u. Therefore, it is possible to correct the
parameterization plane into the tangent plane by performing a rotation of P(p) along
the axis u with rotation angle 2|Φ1,1|.
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Corollary 2. One can recover the true coefficients φk,n iteratively, starting from the
lowest order coefficients as:

φk,n = Φk,n − γ
k−2∑
j=1

sj,k,n + o(γ) (2.15)

sj,k,n=
∑

p+m=n
|p|≤k−j
|m|≤j

φk−j,p
2i

(φj+1,m+1(m+ j + 2) + φj+1,m−1(m− j − 2)) (2.16)

In particular, φ2,0 = Φ2,0 + o(γ), φ2,2 = Φ2,2 + o(γ), φ2,−2 = Φ2,−2 + o(γ), and thus
the mean, Gaussian and principal curvatures are also stable in o(γ).

Both Corollaries 1 and 2 can be stated in the arbitrary reference vectors for the
angles setting using the same trick as for Theorem 1.

Links with Jets and Zernike Polynomials. Wavejets are one of the possible function
basis for local surface analysis. Osculating Jets are another possible basis with
basis functions f(x, y) = xkyn−k, as are Zernike polynomials Znk [Zer34]. Zernike
polynomials are defined for k and n two non-negative integers with k ≥ n as
Znk (r, θ) = Rnk (r)cos(nθ) and Z−nk (r, θ) = Rnk (r)cos(nθ). Rnk is a polynomial in r
equal to 0 if k and n do not have the same parity. Otherwise it is expressed as:

Rnk (r) =
(k−n)/2∑
i=0

(−1)i(k − i)!
i!(k+n

2 − i)!(
k−n

2 − i)!
rk−i.

Zernike polynomials mix the radial polynomial order k and the angular frequency n
in Rnk . On the contrary Wavejets split the polynomial rk and the frequency einθ.

There exists a linear map between Wavejets φk,n, Jets Jk,j and Zernike polynomials
Znk . Hence there is a way to compute any quantity equivalently from either repre-
sentation as soon as the linear map is explicit. However this linear map is far from
trivial and computing certain quantities will be easier using one or another function
basis. Wavejets give a representation which is mid-way between Jets and Zernike
polynomials. In particular, integral invariants by integration over angle θ can be
computed easily with Wavejets or Zernike while they are hard to derive with the
Jets. Conversely, the error in the orientation of the tangent plane or the offset to
the surface are easy to express using Wavejets and Jets but difficult using Zernike
polynomials. Thus, Wavejets retain interesting properties from Jets and Zernike
polynomials while avoiding some of their weaknesses.

2.4.3 Application to Details filtering and enhancement

Let us consider the signed volume V (s) delimited by the surface and the parame-
terization plane in a small radius s < Rφ around a point p. We can express V (s)
as the sum of infinitesimal angular slices of the volume between the surface and
the tangent plane: V (s) =

∫ 2π
0 A(θ, s) dθ. In the plane corresponding to the angle

θ, A(θ, s) denotes the area enclosed between the surface and the tangent plane, for
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Input surface point
φ̃2,0 φ̃3,1 φ̃2,2 φ̃3,3

Paraboloid Hyperboloid Horse saddle Monkey saddle

9-Wavejets φ̃0 φ̃1 φ̃2 φ̃3

a0 2|a±1| 2|a±2| 2|a±3|

Fig. 2.25: Wavejets decomposition around a point of a surface. Left: approximated
9-Wavejets surface. Let φ̃k,n(r, θ) = rk

(
φk,ne

inθ + φk,−ne
−inθ

)
and φ̃n =∑∞

k=0 φ̃k,n. The amplitude of the functions φ̃n is more comparable to the ampli-
tude of the input surface than the functions φ̃k,n.

a radius varying between 0 and s, each point of the surface being scaled by the
radius.

A(θ, s) =
∫ s

0

 ∞∑
k=0

k∑
n=−k

rkφk,ne
inθ

 rdr =
∞∑

n=−∞
an(s)einθ (2.17)

Coefficients an(s) correspond to a Fourier decomposition of A(θ, s). Further compu-
tations yield:

an(s) =
∞∑

k=|n|

φk,ns
k+2

k + 2 (2.18)

One can show that if n 6= 0, 2|a±n|(s) is the amplitude of the oscillating function∫ s
0 φ̃n(r, θ)rdr, where φ̃n(r, θ), as defined in Figure 2.25, is the surface restricted to

frequencies ±n.

Each coefficient an(s) has interesting properties regarding the local surface dynamics.
For example, 2πa0(s) is equal to the signed volume between the surface and the
parameterization plane. Indeed,∫ 2π

0

∫ s

0
f(r, θ)rdrdθ =

∫ 2π

0
A(θ, s)dθ = 2πa0(s) (2.19)

Remark 1. Equation (2.19) relates to the Volume Descriptor Vs(p) introduced by
[Man+06] as follows:

Vs(p)− 2πa0 ≈
2
3πs

3 . (2.20)
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Thus, a0(s) measures the local deviation of the surface with regards to the tangent
plane at p. Local mean curvature is commonly used to reflect this local deviation,
but it is meaningless in some cases, for example some points might have 0 mean
curvature but nonzero higher orders derivatives and a0. Such is the case of (0, 0) for
f(x, y) = x4 + y4. At those points, it is necessary to look at higher order derivatives
to reveal the local dynamics of the surface. a0(s) involves higher order φk,0 with
k > 0, whereas local mean curvature is only proportional to φ2,0. In addition, the
mean curvature is a measure per point, whose estimation precision from point sets is
theoretically controlled by the polynomial order, therefore it will capture extremely
small variations. a0(s) will on the contrary capture variations at a scale controlled
by s.

If the volume below the surface at p, estimated by 2πa0(s) (See Equation 2.19), was
to be increased, local details would be increased as well. Let α0 be the amplitude of
the targeted detail enhancement. In order to increase the volume, a point p with
normal n is moved to a new position p′ such that:

p′ = p + (φ0,0 − 2π(α0 − 1)a0(s)) n (2.21)

a0(s) should be computed with respect to the local the tangent plane. Therefore, the
parameterization plane should be corrected beforehand if it does not exactly fit the
tangent plane as explained in section 2.4.2.

If α0 = 1, the points are simply projected on the Wavejets surface. Indeed, when the
Wavejets order is K <∞, φ0,0 measures the distance between p and the truncated
Wavejets surface. If the Wavejets approximation is exact, φ0,0 = 0. However, it is not
the case in the presence of noise, on sharp edges, or in the approximation framework
for point sets described below. The Wavejets surface is however considered as the
true underlying surface and each point p is moved to this surface by displacing it
by φ0,0. This has the effect of smoothing edges and canceling a part of the input
noise. If α0 > 1, each point is first moved to the underlying surface and then moved
proportionally to its underlying volume. Conversely, if α0 < 0, it will tend to invert
the details and create anti-details (Figure 2.29).

If the surface is smooth, the tangent plane and the enclosed volumes a0(s) evolve
continuously over the surface. Therefore, the surface evolves continuously through
the enhancement filter. In practice, this process cannot be applied to the infinite set
of points on the continuous surface, however the filter definition remains valid in
the continuous setting.

An alternative for modifying the shape appearance is to keep those positions un-
changed and operate only on the normals, giving the illusion of a modified surface.
Recall that a±1(s) measures the local balance of the shape by identifying the orienta-
tion (its phase) and the intensity (its absolute value) of the antisymmetric evolution
of the tangent plane. The normal enhancement procedure amounts to modifying
φ1,±1 proportionally to a±1(s) at each point of the surface. The corresponding false
normal is then estimated as the normal to a plane obtained by rotation of the param-
eterization following Corollary 1. Notice that this false normal is not consistent with
the real surface anymore. Given the desired detail normal evolution gain α1 = α∗−1,
the value of the new coefficient φ′1,±1 is defined as follows:

φ′1,±1 = −π(α±1 − 1)a±1(s) (2.22)

Since φ1,1 = φ∗1,−1, it is enough to compute either of these coefficients and deduce
the false normal using Corollary 1.
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Setting α = 1 leaves the surface unchanged. If α1 = 2, normals are enhanced,
increasing the contrasts. If α1 = 0, the dynamic of the normals is totally compensated,
and the surface looks smoothed out. If α1 < 0, normals are modified and "anti-
details" appear in the rendering. α1 can also take imaginary values, which skew
normals towards one direction as shown in figure 2.29.

Wavejets computation on point sets. Given a surface S that is only known through
a set of measured points possibly spoiled by noise, we want to compute the Wavejets
representation of the underlying surface up to a chosen order K, at an input point p.
Let us assume that the surface is locally sufficiently smooth, i.e. CK in a neighborhood
of radius Rφ around p. Our goal is to compute the φk,n coefficients that best
decompose the underlying surface on the basis functions Bk,n(r, θ) = rkeinθ in the
neighborhood N (p) of radius Rφ of p. Let L denote the number of samples in
this neighborhood, and let ql be one of these samples, with cylindrical coordinates
(rl, θl, zl) w.r.t. an axis that corresponds to a coarse approximation of the normal
direction at point p. Then, the decomposition problem is formulated as finding φk,n
minimizing:

E(Φ) =
L∑
l=1

∥∥∥∥∥∥zl −
K−1∑
k=0

k∑
n=−k

rl
keinθlφk,n

∥∥∥∥∥∥
2

2

(2.23)

The solution is found using QR factorization. In addition, when dealing with noisy
point sets or outliers we solve this minimization using IRLS.

In order to compute Wavejets in the tangent plane, one can compute a first estimate
of Wavejets in a parameterization plane close enough to the tangent plane obtained
via Principal Component Analysis. Then the parameterization plane is corrected into
the tangent plane using Corollary 1 and the Wavejets coefficients themselves are
corrected using Corollary 2.

Given a point set of N points, K the Wavejets order and L the number of neighbors,
the complexity of the Wavejets computation is O(NLK2). To be able to solve the
equation we pick L ≈ K2, yielding a final complexity of O(NK4). As a consequence,
when K is big (i.e. 13 for example), the computation cost increases a lot. Once the
Wavejets decomposition is computed, the filtering amounts to computing a sum of
K terms for each point, because the filter only involves coefficients of frequency 0 or
1 (K/2 coefficients instead of K2). Then each point is moved in its normal direction,
which is constant in time, thus the filtering complexity reduces to O(NK).

Parameters. The parameters for the detail enhancement algorithm are the radius
s for the computation of the volumes a0 and a1 and Rφ, which we set equal in
our tests, the order for the Taylor Expansion K, and amplification gains α0 or α±1
depending on which filter is chosen. Note that s = Rφ should be chosen so that the
number of neighbors L of each point is above (K+1)(K+2)

2 , which is the number of
Wavejets coefficients of order K. The number of neighbors L plays an important
role. If L < (K+1)(K+2)

2 , the system to solve is underdetermined. In such cases, the
order K is locally decreased until the system can be safely solved. To do so, we add
a parameter β > 1, controlling the decrease rate of the order: K is decreased until
L < β (K+1)(K+2)

2 . We set β = 1.1 in our implementation. In presence of noise, β
should be larger.

In our implementation, for numerical reasons, the local surface is rescaled before
computing the Wavejets decomposition so that Rφ = 1. Sometimes, locally, the
surface does not project well on the tangent plane, this corresponds to locations
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Fig. 2.26: Detail enhancement on the Armadillo (Left: original; Middle: normal-based detail
enhancement with K = 7, α±1 = 3; Right: position-based detail enhancement
with K = 6, α0 = 2).

where the surface cannot be expressed as a height field over the parameterization
plane in a neighborhood of radius Rφ, but it would project nicely if the radius was
smaller. This happens for example on the fingers of Armadillo on Figure 2.26. In
such situations, Wavejets tend to have high amplitudes and so do the an coefficients,
leading to high amplitude motion. To alleviate this problem, we set a threshold on
the motion amplitude. In our experiments this threshold is set to Rφ

2 . In all our
experiments we set the radius s for computing a0 and a1 equals Rφ.

Results. On Figure 2.26, the position enhancement filter is applied to the Armadillo
shape. The details are particularly well enhanced by the Wavejets filter: creases
are more distinctive and small details, such as the tortoise-shell texture on the legs,
are amplified. The eyebrow and teeth are also more prominent. The enhancement
filters can also be used to exaggerate narrow details as shown in Figure 2.27 on an
archaeological artifact.

The detail enhancement filter can be compared to a High Boost Filter. The High
Boost Filter can be traced back to Gabor [Gab65; LFB94], and aims at enhancing the
contrasts of the image by going in the direction opposite to the smoothing direction.
Figure 2.28 shows the difference of the output of the position filter and a normal
filter. Naturally, near the outline of the shape, position-based exaggeration is more
relevant. More details and experiments as well as the complete proofs can be found
in [BDC18].

Although the Wavejets decomposition has not been used for self-similarity search
yet, it is still a valuable local description basis since it permits to efficiently encode
differential information. Another interesting feature of Wavejets is the ease with
which harmonic and biharmonic surfaces can be expressed by setting some φk,n
coefficients to 0. Such an informative description paves the way for a more precise
self-similarity analysis.
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Original Normal enhanced Position enhanced

Fig. 2.27: Applying order 9 (normal exaggeration) and order 8 filters (position filter) to the
Anubis dataset with α0 = α±1 = 2.

Original Positions enhanced Normals enhanced

Fig. 2.28: Comparison of the position-based exaggeration (middle) and normal-based exag-
geration (right) on a shape with sharp details on the shape silhouette.
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α1 = 24 α1 = 24eiπ4 α1 = 24i α1 = 24ei 3π
4

α1 = −24ei 3π
4 α1 = −24i α1 = −24eiπ4 α1 = −24

Original Wavejets (α1 = 24) [CST05] [RBD06]

Fig. 2.29: Normal enhancement on a golf ball. First and Second row : normal amplification
for different α1 on a 9-Wavejet. Note that α−1 = α∗1 on every examples. Last row:
comparison with [CST05] normal enhancement algorithm and with [RBD06]
detail exaggerating shading. For α1 = −24 anti-details appear: details look
locally inverted.

2.5 Conclusion
The various methods presented in this chapter share several steps: local shape
description, descriptor comparison and information aggregation. However, all of
them require the shape to be a height function within a neighborhood of given radius,
which is constant over the surface. This requirement can have a dramatic impact, as
shown in Figure 2.17. Next chapter alleviates this constraint by changing the analysis
space from the height field representation to a probing field representation.
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To alleviate the local height field assumption that was at the core of the methods
introduced in Chapter 2, we propose a different type of embedding operator that
encodes shape variations as vector fields, called Local Probing Fields (LPFs). A
LPF describes how a generic pattern in the ambient space close to the shape is
transformed to fit the shape through a probing operator. By carefully optimizing the
position and orientation of each descriptor, we are able to capture shape similarities
and gather them into a geometrically relevant dictionary over which the shape
decomposes sparsely. This new representation permits to handle shapes with mixed
dimensions (e.g. shapes containing both surfaces and curves) and to encode various
shape features such as boundaries. This chapter is mainly based on [DVC18].

The LPF method frees itself from the input shape representation format (e.g. mesh
or point set) and only needs a probing operator, a tool that associates a point in
the ambient space to a point on the local shape. This assumption is very versatile
with respect to the shape representation, and can encode manifold surface parts as
well as curves. Using the local probing operator, shape variations are represented

EAR

Original

aMLS

LPF

EAR

Original

aMLS

LPF

Fig. 3.1: Upsampling an ancient ship scanned using LiDaR technology. Left: original boat
scan (1.1 Million points). Middle and right: comparisons with other point set
upsampling methods (2.2 Million points): anisotropic MLS and EAR. Our Local
Shape Probing analysis scheme was able to recover and highlight both curve and
surface structures, whereas EAR enlarges curves, and aMLS adds blur. Dataset
courtesy of Dorit Borrmann, Jan Elseberg, and Andreas Nüchter (Jacobs University
Bremen).
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Fig. 3.2: Three LPFs in the vicinity of a shape. LPFs can be initialized from any position
and orientation of the pattern. Left: initial position. Middle: after position and
rotation optimization. Right : after projection on the shape.

as Local Probing Fields (LPF) which map instances of a sampling pattern onto
the shape. Then, each pattern position and orientation are optimized in order to
increase the description efficiency. Finally, by jointly and non-locally analyzing these
deformation fields, the shape itself learns its own analysis space, i.e. a subspace
spanned by a dictionary that best describes it. The analysis space is changed: instead
of studying shape variations in the traditional R3 space, they are studied in the space
of deformation fields.

Using this representation, a shape analysis framework that reveals the shape sim-
ilarities but also its local dimensions is derived, in a spirit similar to Chapter 2.
Indeed, a joint analysis of these deformation fields allows to extract a dictionary
over which the shape can be decomposed sparsely, thereby enhancing the structures
and similarities of the shape.

3.1 Local Probing Fields

3.1.1 Definitions

The principal ingredient for building a LPF is a Probing Operator Pr. In its most
general form, it is defined as an operator that, to each point x in the ambient space
assigns a point of the shape near x. We will see in next section how a specific probing
operator can be designed. A LPF also requires a sampling pattern, a set of points,
centered around a seed point s and oriented according to an orthogonal frame
(t1, t2,n). It can be made of points sampled on a plane (Figure 3.3). These points
are expressed as offset vectors (ui)i=0···M−1 from the seed to the points. There is no
strong constraint on the dimensionality of the pattern, even if it seems reasonable to
choose a dimension at least equal to the largest dimension of the input structures.
Moreover, the pattern is also free from any regularity constraint. Finally, each LPF
accounts for only a part of the shape depending on its initial location. This shape
area will be referred to as target area.

Let us now consider a pattern centered at a point s on the shape S, and aligned with
an arbitrary local orthogonal frame (t1, t2,n). Using the probing operator Pr, each
point of the pattern is assigned to a point of the target area. Then, the Local Probing
Field centered at s is the displacement of each point of the pattern to its image under
Pr. Let us define:

LPF(s) = {vi}i∈0···M−1 with vi = Pr(s+ ui)− (s+ ui) (3.1)

Hence, a LPF is a vector field encoding the deformation of the pattern points onto
the shape, without any smoothness requirement or model for the deformation field.
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Fig. 3.3: Pattern examples: points regularly or randomly sampled on a planar disk.

Thus, instead of having a prior model, we will encode the shape as a set of local
transformations and only work on these.

3.1.2 As-Orthogonal-As-Possible LPFs

Given a pattern and a local probing operator, a LPF is entirely determined by its
orientation and position. The challenge is to ensure that the resulting representation
is efficient enough for the further joint analysis to reveal the shape similarities.

In the case of manifold surfaces, height maps come to mind as a natural and efficient
way to represent local surface variations, as height maps contain only geometric
information (see Chapter 2). In our far more general case, we cannot assume that
the shape is a 2-manifold, since we want to infer its dimensionality by the learning
process. Ideally the LPF should be similar to a height map near a locally manifold
surface, but should also handle other cases such as boundaries and curves. Therefore
we propose to render the LPF as-close-as-possible to a height map, by maximizing
the orthogonality of the vi vectors with respect to the pattern support plane (t1, t2).
Intuitively, when the shape is a surface, the plane parameterized by (t1, t2) should
be close to the regression plane. With this goal in mind, several probing operators
can be devised, depending on the input description of the shape. One can use a
simple orthogonal projection on the nearest triangle if the shape is represented by a
triangular mesh or a Newton-Raphson projection operator if the shape is represented
by an implicit function. In case of point sets, the possible projections range from
nearest point projection to variants of the Moving Least Squares (e.g. [Ale+01;
GG07]).

We use a different probing operator aiming at creating as-orthogonal-as-possible
vi vectors. Each point p of the pattern is assigned to the point q of the target area
whose projection q′ on the pattern plane is the closest to p. As shown on figure 3.2,
this probing operator captures well both curves (as would a nearest point projector)
and manifold surface parts (as would a height map computation).

Moreover, LPFs are generically defined with an arbitrary orientation. We can then
optimize each LPF position and orientation to better fit its target area. Unfortunately,
using LPFs orthogonality as the sole criterion during this optimization would result
in an ill-defined problem. Therefore we propose to minimize instead the norms of
the vis and alternate the two following steps for each LPF independently:

• Compute vi = Pr(s+ ui)− (s+ ui),∀i ∈ 1 · · ·M . Due to our choice of Pr, vis
are close to orthogonal to the pattern.

• Find the rotation and translation of the local frame and pattern minimizing
the squared norms of the vis: min

∑
i ‖vi‖2.
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If the chosen probing operator is the nearest point projector, then the method
described above is the well known Iterative Closest Point (ICP) registration [BM92]
between the pattern and the shape. Using the as-orthogonal-as-possible probing
operator yields a variant of ICP.

3.2 LPF-based Shape Analysis

Local Probing Fields capture local variations of the shape. These variations can
be geometrical and topological. If the set of LPFs covers the whole shape, it is
possible to analyze them jointly and thus learn the shape similarities. This joint
learning process is partially based on dictionary learning. Describing the shape in
the space of deformation fields, changes de facto the space where the shape analysis
is performed.

3.2.1 Initial LPF positions

A set of LPFs is built at arbitrary locations around the shape, with arbitrary frame
orientation. The only constraint on this initial LPF set is that the set of target areas
should provide a – possibly overlapping – covering of the shape. For example, a
pattern can be initially positioned on a sampling of the shape (e.g. each vertex in the
case of a mesh) with a random orientation. They can also be aligned with principal
directions if they are defined, which is not the case for curves. To illustrate the effi-
ciency of our framework, we distribute LPFs on the shape using a Poisson sampling
process and use random initial orientation. These positions and orientations are
then optimized using the minimization defined in section 3.1.2.

In practice, the target area of a given LPF is set as the intersection of a sphere
centered at s with the shape. The radius of this sphere is set to be slightly larger
than the pattern radius in order to relax the position of the LPF with respect to
the target area while still ensuring that the information is well represented. In our
experiments, we set it to 1.1r. With this definition, LPFs should be located near
the shape to have non-empty target areas. As a consequence, although positions
and orientations of the LPFs evolve during the analysis, the target area of each LPF
remains unchanged.

Let us notice that if the sampling density of the pattern is below the sampling density
of the shape, the LPF representation is conservative. In that case, the shape can be
exactly reconstructed from its set of LPFs.

3.2.2 Joint Analysis Overview

Our shape analysis process computes:

• A dictionary of d atoms that best describes the LPFs, and therefore the shape.

• A sparse set of coefficients to decompose each LPF on the dictionary. The
sparsity constraint enforces a consolidation of the information.

• LPF positions and orientations that best enforce a consistent representation,
their target areas being fixed.
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Fig. 3.4: Optimization of the LPFs on a toy example. From left to right : iteration 1,
10, 99. Top : LPFs tend to align in order to represent similar areas. Bottom :
single-atom dictionary, which converges to a smooth sinusoidal deformation. The
shape covering constraint has been relaxed for that experiment.

Let N be the total number of LPFs. Writing the LPFs as vectors Vj ∈ R3M , j ∈
0 · · ·N − 1, the problem can be stated as follows:

min
V,D,α

N−1∑
j=0
‖Vj −Dαj‖22 + λ‖α‖1

s.t. Vj represents a LPF with fixed target area
{Vj}j∈0···N−1 cover the whole shape

D ∈ R3M×d, Vj ∈ R3M

(3.2)

Previous works on sparsity have mostly focused on minimizing the representation
error: given a set of N signals Vj , the aim is to find the best dictionary to represent
the set of signals in a sparse manner (few non-zero coefficients). In our approach,
we tackle a more complex problem since both the signals and their representations
are optimized while subject to strict constraints. Indeed, the dictionary learned on
the initial set of LPFs is strongly dependent on initial positions and orientations of
the patterns. As a consequence, two similar parts of the shape might be described
by non-similar LPFs because of different initial poses, whereas their difference
could be reduced after a change in position and orientation. The goal of the energy
minimization is thus to improve dictionary learning via enhancement of the LPFs
similarity.

Our algorithm iterates the following steps:

1. Dictionary learning: Solve for D,α minimizing
∑N−1
j=0 ‖Vj −Dαj‖22 + λ‖αj‖1.

2. LPF Pose optimization: For each LPF Vj , solve for the translation t and
rotation R minimizing the representation error and update the Vj , seed and
frames accordingly.

3. LPF Update: Update each LPF Vj using the probing operator.

Figure 3.4 shows how our algorithm captures the self-similarities of a synthetic
shape. Starting with points sampled randomly on a sinusoidal surface, we set
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100 initial LPFs with random position and orientation on the shape. We then
iterate our LPF joint analysis method. The result shows that the LPFs align at
positions that represent similar parts of the shape, and their optimized orientations
are consistent.

3.2.3 Sparse Coding For Dictionary learning

The first optimization aims at learning a good dictionary over which the signals will
be sparsely decomposed. Let us write the LPFs as vectors Vj ∈ R3M for j ∈ 0 · · ·N−1.
Then the representation optimization corresponds to the Least Absolute Shrinkage
and Selection Operator (LASSO) problem, which is defined as the minimization of:

l(α,D) =
N−1∑
j=0
‖Vj −Dαj‖22 + λ‖αj‖1 (3.3)

with D ∈ R3M×d and αj ∈ Rd. As stated in [Mai+09a] and [Mai+10], the `1

norm is empirically known to provide sparse solutions while improving the speed
of dictionary learning compared to the `0 “norm”. The dictionary is initialized with
d elements drawn randomly from the set (Vj)j∈0···N−1. Afterwards, the algorithm
alternates between the two following steps:

• Sparse coding step to compute αj , j ∈ 0 · · ·N − 1, using the Least Angle
Regression (LARS) algorithm [Efr+04].

• Dictionary update step, performed by using the previous dictionary as a warm
restart to minimize the objective function.

The steps are iterated until convergence of the representation error is reached. In
our setting, 10 iterations are sufficient for the error to converge. The λ parameter
controls the sparsity of the solution: large values will favor sparse solutions while
small values will yield dense solutions. In our tests, we set λ = 0.2 for dictionaries
with a large number of atoms, and λ = 0.05 for small dictionaries, to allow enough
non-zero coefficients for shape representation.

The dictionary is initialized to a random subset of the LPFs. Since our algorithm
converges to a local minimum, a different random initialization might lead to
different minima. We experimentally observed the stability with respect to the
random dictionary initialization, by running the shape analysis algorithm 50 times
with the exact same parameters, starting with a different initial random dictionary
and measuring the representation error (3.3) divided by N . This experiment yielded
an average error of 3.2 and a standard deviation of 0.007, thus showing that our
algorithm is rather stable w.r.t. the random dictionary initialization. Although the
error converges to similar values, LPF Analysis is unfortunately not guaranteed to
converge towards the same dictionary given different initializations (similarly to
K-Means or K-SVD). A stable dictionary would be of great interest for applications
such as shape matching and retrieval. However, for the applications shown in this
chapter (resampling and denoising), stability of the dictionary is not crucial, since it
is an intermediate representation and not the output of the algorithm.

3.2.4 Pattern pose optimization

The previous sparse decomposition steps introduce a representation error. But
reducing this error is still possible by improving each LPF pose individually, to find
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Fig. 3.5: Error convergence for the “Brassempouy” model, for different dictionary sizes. For
visualization purposes, the error is divided by the dictionary size.

the optimal fit between the shape and each newly modified LPF. This can easily be
done using a least squares minimization step, similar to what is done during one
ICP iteration. More precisely, we look for a translation of the LPF and a rotation
of its frame such that the newly defined vectors vi fit better the ones obtained by
dictionary decomposition ṽi. After a rotation R of the LPF frame and translation t
of its position, the modified vi can be expressed as:

v′i = R−1 · (ui + vi)− ui − t. (3.4)

The best rotation and translation thus minimize:

M−1∑
i=0
‖v′i − ṽi‖2 =

M−1∑
i=0
‖R−1 · (ui + vi)− t− (ui + ṽi)‖2 (3.5)

which is exactly a least squares minimization for estimating a rigid transform between
two sets of points: ui + vi and ui + ṽi. Using these optimal rotation and translation
for each LPF, the seed position s, frame orientation t1, t2,n and vectors vi should
be updated accordingly:

supdated = s− t;
tupdated

1 = R−1t1;
tupdated

2 = R−1t2;
nupdated = R−1n;
∀i ∈ 0 · · ·M − 1, vupdated

i = R−1 · (ui + vi)− ui − t.

(3.6)

This update maintains the consistency between the shape and the description,
position and orientation of the LPFs.

3.2.5 Closing the loop

After the LPF pose optimization step, the set of optimized LPFs is better suited for
the input shape analysis. We use once again the probing operator to probe the shape
with respect to the optimized LPF pose. To avoid LPFs gliding on the shape (with
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Fig. 3.6: Analysis of a cube with a curve (also shown on Fig. 3.7). (a) : Decomposition
using 1 atom, where the amplitude of the decomposition is encoded as the red
component. (b) the resulting dictionary atom, which exhibits a shape with intrinsic
dimension 1. This is consistent with the decomposition coefficient representation
(a) where only the curve part contains significant coefficients. (c) Decomposition
using 3 atoms, each component being encoded respectively using the red, green
and blue component. (d), (e) and (f): the three resulting atoms. One atom
represents the sharp feature and 2 atoms represent the curve. Notice that the
planar parts are decomposed with all coefficients equal to 0, since our pattern is
perfectly planar.

the risk of losing the shape covering), we restrict the update to its original target
area. Therefore, although each LPF pose and sparse decomposition is optimized, it
always accounts for the same shape area. This update can theoretically increase the
error but we observed experimentally that the error decreases across the iterations
(Figure 3.5). Then, we are able to repeat all the processing steps until convergence
is reached.

Figure 3.6 shows the analysis result for a shape representing a cube with a curve
when using a dictionary of size 1 and 3. When using 1 atom, the decomposition
(a) mostly encodes the curve, while sharp features are undetected. When using 3
atoms, the decomposition (c) exhibits significant coefficients on sharp edges or on
the curve. For both cases, the remaining parts of the shape are represented with
small coefficients for all atoms. (b), (d), (e) and (f) show atoms representing sharp
features and curves. These experiments show that the final dictionary retrieves
important features of the shape.

3.2.6 Controlling the shape analysis

Our shape analysis approach is driven by three parameters: the pattern radius r, the
number of points M of the pattern, and the number of dictionary atoms d.

The pattern radius r is linked to the shape geometry: it represents the scale at
which the similarities can be exploited to build the dictionary. On Figure 3.9, we
illustrate the importance of the radius: with a large radius, the faceted sphere mesh
is interpreted as a sphere, whereas it remains a piecewise linear shape with a small
radius.

Once r is fixed, the number of points M in each pattern controls the accuracy of the
analysis. This accuracy can be measured by the average distance τs between pattern
points. Assuming that the points are uniformly sampled on a disk of radius r, each
point represents a region of area πr2

M . Thus, an estimation of the distance between
points is τs = r√

M
. Hence, once τs is fixed, M can be computed as: M = r2

τ2
s

. M
can then be adjusted at will, to perform different sampling scenarios, depending on
the input shape: if the probing operator accuracy is τp, setting τs = τp will perform
a 1 : 1 sampling scheme. Setting τs = 0.5τp will double the number of points, as
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shown on figure 3.1. In practice, an efficient way of building a pattern is to generate
a regular grid with a step of size τs and keep only the points that are included within
a radius r.

The number of atoms d controls the amount of consolidation. If the number of LPFs
is equal to the number of atoms, then no LPF learning is performed since all LPFs
can be represented independently, and there is no consolidation. Conversely, fewer
dictionary atoms implies a stronger consolidation. Therefore the number d of atoms
in the dictionary controls the degrees of freedom in the representation, i.e. the
supposed variability of local parts of the shape. d can be increased until the error
falls under a threshold that is consistent with the accuracy τp of the probing operator.
Interestingly, when the sampling pattern is planar, all dictionaries naturally allow to
represent planar regions as any atom multiplied by 0 results in a planar shape.

Finally, let us notice that the analysis framework is entirely driven by the minimiza-
tion of Equation (3.2). First, the dictionary learning minimizes the error with fixed
LPFs. Then, the pose estimation step keeps the dictionary and coefficients fixed and
minimizes the error by aligning the LPFs to match the dictionary decomposition,
therefore, the `1 component remains unchanged while the `2 component decreases
making the sum of the two components decrease. The last recomputation step is
not guaranteed to reduce the error, since the probing operator is used once again
to recompute the LPFs. Without this step, the error defined by Equation (3.2)
would always decrease and convergence would be guaranteed. In our experiments,
we observed that in most cases, this recomputation step made the error decrease.
However, in a few cases the error increased marginally but that was compensated by
the decrease in the two other steps. Moreover, using the recomputation step yields
lower final errors and better dictionaries.

(a) Original (b) MLS (c) EAR (d) LPF

Fig. 3.7: Upsampling a slightly noisy hollow cube intersected by a curve. Original point set
(80K points), MLS, EAR, LPF (360K points). MLS is unstable around thin lines.
EAR performs better on the edges but tends to impose a local surface model, as
can be seen near the intersection of the line and the cube (r = 0.25, M = 793,
d = 64, Shape diagonal: 8.8).

3.3 Applications

3.3.1 Shape Resampling

Many surface resampling methods have been investigated. For example Huang et
al. [Hua+13] proposed an algorithm to detect sharp features, and resample shapes
starting from surface parts that are distant from the edges and resample gradually
toward the edges in order to better recover them. This method, called Edge-Aware
Resampling (EAR), is built upon the Locally Optimal Projection [Lip+07] and its
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Fig. 3.8: LPF consolidation: during resampling, a point on the shape (yellow sphere) may
be shared by two different LPFs.

weighted variant the Weighted Locally Optimal Projection [Hua+09], a relaxation
method to resample shapes. Other successful shape resampling techniques build
on the Moving Least Squares approach [Ale+01; AK04], to resample a shape
using local fitted models. Several improvements to better preserve sharp features
have been proposed either relying e.g. on outlier-robust statistics [FCS05], local
fitting of algebraic spheres [GG07] or outlier-robust kernel regression [OGG09].
Consolidation can also be tackled from a more global perspective, for example using
a shape skeleton to complete a shape [Wu+15a]. Our method will on the contrary
focus on the statistical analysis of local properties.

The shape analysis of section 3.2 provides us with optimized LPF positions s̃ and
orientations t̃1, t̃2, ñ as well as a shape dictionary D and the associated decomposi-
tion coefficients α. We propose to use these optimized LPFs to sample points on the
shape.

First, the vector fields are recomputed using their decompositions Ṽj = Dαj . Each
LPF yields a set of points pi such that:

pi = s̃+ (ui.x+ ṽi.x)t̃1 + (ui.y + ṽi.y)t̃2 + (ui.z + ṽi.z)ñ (3.7)

where u.x,u.y,u.z are the x, y, z coordinates of vector u (and similarly for v). Since
the LPFs overlap, the reconstructed information in the overlapping areas may not
coincide exactly. In these areas, a consensus point distribution, still driven by the
error minimization, must be built. Let us call q an hypothetical best consensus
position. This point is located inside the target areas of several LPFs. A point
(sL,uLi , ṽLi ) of a reconstructed LPF L is said to conflict with a point q if the target
area of L includes q and ‖sL + uLi + ṽLi − q‖ ≤ τ2

p . Thus, the LPF L yields a point
close to q. Let us define A(q) the influence zone of q as the set of conflicting LPF
points. A consensus point q should minimize:∑

(sL,uLi ,ṽ
L
i )∈A(q)

‖q − sL − uLi − ṽLi ‖22. (3.8)

This minimization is non-trivial since A(q) varies with q. Fortunately, we can simplify
it by fixing the set A(q) which yields a least squares minimization resulting in:
q = 1

#A(q)
∑
A(q) s

L + uLi + ṽLi . In practice this means that when a LPF proposes
a position q, the best consensus point is found inside A(q), and q is moved at
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Fig. 3.9: Influence of the pattern radius r: mesh of a sphere with 100 vertices (left), extract-
ing the dictionary and resampling from it with a small radius (middle) and a large
radius (right). A larger radius captures large scale similarities. Both dictionaries
contain 16 atoms. The normals for the point sets are estimated by PCA.

Fig. 3.10: Sampling the Fandisk mesh. Left: original mesh (6k vertices). Right: our
resampling to 1M points, which shows the accuracy of our LPF-based method.
Normals are computed by PCA analysis for the point set (r = 0.2, M = 793,
d = 16, Shape diagonal: 7.61).

this optimal position. Afterwards, no point conflicting with q can be added to the
resampled point cloud.

We experimented our framework on shapes represented as surface meshes (Figures
3.9, 3.10) and point sets (e.g. Figure 3.1). On a LiDaR point set (Fig. 3.11), our
LPF framework yields a detail-enhancing resampling which preserves well the point
set borders. We compare it with EAR [Hua+13] on a pyramid shape with engravings
(Fig. 3.12) and sparse initial sampling. EAR and LPF both outperform Moving Least
Squares and permit to upsample the shape while recovering the engravings. On the
contrary, on the cube with curve model or ship point set, EAR is bound to fail at
resampling faithfully the curve because of its manifold surface assumption (Figures
3.1, 3.7).

One important feature of our method is its ability to learn the local dimension from
the shape, which can be seen on the cube with curve point set (Fig. 3.7). EAR being
particularly well suited for edge recovery, it performs better on the edges of the
cube but it fails to recover the curve structure whenever it is too close to the shape.
On the contrary, LPF is able to resample it. This advantage can also be seen on
the ship example (Fig. 3.1). We have enhanced the MLS-based resampling with an
anisotropic behavior: we measure a local stretch ratio rs, the ratio between the two
largest covariance matrix eigenvalues. In the regions where rs is below a threshold
(3 in our case), MLS sampling occurs as expected, while regions where rs is above
the threshold are sampled as curves. This modification improves the sampling of the
curves, but it still tends to blur the riggings, and creates spurious points. EAR fills
the gaps between the ship’s rigging, whereas LPF nicely enhances them.
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Fig. 3.11: Resampling the Trianon point set with close-up views. Top : original with 200K
points; Bottom: result (2.2M points). Notice how the details are enhanced
through the resampling while preserving the point set borders (r = 0.003, M =
193, d = 32, shape diagonal: 1.36). The Trianon point set is courtesy of the
CNRS-MAP laboratory.

(a) Original (b) MLS (c) EAR (d) LPF

Fig. 3.12: Pyramid Resampling. From left to right: initial (280K points), resampled using
standard MLS, EAR and LPF resampling. EAR and LPF both manage to recover the
details. All resampled point sets have the same number of points (2.2M points),
and their normals are recomputed using Hoppe et al.’s method [Hop+92] with
the same parameters (r = 0.8, M = 793, d = 64, shape diagonal: 125.51).
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3.3.2 Point Set Denoising

The second application of our framework is point set denoising (see Chapter 2 for
a brief state of the art). Similarly to [EA06], we start from the initial point set
S0 and aim at finding the denoised point set S minimizing the following objective
function:

min
S,D,α

‖S − S0‖2 + γ
N−1∑
j=0
‖Rj(S)−Dαj‖2F + λ

N−1∑
j=0
‖αj‖1 (3.9)

where Rj is the operator that extracts the LPF at position sj (i.e. Rj(S) = Vj) and
γ, λ are two parameters balancing the lpf regularization and the sparsity constraint.
‖S − S0‖2 corresponds to the squared distance between the initial noisy point set
and the current point set, measured as the sum of squared distances from points in
S to their nearest neighbor in S0. This objective function is hard to minimize but is
in fact closely linked to our minimization defined in Equation (3.2). We solve it by
splitting it into two steps that are iterated until the point set is stable

• The first step learns the dictionary and coefficients as well as the LPF positions
and orientations.

• The second step uses the dictionary to find the best denoised point set.

The first step is exactly the shape analysis defined in Equation (3.2). Then, once
the dictionary and coefficients are fixed, minimizing (3.9) amounts to solving in the
second step:

min
S
‖S − S0‖2 + γ

N−1∑
j=0
‖Rj(S)−Dαj‖2F . (3.10)

Minimizing this energy means finding for each point q the best consensus among
all LPFs that describe the vicinity of q. More precisely, each initial point q relates
to a set of consolidated LPFs providing better candidate positions for this point, i.e.
positions that fit better the dictionary decomposition. A better position estimation
can thus be computed, similarly to the shape resampling application: starting with
an initial point position q, each neighboring LPF proposes a new candidate position
for q by projecting q onto the pattern support plane and computing a position qi
from the set of vis. All candidate positions are then averaged as:

q̃ =
∑
iw(q, qi)qi∑
iw(q, qi)

with w(q, p) = exp−‖p− q‖
2

2τ2
p

. (3.11)

The point q is then moved toward the proposed position at a rate γ :

qdenoised = q + γq̃

1 + γ
(3.12)

and this process is repeated until the denoised positions are stable (or after a chosen
number of iterations).
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Fig. 3.13: Denoising the Fandisk point set (600K points). From left to right: noisy point
sets (noise standard deviations: 1%, 1.5%, 2% of the shape diagonal) and their
corresponding denoised shapes. Normals are computed by local quadric fitting
(r = 0.2, M = 193, d = 8, shape diagonal: 7.61).

(a) Noisy (b) Bilateral (c) RIMLS (d) `0

denoising
(e) WLOP (f) LPF

Fig. 3.14: Denoising the Brassempouy point set with added noise of variance 0.4% of the
diagonal. From left to right: initial shape, bilateral, RIMLS [OGG09] (Meshlab
implementation with depth 6), `0 denoising [SSW15], WLOP [Hua+09] and LPF
(r = 0.7, M = 193, d = 32, shape diagonal 51.96). For visualization purpose, all
shapes were reconstructed using scale space meshing [Dig+11b].

In all denoising experiments, we initially set one LPF per sample point. This way
all points are represented equally. We also set γ = 0.5 (moving the point halfway
toward its guessed position). Figure 3.13 shows the denoising of a shape with
sharp features an varying amounts of noise. The method performs well at removing
noise while preserving the features. On Figure 3.14 we compare LPF denoising
with several denoising methods. One can see that the bilateral filter [FDC03] tends
to oversmooth the details, RIMLS [OGG09] tends to create some low-frequency
artifacts on the surface while still preserving the details well, `0 denoising [SSW15]
tends to create spurious artifacts. Weighted Local Optimal Projection (WLOP)
[Hua+09] outputs a better compromise between feature preservation and noise
removal, yet some low-frequency artifacts remain in areas that should be smooth.
LPF based denoising permits to denoise featured and smooth areas without adding
low-frequency artifacts.

Our method is particularly well suited for point sets that represent a mix of surfaces
and curves (Figure 3.15). In this setting normals can be irrelevant and all methods
based on normal estimation fail. This is the case for the bilateral filter, APSS, RIMLS
as well as WLOP. On Fig. 3.15 and Table 3.1, we compare visually and quantitatively
the performance of our denoising algorithm on a synthetic point cloud. Only our
algorithm is able to denoise correctly both the surface and the curve net. Notice that
WLOP recovers the curves better than the other state-of-the art algorithms, although
it is outperformed by our LPF approach.
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(a) Original (b) Noisy
(RMSE = 0.124)

(c) APSS
(RMSE = 0.085)

(d) RIMLS
(RMSE = 0.081)

(e) Bilateral
(RMSE = 0.071)

(f) WLOP
(RMSE = 0.051)

(g) LPF
(RMSE = 0.017)

Fig. 3.15: Comparison with standard denoising methods on a synthetic point set (400K
points). Only our algorithm is able to handle the curves, while algorithms relying
on a manifold surface assumption fail to denoise the shape. Root Mean Square
Errors with respect to the noise-free synthetic data are given (400K LPFs, r = 0.5,
M = 193, d = 16, shape diagonal 47.29).

PPPPPPPPPPPPPPP

Denoising
Method

Initial Noise
Level

0.124 0.25 0.38

APSS 0.085 0.242 0.301
RIMLS 0.081 0.201 0.272

Bilateral 0.071 0.155 0.231
WLOP 0.051 0.214 0.352
LPF 0.017 0.054 0.104

Tab. 3.1: RMSE of the denoising results on the shape of Fig. 3.15 using APSS, RIMLS, the
bilateral filter, WLOP and our LPF denoising. All errors are given in distance units.
The first column corresponds to the results shown on Figure 3.15.
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3.3.3 Implementation details

Our algorithm was implemented in C++ using the Eigen library for matrix represen-
tation. For a non-optimized code and 1.1 million input point set, covered by 100000
LPFs with a pattern containing 193 points (a pattern of 16× 16 points intersected
with a sphere) and a dictionary of 32 atoms, the initial LPF computation took 30s
and the shape learning process took 150s (10 iterations of dictionary computation,
pose estimation and recomputation) on a 4-core Intel®Core™i7 laptop.

3.4 Limitations

The principal limitation of the LPF method is that it learns shapes in a statistical
manner: an important feature that is not frequent enough will not be accounted for
in the shape dictionary. As an example, no corner is present in the cube with curve
dictionary (Figure 3.6). To overcome this limitation one could devise a strategy
that adds more LPFs where the representation error is largest. This would however
require further analysis to ensure that the added information does not correspond to
noise. Moreover, optimizing the shape of the template during analysis could also
improve the results quality. One should notice that the dictionary is learned on a
specific shape, and analyzing another shape might not be done as efficiently using
the same dictionary, except if both shapes share local similarities.

Outliers are also a limitation of our method. Indeed, if a LPF is centered at an outlier
position then the LPF will represent a single point. In the joint analysis this LPF will
be replaced by a consolidated version which would have little sense. This can be
easily alleviated by adding a preprocessing step to remove outliers.

Finally, our method requires some parameters: the user has to choose both the
scale and the dictionary size. The choice of a scale can be argued for, since the
analysis reveals different similarities depending on the chosen scale. The size of the
dictionary is application and data-dependent; it should be large enough to encode
shape variations but small enough for similarities to emerge. It is simple to set
for geometric shapes, such as cubes, but more difficult for complex natural shapes.
Selecting a good dictionary size is still an open question to this day.

3.5 Conclusion

This chapter described a framework to analyze shapes by consolidating Local Probing
Fields defined in the ambient space around the whole shape. By jointly analyzing
this set of descriptions we provide a new tool for sparse shape description expressed
as a dictionary learning problem. As demonstrated in our experiments, this tool
allows the shape to reveal its non-local similarities. The efficiency of this framework
is illustrated on shape resampling and point set denoising applications. As a future
work we mean to study the theoretical properties of the Local Probing Fields and
in particular possible improvements of the statistical properties of the consolidated
point distribution. A whole set of applications of the LPF framework remains to be
explored, including shape compression, segmentation and registration, as well as
the extension of our approach to shape collections.

Related Publication:
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• Sparse Geometric Representation Through Local Shape Probing, Julie Digne,
Sébastien Valette, Raphaëlle Chaine, IEEE Transactions on Visualization and
Computer Graphics 2018.
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A second project I contributed to is geometry analysis when additional color images
and world coordinate positioning are provided. This challenge appears in urban
scene acquisition, often performed using laser scanners onboard a moving vehicle,
with additional pictures taken at regular intervals. The system is in general calibrated
so that the picture pose is known up to some error. The question of combining both
measures naturally arises for adding color to the 3D points or enhancing the geometry,
but it faces important challenges. While 3D point positions can be considered as
highly accurate, the images suffer from distortion and are only coarsely registered
to the geometry. Another challenge lies in the efficient colorization of the point
set based on the set of registered images. Indeed all these images might not give
the same color information to a point which can be due to occlusions, or residual
alignment error. A consensus color must therefore be found. However this consensus
color will still contain shadows or luminance artifacts, reflecting the acquisition time
of day and weather conditions. If the goal is to recover a model of the city and
simulate its evolution for instance, this extrinsic information should be removed to
build a neutral representation of the city.

In the course of this project we explored challenges linked to the joint analysis of
these data leading to three contributions

• A new metric for comparing images of different modalities.

• A coarse to fine approach to register an image to a point set.

• A point set colorization and shadow removal method using a registered collec-
tion of images.

This chapter gives an overview of these contributions. More details can be found
in [Gui+17; Gui+16; Gui17]. This work was carried out in the context of the PhD
thesis of Maximilien Guislain (2014-2017) in collaboration with the Technodigit
firm, co-advised with Raphaëlle Chaine.
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Data This chapter focuses on urban scenes point sets and associated pictures with
approximate camera pose given by GPS positioning. All camera intrinsic parameters
are assumed to be known. Two such datasets are tested: the Shrewsbury dataset
containing point clouds and associated images acquired in the city of Shrewsbury
(UK). The point cloud itself is composed of 260 million points corresponding to the
scans of several streets in the city center. The whole point cloud itself is correctly
registered and coherent along the 2.5km path taken by a moving LiDAR mounted on
a vehicle equipped with 7 cameras. The pictures were taken at a regular distance
from each other, in 6 directions. Along the path, 2452 pictures per direction were
taken, yielding a total of 14712 images. The pictures have a resolution of 2046×2046
and are encoded using JPEG. The second dataset is the publicly available KITTI
dataset [Gei+13], which is acquired with a Velodyne LiDAR.

In this chapter, most methods use images of the point set rendered from a given
pose. These renderings will be refered to as Synthetic Images, as opposed to Real
Images being the pictures actually taken by the camera.

4.1 Related work
Image-to-Geometry registration is a domain that was extensively explored in the
past few years. While some methods use a 3D proxy reconstructed by structure from
motion on the images and then register the proxy to the mesh or point cloud in 3D
[Cor+13b; Mou14], most methods cast the problem of image to point cloud regis-
tration as an iterative image to image registration process. This type of approaches
compare information represented as 2D images, a problem for which there are
many solutions. At each iteration, a synthetic image is generated from the current
camera viewpoint and its similarity with the real image is measured. The pose is
then updated to increase the similarity measure.

To compare information encoded in images, a common idea is to use image de-
scriptors such as SIFT [Low04] or SURF [BTV06], which work well if the synthetic
image already possesses a reliable color information [GRG09; MAF12] or encodes
the laser reflectance [SW10]. Using the correspondences between 2D and 3D points,
the camera pose can be deduced by solving a Perspective-n-Point problem [LMF09].
When additional information are available, such as the perfect pose of a real image
[Yan+10], or a prior knowledge of the scene [BWG15], these can also be exploited
in the optimization problem. Plötz et al. [PR15] recently described a feature based
registration method using the average shading gradients to successfully register an
image onto an untextured mesh object without any prior pose information. Interest-
ingly, while feature-based methods work very well for comparing two real images,
their performances decrease when comparing real and synthetic images due to the
missing data and the difference of modality.

To deal with various modalities, one can also rely on statistics. The most famous
statistical method is the Mutual Information (MI) measure [VW97], that is extended
in this chapter. MI is a measure of the mutual dependencies between two random
variables (the image intensities) based on the Shannon entropy. MI measures the
similarity between two images based on the level of dependency of the intensity
distributions. Thus, in order to align an image to another, one looks for the pose
that yields the maximum Mutual Information [KKZ03; Gon+14]. Several variations
on the original metric have been proposed: using normalized values (Normalized
Mutual Information [SHH99]) or adding SIFT information [Gon+14]. Its efficiency
with respect to the type of information encoded (normal maps, intensities...) in
the synthetic image was also explored [Cor+09]. Statistical methods for image
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to geometry registration are an active field of research. For example, Pascoe et
al. [PMN15] recently introduced a Normalized Information Distance metric, based
on Mutual Information and entropy variation, to retrieve the camera position in an
urban environment.

Although statistical methods are an appealing choice for solving the registration
problem, they cannot be used directly in our setting: First, the Mutual Information
objective function exhibits a highly non convex profile because of the sparsity of the
synthetic images rendered from the urban point set. Second, it is a global measure
with no sense of localization.

Point Cloud Colorization. Once Images and Geometry have been registered, the
colors can be transfered from the set of images to the point set. Since images
are taken at regular intervals, areas are covered by several pictures, each of them
proposing a color for the points in this overlap area. These colors might not agree
for various reasons, such as occlusions due to moving vehicles or pedestrian, or
illumination changes. To reach a consensus, Chen et al. [Cho+14] propose a method
that builds a graph of the point set and optimize the color by considering the colors
proposed by the different images, as well as a regularization between neighboring
points in the graph. However the final color may still contain shadows which are
purely dependent on the acquisition time and conditions and are extrinsic to the
scene, and, as such should be removed.

The detection and correction of shadows is closely linked to the intrinsic image
recovery problem, which decomposes an image into a reflectance and shading layers
[LM71; Bon+17]. Although some intrinsic decomposition methods work from a
single image, using machine learning [LEN10], the Log-Chromaticity colorspace
[Cor+13a] or in an interactive manner [Xia+13], many methods rely on information
coming from different types of captors. Among others, Laffont et al. [LBD12] use
a set of HDR images, a measured environment map and user interaction to get
an accurate separation of the color images into the different intrinsic components.
Wehrwein et al. [WBS15] automatically detect the shadows and the sun direction in
a series of pictures from which a 3D proxy is reconstructed. A statistical analysis of
the colors proposed for each mesh vertex of the 3D proxy yields a classification of
vertices as lying in the shadow or in the light. However here we focus only on the
sub-problem of shadow removal and use a simplified illumination model, far from
the exhaustive intrinsic decompositions.

The relighting of the point cloud is also a challenge. Troccoli and Allen [TA05] use
multiple HDR overlapping images taken under different illumination conditions to
compute illumination ratios in overlapping areas and use these ratios to relight the
whole image. Ramakrishnan et al. [RNS15] proposed a simplified illumination
model to relight the model using some user interaction to select pairs of points of
the same material one in the shadow and one in the sunlight. Both these approaches
require a mesh reconstruction step to work on a clean watertight surface, while our
approach avoids a computationally expensive mesh reconstruction.

4.2 Synthetic Image Generation

To cast the image-to-geometry registration problem to an iterative image-to-image
registration problem, one needs a way to convert the 3D data to an image even with
missing data and varying sampling density (Figure 4.1).
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(a) Point cloud projection (b) Occlusion estimation (c) Interpolation

Fig. 4.1: Different steps to generate the synthetic image. The pixel intensities are computed
using the points normals.

Assuming a pinhole camera model with known intrinsic parameters, as well as
the parameters of the Brown-Conrady camera distortion model [Bro66], the 2D
coordinates of a point that is projected from the ambient space onto the image plane
can be obtained. However, these pixel coordinates are not enough and one needs
to assign a color to the pixel. For LiDAR point sets, a laser reflectance per point
can be provided and used as a color. Another option is to estimate the normals on
the point cloud and use their dot-product with a chosen lighting direction as color
(Figure 4.1a). Furthermore, several points might be projected to the same pixel,
for example if the foreground surface is not dense enough to hide other building
surfaces. To solve this problem we use a cone of visibility per pixel, following the
method proposed by Pintus [PGA11] (Figure 4.1b).

This last step removes occlusions but leaves many colorless pixels in the image
plane, since no 3D point projects onto them. To make the information denser, we
use an ad-hoc interpolation, in order to expand the information without widening
boundaries, as would bilinear interpolation [GRG09] or surface splatting [Zwi+01;
Bot+05].

4.3 Robust comparison of synthetic and real
images
The synthetic image should now be compared to the real image. This comparison is
a challenge for two reasons: 1) the synthetic image might lack information (missing
data or sky area). 2) although both represent highly correlated information, the
modalities might be different. For example, the synthetic image might represent
the laser reflectance per pixel while the real image represents the building col-
ors. We present an extension of Mutual Information which adds some localization
information.

4.3.1 Mutual Information

In its broadest definition, Mutual Information is a measure of the mutual dependence
of two random variables X and Y as:

MI(X,Y ) =
∑
x,y

p(X = x, Y = y) log p(X = x, Y = y)
p(X = x)p(Y = y) . (4.1)
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If X and Y are two images I1 and I2 the probability p(I1) is computed from the
normalized histogram of I1 while p(I1, I2) is computed from the joint histogram of
I1 and I2. Real and synthetic image modalities might be different however they are
clearly mutually dependent, MI is thus well suited to measure their similarity. The
normalized version of Mutual Information (NMI) [SHH99] ensures that MI values
are bounded:

NMI(I1, I2) = H(I1) +H(I2)
H(I1, I2) (4.2)

where H(I) is the image entropy. While NMI is efficient in most cases, when data
is missing in synthetic images, NMI exhibits a non-convex profile with ill-defined
maxima. This can be explained by the fact that NMI, and MI in general, take the
whole image into consideration. Next section describes a way to take into account
the locality of the information.

4.3.2 Distance between Histogram of Oriented Gradients

To introduce localization, we rely on a metric based on the spatial distribution of
intensity gradients called Distance between Histogram of Oriented Gradients (DHOG).
It corresponds to a localized integration of distances between local Histogram of
Oriented Gradients (HOG). Interestingly, another attempt at localizing MI was
proposed in pixel-wise mutual information [Gon+14], but in case of images using
only normal information this metric exhibits a highly nonconvex profile making it
hard to recover a good registration.

Histogram of Oriented Gradients [DT05], is a feature descriptor characterizing image
areas using their gradient information, widely used for image matching and object
detection [Shr+11]. The histograms are computed on sliding windows of the image.
Let us call HOG1

i,j (resp. HOG2
i,j) the vector of oriented gradient histogram values

at pixel of coordinates (i, j) in image I1 (resp. I2), DHOG is defined as:

DHOG(I1, I2) = 1∑
i,j wij

∑
i,j

(HOG1
i,j −HOG2

i,j)2wij ,

where wij is a weight giving more importance to pixels near the image centers, which
are less affected by radial distortions. Besides alleviating the remaining calibration
error, this weighting scheme also increases registration accuracy: on a 45 images
groundtruth, it improved registration accuracy by 3 pixels and the registration
success ratio by 4% in average.

4.3.3 MIDHOG

When applied to textureless images, such as normal-based synthetic images, DHOG
performs much better than NMI. Conversely, NMI outperforms DHOG on images
containing many textures. Figure 4.2 shows that the metric variation of NMI and
DHOG are different for the same transformation and that their defects appear in
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(a) MI, x translation
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(c) MIDHOG, x translation

Fig. 4.2: Variation of three image comparison metrics: NMI, DHOG and MIDHOG with
respect to a per pixel translation on the horizontal axis (similar results are obtained
for the vertical axis).

different cases. A linear combination permits however to compensate for the defects
of both measures:

MIDHOG = (2.0− NMI) + α · DHOG (4.3)

MIDHOG inherits the properties of both MI and DHOG, it is zero when the two
compared images are totally identical and it is symmetrical. An error study of
the coarse registration error compared to our ground truth shows that an α value
between 5 and 20 gives similar and satisfactory results, a good trade-off was obtained
using α = 10.

4.4 Image-to-Geometry Coarse to Fine
Registration

Our method takes as input a point cloud of a urban scene and a corresponding
picture with initial approximate pose Ω and known intrinsic parameters. We propose
a two-step registration method to refine the camera pose. First a wide angle synthetic
image is generated and used to optimize the camera pose with 3 degrees of freedom
(optimizing only for a rotation). This rotation estimation is performed in a multiscale
way using MIDHOG. Then, the fine registration step refines the pose by gradually
performing a full 6 degrees of freedom pose estimation.

4.4.1 Coarse registration step

A first registration step is performed by generating a wide angle image of the point
cloud from the initial camera pose and by refining 3 degrees of freedom on the
location of this pose.

The rationale behind this first step is that a small pitch and yaw rotation or translation
of the pose will only marginally distort the pixels but will affect the position of
the image center in the image plane. Thus they can be approximated by a small
translation in the image plane. Conversely the roll rotation corresponds to a rotation
in the image plane around its center. Thus, instead of generating a new synthetic
image after each small motion, a single wide-image is generated and its sub-images
are considered as good approximates of smaller images after a small viewpoint
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(a) Original pose (b) Scale 1/4 (c) Scale 1/2

(d) Detail (original pose) (e) Detail (scale 1/4) (f) Detail (scale 1/2)

Fig. 4.3: Coarse Registration comparison. Initial registration error of 2.4◦ (yaw) and 0.5◦
(pitch). Original registration (magenta) and coarse registration (green). The
computation took around 60s.

change. As a side-effect, it also produces smoother metric variations than the one
observed when performing a 3D rotation of the camera.

At this coarse stage, it is safe to omit the translation and optimize only for the
rotation (3 degrees of freedom). To be even faster, rotations are approximated as
image plane translations, the Yaw (resp. Pitch) rotation as a translation along the
x (resp. y) axis in the image plane. The last rotation, the Roll, is computed as a
rotation in the image plane around the image center. Hence the optimization does
not need any time-consuming synthetic image rendering as long as the small rotation
hypothesis remains valid.

Unfortunately, for larger camera motions the hypothesis does not hold. To cope with
this problem, a new wide-angle is generated after several steps (to avoid optimization
drift) or if the estimated rotation angles are too large. To further improve both
computation time and convergence of the method, we perform this wide angle image
registration at different scale levels, starting from the coarsest resolution (Figure 4.3).
The optimization is solved using the BOBYQA algorithm [Pow09] and stop when the
pose variation is small enough (2 pixels in our implementation). BOBYQA computes
iterative quadratic approximations of the MIDHOG objective in trust regions.

4.4.2 Fine registration step

After this coarse pose estimation, the fine scale registration consists in estimating the
real pose Ω′ not far from the coarse estimation Ω1 by considering the full 6 degrees
of freedom. Despite the non convex form of the similarity metric with respect to
the pose, we can find a satisfactory local minimum since Ω1 is close to Ω′. If the
priority is given to the computation speed at the risk of losing some accuracy, it is
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(a) Coarse (b) Coarse+fine (c) Coarse (detail) (d) Coarse+Fine
(detail)

Fig. 4.4: Details of the registration on a part of Castle street, for coarse registration only, or
for coarse and fine registration. The improvement of the registration with the fine
method is clearly visible around the street lights.

(a) NMI based
registration on

normals.

(b) NMI based
registration on

reflectance.

(c) MIDHOG based
registration on

normals.

(d) MIDHOG based
registration on

reflectance.

Fig. 4.5: Different metrics used for the registration based either on the normals or on the
reflectance values of the point cloud.

safe to use DHOG instead of MIDHOG, which increases drastically the processing
speed. Interestingly, this substitution can be done relatively safely only during the
fine registration step since the search is limited to a narrow band around the pose Ω1
found in the coarse registration step. Figure 4.4 shows the improvement obtained
through the fine scale step over the coarse registration.

Table 4.1 compares the fine registration step using NMI, DHOG and MIDHOG, in
terms of error computation times and successful registration ratio on a groundtruth
dataset. The success ratio is obtained by considering the registration to be successful
when the registration error is below a threshold. The remaining error is the error
computed on the images considered as correctly registered. As expected the compu-
tation time is improved by using only DHOG with a gain of about 40s in average.
The final quality also depends on the modality of the synthetic images: if normals
are used for the synthetic images, the three measures give similar results. However,
when relying only on normals, MIDHOG clearly outperforms both NMI and DHOG
(Figure 4.5).

We compared our approach with two recent works for registering images on a point
cloud. The first one is the original Taylor algorithm [TN13] based on Normalized
Mutual Information and the second one is the GOM metric of the same author
[TNJ13]. Comparisons were run on a subset of our real dataset (Figure 4.6) showing
that both the GOM-based method and NMI-based method are not robust to sparsity
and missing parts in the synthetic images. More details and experiments can be
found in [Gui+17].
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Error Std Time Ratio
Remaining

Error
Original

disruption
123.57 40.82 N/A N/A N/A

NMI
(normals)

448.94 633.3 302s 31% 20.05

NMI
(reflectance)

24.25 77.23 585s 91% 8.56

DHOG
(normals)

20.74 20.35 498s 89% 15.34

DHOG
(reflectance)

15.25 21.05 572s 98% 12.28

MIDHOG
(normals)

16.77 10.77 541s 93% 14.85

MIDHOG
(reflectance)

15.25 21.05 597s 98% 12.28

Tab. 4.1: Comparison of the average error in pixels, standard deviation, convergence time,
successful registration ratio and remaining error on the successful registration
case for 45 images using either NMI, DHOG or MIDHOG as image comparison
metric. The remaining error is the error computed on the images considered as
correctly registered. Using the reflectance values leads to a major improvement in
the results quality.

(a) GOM method [TNJ13]
(40 minutes)

(b) NMI method [TN13] (62
minutes)

(c) Our two-step method (10
minutes)

Fig. 4.6: Different registration results using various techniques on a subset of the point
cloud. Missing or sparse information prevent other methods to converge to a
correct registration.
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Fig. 4.7: Example artifacts obtained by naive color projection

4.5 Point set colorization and shadow removal

4.5.1 Colorization

Once the point sets and images are properly registered, the joint analysis in itself can
start. This section focuses on the colorization of the point set. Indeed despite the
accurate registration, projecting colors from the images to the point cloud is a non
trivial task. A simple projection might lead to color bleeding because of occlusions
(Figure 4.7).

Since the cameras acquired several pictures from the same point cloud area, one
can analyze the colors proposed by each of the pictures. Indeed, using the camera
poses and the camera model, each point of the point cloud can be projected onto
each image plane and the color of the pixel it falls in yields a possible color for
the point. However, these proposed colors might vary a lot, which can be due to
occlusions from certain viewpoints or illumination changes between the capture
times. Resorting to simple strategies such as taking the mean or median value of
the colors leads to unsatisfactory blurred results. A better strategy was proposed by
Cho et al. [Cho+14], taking into account both the various proposed colors and a
regularization term based on the point’s neighborhood. It builds a covering graph
(Delaunay, Z-ordering or nearest neighbor graph) and minimizes an energy E(C) on
this graph. This method is here slightly modified so that E(C) penalizes a color per
point that is too far from the median color of all proposed colors (data attachment
term) and a color that is too far away from the colors of the neighbors (regularization
term). Results show that occlusions do not hinder colorization any longer and no
blur is introduced (Figure 4.8). More details on the colorization process can be
found in [Gui17].

4.5.2 Shadow detection

The colorization process mainly reaches a consensus from the information provided
by the images, but it does not separate the color between information extrinsic and
intrinsic to the scene. As a consequence, extrinsic information such as shadows are
projected in the cloud colorization. This section focuses on the detection of the
shadows by jointly analyzing the geometry of the scene and its reflective and color
properties.

88



Fig. 4.8: Colorization results (Left column: original colorization; Right column: our col-
orization)

Our approach takes as input a point cloud endowed with laser reflectance information
as well as a series of pictures aligned with the point cloud. The shadow detection
algorithm proceeds in three steps:

• Shadow interfaces are identified using reflectance and luminance properties of
the colored point cloud.

• Interface points are filtered using local histogram analysis.

• Shadows are segmented in the image plane using graph cut optimization.

Once shadows are detected, they are corrected using a simplified illumination model
and performing a luminance and chrominance correction.

Our shadow detection method builds on a simple characterization of the shadow
edge: two points lie on two sides of a shadow boundary if they have similar laser
reflectances but very different intensity values. Indeed, the value of the laser
reflectance depends only on the reflective properties of the surface and not on the
fact that the surface lies in the shadows or in an illuminated area. This simple
characterization permits to detect reliably some interface points in the image plane
and extend the shadow classification to the whole image.

Shadow interface detection. First, the algorithm works on the point cloud and
finds pairs of close points that are likely to lie on each side of a shadow interface. For
each point, its K nearest neighbors are used to estimate the color gradient as well as
the laser reflectance gradient and a rather conservative thresholding on these values
yields points with low reflectance gradient and high color gradient. This yields a
large number of potential interface points, with a lot of false detections. Outliers
are filtered out based on local interface density, since a shadow interface cannot be
isolated.
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(a) Luminance
histogram

(b) a* histogram (c) b* histogram

Fig. 4.9: Histogram of the different La*b* color channels around a shadow interface.

In a second step, we use the luminance value to filter out the remaining false
detections. Indeed, the histogram around a pair corresponding to a true shadow
interface should have a bimodal distribution corresponding to the light and shadow
parts, as illustrated by figure 4.9. Hence, Luminance histograms are computed
around pairs of interface points, and the pair is kept only if the histogram has indeed
two clearly dominant modes. The interface detection step yields a sparse set of pairs
of points, that are the seeds for the full image classification.

Shadow consolidation. The consolidation step is performed in the image plane,
since an image provides a dense information. Shadow interface pairs are projected
in the image plane, using the known camera pose and intrinsic parameters. Using
these interface points to estimate the sun position and deduce the segmentation
would require a complete and consistent geometry to be able to retrieve the shadow
mask. Due to missing information on the top of the building, it is not a valid strategy
for the considered datasets. Our approach rather relies on labeling each pixel of the
image as “shadow” or “lit”. We look for a labeling δ of the image pixels, equal to 1 if
the pixel lies in a shadow and 0 otherwise. The segmentation problem can be stated
as an energy minimization with the following objective:

E(δ) =
∑

p:image pixel

Edata(δ, p) + γ
∑

(p, q): neighboring pixels

Esmooth(δ, p, q) (4.4)

where Esmooth = e−
1

2σ2 (L(p)−L(q))1δ(p)6=δ(q),

Edata(δ, p) =
{
e−

1
2σ2 (L(p)−LS)2

if δ(p) = 0
e−

1
2σ2 (L(p)−LL)2

if δ(p) = 1

L(p) is the Luminance at pixel p, LS (resp. LL) is the average luminance in the
shadow (resp. lit) area and γ is a regularization weighting term set to 1 in our
experiments.

This type of energy can be easily minimized using graph cuts [BVZ01; BK04] with
Edata as the source and sink edge costs and Esmooth as the inter-pixel edge cost. The
labels obtained by the graph cut are then back-projected on the point cloud to assign
the points to the shadow mask. Figure 4.10 shows the results of the initial interface
point detection, interfaces filtered first by density, then by histogram analysis and
the final graph cut result. It demonstrates how the graph cut turns the sparse set of
shadow edges into a full segmentation. In this challenging scene, with many surface
reflectance and material changes, the detection recovers correct shadow masks.
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(a) Detected points (b) Filtered points (c) Shadow interface
points

(d) Shadow mask

Fig. 4.10: Shadow detection algorithm step-by-step. The shadow appearing at the bottom
left of the graph cut mask (4.10d) is due to the acquisition vehicle that is visible
on the pictures but not on the point cloud.

4.5.3 Shadow Correction

Using the point cloud labeling, the colors can be modified to simulate that all points
lie in the shadow, or, conversely, that all points lie in the sunlight.

Illumination model. The luminance of a point lying on a Lambertian outdoor
surface can be defined as [Yu+99; LBD12; RNS15]:

L = R(Ssun + Ssky + Sindirect) (4.5)

with I the illumination, R the albedo of the material, Ssun the lighting contribution
of the sun, Ssky the lighting contribution of the sky (ambient light) and Sindirect the
lighting contribution of the light reflected by the objects in the scene.

Luminance correction. The luminance correction step requires an approximate
sunlight orientation to be able to separate the different components of the color. This
coarse orientation can be estimated through GPS data and time of acquisition [RA04].
Knowing the position of several shadow points, the amount of illumination provided
by the sky can be roughly estimated. Indeed, for shadow points the sun contribution
can be safely ignored and the luminance of these points writes: L = R(SSky +
SIndirect), where R is the surface reflectance. The problem is further simplified by
considering that SSky +SIndirect = β×Esky where β = 0.5×〈n(p),nground〉+ 1 and
Esky is the energy coming from the sky component (independently of the shadow or
sunlight classification). This means that a point on the ground will capture maximum
sky energy while a point on a wall receives less sky energy. In addition, with this
simplified expression, correcting L amounts to correcting β. This simplification is
error-prone in the case of urban environments where streets can be tightly enclosed
by buildings, greatly reducing the real contribution of the sky compared to the
contribution of indirect lighting. However it is still a good first approximation of
the amount of light coming from the environment. It is then possible to make the
luminance uniform for shadowed points by computing β̄S , the average β in the
shadowed area: L′(p) = L(p) β̄

β(p)

The correction of the sunlight points is done following [RNS15], defining the sun-
sky-ratio (SSR) of lighting between the sun and the sky as: SSR = L̄Lβ̄S−L̄S β̄L

L̄L ¯(cosα)L
,

where α is the angle between the sun direction and the point normal. The straight
bar above the notation means that the quantity is averaged on a light or a shadow
area respectively, depending on the indice L or S .
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(a) Shadow borders (b) Shadow mask (c) Re-lighted. (d) Relighted
(median filtering)

Fig. 4.11: Small penumbra zones on the boundary of a shadow can have non negligible
effect when re-lighting a point cloud.

This ratio allows to recompute the luminance of points in sunlight:

L′(p) = L(p) β̄S
SSR cosα+ β(p) (4.6)

Chrominance correction. The chrominance correction is simpler: it is based on a
ratio between the number of sunlit points and the number of shadowed points. It is
performed for both the a and b components expressed in the La*b* colorspace.

b′(p) = b(p) · b̄S
b̄L

and a′(p) = a(p) · āS
āL

(4.7)

Penumbra areas. After this two-step correction, there may remain some artifacts
near the boundaries of the shadowed and sunlit areas (Figure 4.11). The binary
shadow mask may lead to artifacts along the shadow edges where the boundary
between light and shadow is not sharply defined. These effects are typically due to
under- or over-compensation in the luminance and chrominance correction around
shadow edges, which induces the apparition of a strong linear artifact along the
border (Figure 4.11c). To alleviate this effect we apply a median filter around the
shadow boundaries, which reduces the artifacts slightly (Figure 4.11d).

Results. On Figure 4.12, selected places of the Shrewsbury dataset are relit either
by simulating that all points are in the sunlight (Figure 4.12c) or by simulating that
all points lie in the shadow (Figure 4.12d). Figure 4.12 displays the detection and
correction at other locations of the same dataset. Although the shadow mask is
correct in most cases, the relighted clouds sometimes look only partially satisfactory
which is due to the oversimplification of the lighting model. Figure 4.13 shows that
strong shadows were successfully detected by the process on selected parts of the
KITTI datasets.. However, some soft shadows located on very bright regions (eg., the
shadow of the tree on the white wall on the left) have not been correctly identified
as shadows. More details and experiments can be found in [Gui+16].

4.6 Conclusion and Persectives
This project led to the definition of a two-step image to geometry registration method
particularly well suited for complex point clouds acquired in urban environments.
The registration being a prerequisite for joint image and point cloud analysis, its
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(a) Original Point Set (b) Shadow mask (c) Relighted (light) (d) Relighted (dark)

(e) Original Point Set (f) Shadow mask (g) Relighted (light) (h) Relighted (dark)

(i) Original Point Set (j) Shadow mask (k) Relighted (light) (l) Relighted (dark)

Fig. 4.12: Shadow detection and correction at three different places of the Shrewsbury
dataset.

(a) Photo (b) Colored point set

(c) Shadow mask (d) Relighted point set

(e) Photo (f) Colored point set

(g) Shadow mask (h) Relighted point set

Fig. 4.13: Example of a shadow detection and cloud re-lighting on the KITTI dataset
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robustness is very important for a vast variety of applications. The most straight-
forward application is point cloud colorization, and shadow removal for which
we developed efficient algorithms. However it is not limited to these applications.
Analyzing jointly images and point clouds can lead to image-guided point cloud
upsampling, or performing inpainting in missing areas.
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This chapter turns to a more global kind of shape analysis, by defining a metric
between a surface sampled by a point set and a surface mesh using Optimal Transport
of Masses. This project was carried out during my post-doc at INRIA Sophia Antipolis
in collaboration with Pierre Alliez, David Cohen-Steiner, Fernando de Goes and
Mathieu Desbrun. Since this work, progress has been done on numerical optimal
transport, in particular through the introduction of Sinkhorn distances [Cut13] that
have been adapted to compute efficiently the Optimal Transport distance between
surfaces [Man+17]. Recently, Mérigot et al. [MMT17] introduced a provably reliable
way of computing the Optimal Transport between a simplex soup and a measure
(for example a set of Dirac masses) that could serve as an alternative to our Linear-
Programming formulation. This chapter describes a robust and feature-preserving
distance between two measures defined as a point cloud and a mesh. This metric is
applied to surface reconstruction, to reconstruct a 3D surface mesh from a point set,
or to feature recovery, to recover sharp features and boundaries from a pointset and
its mesh, reconstructed by implicit function methods (e.g. [Hop+92; KBH06]).

This project led to three contributions:

• An optimal transport distance from a point cloud to a mesh or between meshes
that inherits the transport properties (feature sensitivity, robustness to noise
and outliers).

• An efficient relaxation permitting to use this metric in typical geometry pro-
cessing problems.

• Applications to feature-preserving piecewise smooth surface problems.

More details can be found in [Dig+14]

5.1 Optimal Transport Metric between sampled
surfaces
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5.1.1 A short introduction to Optimal Transport

The problem of transporting a measure onto another one as a way to quantify their
similarity has a rich scientific history. For two measures µ and ν defined over R3 and
of equal total mass (i.e., their integrals are the same), the `2 optimal transport from
µ to ν consists in finding a transport plan π that realizes the following infimum:

inf
{∫

R3
‖x− y‖2dπ(x, y)

∣∣∣∣π ∈ Π(µ, ν)
}
,

where Π(µ, ν) is the set of all possible transport plans between µ and ν [Vil10]. In
a nutshell, a transport plan π is a displacement that maps every infinitesimal mass
from the input measure µ (here, the set of points) to the target measure ν (here, the
simplicial complex). This formulation is particularly well suited to comparing 1D
measures such as histograms over the real line or on the circle [RDG11], and it has
been used for transferring color and contrast between images [Rei+01; RPC10].

For applications in higher dimensions such as 2D or 3D shape retrieval [RTG00;
RDG10] and segmentation [PFR11], the optimal transport formulation is notoriously
less tractable: solving the optimal transport problem requires linear programming
(LP). The LP formulation of optimal transport has been used in applications such
as surface comparison [LD10] and displacement interpolation [Bon+11]. Optimal
Transportation can be made computationally more tractable using a sliced Wasserstein
approach [Rab+12], which consists in approximating the transport problem by a
series of 1D problems through projection.

5.1.2 Problem statement

Given an input point set S sampling an underlying surface S and a mesh represented
as a simplicial complex C of vertices, edges and facets, the goal is to find a distance
between the surfaces even though they are not defined in the same way and if the
overlap is only partial. We propose to derive this distance from Optimal Transport.
The measure on C is modeled as a piecewise constant measure per simplex, allowing
it to be 0 on some simplices. We cast the problem of estimating the distance from a
point set to simplicial complex as a distance estimation between two point sets, the
first one being S and the second one corresponding to an adequate sampling of C.

In a similar spirit, De Goes et al. [De +11] proposed an Optimal Transport based
comparison between 2D point sets and curves, with applications to 2D shape re-
construction and drawing vectorization. However, this 2D formulation uses only
edges and vertices as support for the simplicial measure, benefiting therefore from
a closed form formulation that is not available if the ambient space is 3D and the
measure can be supported by facets. Furthermore, the formulation yielded a some-
what biased transport plan towards the vertices. We rely rather on an iterated local
Linear-Programming formulation that approximates the Optimal Transport cost. Our
approach introduces a key distinctive property to traditional Optimal Transport prob-
lems: our target measure ν is not given, but instead, solved for. More specifically,
we search for the simplicial complex of a user-specified size that minimizes the
cost of transporting the input pointwise measure (i.e., the initial point set) to the
complex simplices. This specific setup bears a resemblance to what is known as
the optimal location problem [MM99], where the source measure is given but the
target measure is only partially known. Yet a significant difference lies in the type
of constraints we are enforcing on the target measure. Another line of research for
finding a transportation plan between an input point set and a set of discrete sites of
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various capacities [AHA98; Hue12; Mér11] use power diagrams, and are thus likely
to be too computationally costly for our context.

5.1.3 Distance between point sets and simplificial
complexes

Let us consider an input point set S and a coarse simplicial complex C defined as a set
of facets, edges and vertices. The point set contains N points at locations {pi}i=1···N ,
and each point is given a mass mi that reflects its measurement confidence (all
masses are set to 1 if no confidence is provided).

We approximate the Optimal Transport cost between the input point set S and the
simplicial complex C using quadrature. We start by defining a set B of bins (small
regions of the complex) over C. These bins are sampled on facets, edges and vertices.
If the underlying shape is a surface and not a mixed dimension shape with curves
and surface parts (such as the ones explored in chapter 3), it is not necessary to
sample bins on edges, and one could use only bins corresponding to facets. However,
vertex bins are useful: when outliers are present, vertices serve as garbage collectors.
Vertex and facet bins are thus used to evaluate the optimal cost between S and C as
a sum of squared distances between the points in S and the centroids of the bins in
B.

Every vertex of C is considered as (the center of) its own bin; each triangular facet is,
instead, tiled with bins using a 2D Centroidal Voronoi Tessellation (CVT); note that
our choice of a CVT tiling stems from the fact that it minimizes the approximation
error given by quadrature points put at their centroids [DFG99], which will thus
provide optimal approximation of our transport cost. The number of bins per facet
is set based on a user-defined quadrature parameter. In all our experiments, we
used 200 bins per unit area, the point set being included in a half-unit side size box.
Finally, to compensate for a slightly non-uniform distribution of bins, we assign a
capacity for each bin in B, the ratio of the amount of mass that a bin can receive over
the total amount of mass transported to the simplex the bins belongs to. Vertex bins
are set to unit capacity, since there is only one bin per vertex, and can thus receive
unlimited and unconstrained amount of mass. Each facet bin is given a capacity
equal to the ratio between its area (i.e., the area of the associated centroidal Voronoi
cell) and the area of its containing facet, therefore the mass it receives is constrained
by the mass received by the other bins of the facet. Finally, the centroids of the bins
in B are computed and stored as representatives of their bins.

5.1.4 Linear Programming Formulation

The Optimal Transport cost between the input point set S and the bin set B is com-
puted by means of a Linear Programming formulation. In the following, we denote
the simplices of C as {σk}k=1···L and the centroids of the bins in B as {bj}j=1···M ,
where L and M are the number of simplices and bins respectively. The capacity of
bin bj is denoted cj . We also define s(j) to be the index of the simplex containing
bin bj (i.e., bj ∈ σs(j)). Finally, we denote by mij the amount of mass transported
from a given input point pi ∈ S to the bin centroid bj (Figure 5.1).
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With these definitions, we can now formally refer to a transport plan between S and
B as a set of N ×M variables mij such that:

∀ij : mij ≥ 0, (5.1)

∀i :
∑
j

mij = mi, (5.2)

∀j1, j2 s.t. s(j1)=s(j2) :
∑
imij1

cj1
=
∑
imij2

cj2
, (5.3)

where Equation 5.2 ensures that the entire measure of an input point gets transported
onto the mesh C, and Equation 5.3 ensures a uniform measure over each facet of C.
An Optimal Transport plan is then defined as a transport plan π that minimizes the
associated transport cost:

cost(π) =
∑
ij

mij‖pi − bj‖2.

Finding a transport plan minimizing the transport cost results in a linear program
with respect to the mij , with equality (Eq. 5.2 and 5.3) and inequality constraints
(Eq. 5.1). The number of bins, their positions, as well as the square distances
between input points and bin centroids are all precomputed. In order to enforce
the uniformity constraint (Eq. 5.3), we introduce L additional variables lk (one per
simplex σk) indicating the target measure density of the corresponding simplex. The
final problem formulation is thus:

Minimize
∑
ijmij‖pi − bj‖2

w.r.t. the variables mij and ls(j), and subject to:

∀i :
∑
j

mij = mi

∀j :
∑
i

mij = cj · ls(j)

∀i, j : mij ≥ 0, ls(j) ≥ 0

5.1.5 Local Relaxation

Solving directly this optimization problem is computation-intensive due to the
number of variables and constraints involved: it requires instantiating a dense matrix
(representing the constraints) of size (M×N+L)×(M+N). For example, computing
the Optimal Transport cost between an input point set of 2, 100 samples and a
simplicial complex containing 782 simplices on which 7, 300 bins are placed involves
solving for a linear program of over 15 million variables and 9, 000 constraints. Sadly,
linear programming solvers do not scale up well to such large numbers.

In order to improve scalability we propose an iterative and local relaxation strategy
instead. A subset of the global solution space is explored through local LP solves over
small stencils, until a local minimum of the objective function is reached. Note that
we cannot guarantee convergence of this local procedure to the global minimum;
but the minima reached in practice have consistently provided satisfactory results in
all of our tests.

Our procedure starts with a trivial transport plan which maps each input point to
its nearest vertex of the simplicial complex C. Since no uniformity constraints are
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imposed on vertices, this transport plan is valid, yet obviously suboptimal in general.
Subsequent local optimizations will only decrease the global transport cost or leave
it unchanged, as local re-assignments are solved using Optimal Transport and can
only decrease the cost. The transport cost found through our local stencil updates is
thus an upper bound of the global Optimal Transport cost. Our experiments showed,
unsurprisingly, that the convergence rate of this procedure depends on the shape
of local stencils used: the larger the stencil, the faster the convergence, but with
the unfortunate side effect that large stencils increase the size of the corresponding
linear program. We found in practice that simply using the 1-ring of a chosen simplex
is a rather reliable choice. More precisely, the local stencil N of a facet σ is defined
as all the facets incident to σ, along with their vertices.

5.2 Application to Surface Reconstruction
The first application of this Optimal Transport-driven distance is surface reconstruc-
tion. A common approach to robust surface reconstruction from defect-laden point
sets involves denoising and filtering of outliers, and often requires an interactive
adjustment of parameters. Automatic methods such as spectral methods [KSO04;
WCS05; All+07] and graph cut approaches [HK06; LPK09] are extremely robust
but are better suited to the reconstruction of smooth, closed surfaces. Cohen-Or and
co-authors have proposed a series of contributions based on robust norms and sparse
recovery [LCL07; Hua+09; Avr+10]. An interpolating, yet noise robust approach
was alternatively proposed by Digne et al. [Dig+11b] through the construction
of a scale space. Feature preserving methods are typically based on an implicit
representation that approximates or interpolates the input points. In [DTS01], for
instance, sharp features are captured through locally adapted anisotropic basis func-
tions. Adamson and Alexa [AA06] proposed an anisotropic moving least squares
(MLS) method. Several other feature preserving methods based on MLS have been
proposed [GG07; OGG09]. However, none of these techniques returns truly sharp
features: reconstructions are always semi-sharp, that is, still rounded with various
degrees of roundness depending on the approach and the sampling density. More-
over, the presence of sharpness in the geometry of a point set is detected only locally,
which often leads to fragmented creases; the reconstruction quality thus degrades
quickly if there are defects and outliers. A more exhaustive and in depth analysis of
surface reconstruction can be found in [Ber+17].

Our proposed surface reconstruction approach can be compared to [BC01], which
uses a random initial subset of the input point cloud and a signed distance function
over the set. Using this function, points are added until a significant number of points
lie within an error tolerance. The augmented set is triangulated and a surface mesh
is reconstructed. Thus the method also interleaves reconstruction with simplification.

pimij4
mij1
mij2

mij3

bj1

bj2

bj4

bj3

Fig. 5.1: Transport plan for a single input sample point pi. Variable mij models the transport
of the mass mi at an input point pi to the jth bin of the facet.
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Instead, our approach is a fine-to-coarse algorithm which reconstructs a surface
from a point set through greedy simplification of a 3D simplicial complex. We
initialize the complex with a (possibly non-manifold) subset of the 3D Delaunay
triangulation of input points, then we perform repeated decimations based on half-
edge collapse operations. The choice of the edge to be collapsed is guided by the
Optimal Transportation distance defined in Section 5.1. At each iteration, we collapse
the half-edge which minimizes the increase of total transport cost between input
points and reconstructed triangulation. This metric brings desirable properties to
the reconstruction method, such as resilience to noise and outliers, and preservation
of sharp features and boundaries.

5.2.1 Overview of the reconstruction method

We aim at reconstructing a simplicial complex C from a point set S containing N
points at locations {pi}i=1···N with corresponding masses {mi}i=1···N . Both the point
set and the complex are considered as mass distributions (or equivalently, probability
measures), where the measure (mass density) of C is constant per simplex and
possibly 0. Our approach then consists in finding a compact shape C that minimizes
the Optimal Transport cost between the input point set S and a uniform measure on
each facet and vertex of C. Figure 5.2 summarizes the shape reconstruction through
simplification algorithm.

5.2.2 Initialization

The reconstruction process begins by randomly picking a subset of the input points S
and computing a 3D Delaunay triangulation. We then construct a simplicial complex
C from a subset of facets of this 3D triangulation. This subset selection consists in
(1) using the local stencil relaxation method to estimate a transport cost from all the
input points onto the facets and vertices of the 3D triangulation; and (2) building
C with only the facets containing non-zero transported measure. For step (1), we
use a stencil centered at each facet and containing vertices and edges of the two
tetrahedra adjacent to the facet. For a non-boundary facet of the triangulation, for
instance, this stencil contains 7 facets and 5 vertices.

Optimization is then performed by going over all stencils of the triangulation. This
stencil-based optimization is repeated until the decrease in transport cost is below a
user-specified threshold (set to 10−5 in all our tests). In practice, the global transport
cost decreases rapidly, and we need to go over all stencils only 10 times at most.
For step (2), we convert our data structure to a simplicial complex for two main
reasons: first to allow our reconstruction to have long and anisotropic simplices; and
more importantly, to remove the difficult issue identified in [De +11] of keeping the
embedding of the triangulation valid during decimation.

5.2.3 Decimation

The initial simplicial complex C is further simplified through a greedy decimation
based on half-edge collapse operations. Note, however, that a conventional decimation
algorithm (e.g., [GH97; LT99] and variants) can not be applied in our setup: the
presence of outliers and noise renders typical error metrics inadequate.

The Optimal Transport framework provides a robust alternative: we pick the next
half-edge to collapse as the one that induces the least increase in global transport
cost. To this end, we simulate the collapse of a candidate half-edge e and evaluate
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Fig. 5.2: Reconstruction steps: (a) Initial point set; (b) 3D Delaunay triangulation of a
random subset containing 10% of the input points; (c) Initial simplicial complex
constructed from facets of the 3D triangulation with non-zero measure; (d) Initial
transport plan assigning point samples to bin centroids (green arrows); (e-f)
Intermediary decimation steps; (g-i) Reconstruction with 100, 50, and 22 vertices,
respectively; (j-l) Final transport plan with 100, 50, and 22 vertices, respectively.

the induced change of transport cost ∆. Since this cost change mostly affects a
neighborhood Ωe of e, we can restrict the computation of ∆ only to Ωe. More
specifically, setting Ωe to the closure of simplices in the 1-ring of e, we first gather
the set of samples pi transporting (partially or entirely) on Ωe (Figure 5.3), simulate
the collapse of e, and recompute the cost of transporting the set of samples onto
the resulting simplices. The change of transport cost ∆ is then set to the difference
of transport cost before and after the simulated collapse of e. Once a half-edge is
selected and collapsed, we also update the transport plan of the edges for which
their 1-rings intersect the one-ring of this collapsed edge.

Restricting our computation to a local stencil during the simulation of a collapse
operator amounts to confining the mass transport which already project onto the
stencil, within the same stencil (the rest of the complex and associated transport
plan do not change). We observe experimentally that the difference in transport cost
∆C = Ce − C is a reasonable approximation of the difference in the global transport
cost.
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Fig. 5.3: Local stencil of an edge. Simplices in the local stencil are depicted in blue. Point
samples are depicted in green. We only solve for the measures transported to the
stencil (solid green lines) and not for the measures transported outside of the
stencil (dash green lines).

5.2.4 Vertex Relocation

So far our method based on half-edge collapses results in an interpolating recon-
struction, since vertices of the final complex can only be a subset of the input points.
This may lead to suboptimal results, even more so in the presence of noise and
outliers. We thus couple our decimation with an optimization procedure in order to
relocate the vertices in the reconstructed simplicial complex C. After the collapse
of a half-edge e, the resulting vertex v of e is relocated by iterating two steps: (1)
for a given transport plan π, v is moved toward the position that best improves the
optimal cost of π; (2) π is then updated around v. For the first step, the locally
optimal position of v is computed by keeping transport plan π (i.e., the values mij

for all i and j) fixed. To this end, the position of each centroid of the facet bins is
expressed in barycentric coordinates within its containing triangle. Then finding the
optimal position of vertex v of triangle t = (v, v1, v2) amounts to solving:

min
v

∑
i

∑
j

mij‖pi − αjv − βjv1 − γjv2‖2,

where αj , βj , γj are the barycentric coordinates of the centroid of bin bj with respect
to vertices (v, v1, v2). The optimal position with respect to triangle t is:

v?(t) =
∑
i

∑
jmijαj(pi − βjv1 − γjv2)∑

imijα2
j

.

Thus each triangle t adjacent to v yields an optimal position v?(t). Furthermore, the
vertex itself may have input samples assigned to its bin, so that we must add the
vertex contribution to its own relocation:

v?(v) =
∑
imijpi∑
imij

.

with mij being the mass portion of sample pi assigned to vertex bin bj of v. Thus
each simplex (vertex or facet) adjacent to vertex v contributes an optimal position for
v. The final position v? is then chosen as an average of optimal positions weighted
by their corresponding mass:

v? =
m(v) · v?(v) +

∑
t adjacent to v

m(t) · v?(t)

m(v) +
∑

t adjacent to v
m(t) ,
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where m(t) is the total mass transported to simplex t (corresponding to variable li
in the general LP formulation provided i is the index of simplex t). Vertex v is finally
moved at the midpoint between its current position and the optimal position v?.

For the second step, the vertex locations are frozen and the transport map π is
updated by solving the local linear program. By alternating these two steps, the
vertices move to their locally optimal position, allowing for a better recovery of sharp
features and surface boundaries.

5.2.5 Post-processing

When the decimation terminates, we could return as our final reconstructed mesh
the subset of facets from C that carry a non-zero measure. However, facets may have
non-zero measure due the presence of noise and outliers; we thus use a threshold
to filter out facets with low measure density (i.e., the ratio of facet measure to its
area).

5.2.6 Experimental Results

The implementation is done in C++ using CGAL’s 3D Delaunay triangulation [Fab01]
to initialize the reconstruction, and our own data structure for simplicial complexes.
We used the Coin-OR Clp library [CLP04] as our linear program solver. Our imple-
mentation is partially parallelized to accelerate computations, exploiting the fact
that all half-edge collapse simulations are independent.

The initialization and update of the priority queue are, by far, the most costly
operations, as each collapse involves around 120 simulations on average. When
using the exhaustive priority queue on a laptop with a two-core processor, a point
set containing 30, 000 points is reconstructed in around 10 hours (initial and final
simplicial complexes containing respectively 3, 000 and 200 vertices). On a 8-core
computation server, this computation reduces to 2 hours (note that the computation
time reduction is not only due to parallelization but also to a faster clock). However,
when using a multiple-choice approach (simulating random sets of 40 collapses
instead of all possible collapses), as we did in all results shown, the timings are three
times faster on average. The typical breakdown of computational time spent on each
phase of the algorithm is as follows: building the initial Delaunay mesh and filtering
it takes around 5% of the total computation time; in the remaining iterative process,
70% of the time is spent in solving linear problems (needed for collapse simulation
and reassignment), 20% of the time in assembling the LP systems, and the remaining
10% is spent on performing the collapses. Throughout these computations, memory
consumption remains low; e.g., for the particular experiment mentioned above, the
peak memory usage was around 80Mb.

Robustness to noise. We tested our method on a point set sampling a staircase
shape with an increasing amount of synthetic, uniform noise (Figure 5.4). Even
in the presence of significant noise, the method tends to recover the creases of the
input shape well. For noise magnitudes larger than 5% of the bounding box size our
method fails: for such high noise levels, spurious facets cannot be discarded by a
simple thresholding based on mass density.

Robustness to outliers. We also tested our method on a point set that samples a
cylinder (Figure 5.5). The method remains robust up to 15% of outliers, but it can
fail when the amount of outliers exceeds 20%.
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Fig. 5.4: Robustness to noise. We increase the amount of synthetic noise from σ = 1% to
σ = 2% and σ = 5%, expressed in percentage of the longest edge length of the
bounding box. The reconstruction starts failing at σ = 5%.

Fig. 5.5: Robustness to outliers. The reconstruction is effective even with 10% outliers (left;
compare to outlier-free input in Fig. 5.8) but fails from 20%. The outliers are
added randomly within a loose bounding box (120%) of the input point set.

Feature preservation. Figure 5.6 depicts the feature preservation property of our
approach on the blade model. Our approach performs well even on thin features
subtending small angles, for which implicit approaches (here, the noise-robust
Poisson surface reconstruction method of [KBH06]) tend to smooth out features and
create spurious topological artifacts on low point density regions.

On the cone model in Figure 5.7, all features (tip, boundaries) are preserved and
the simplification is very effective. Similarly, on a cylinder model (Figure 5.8) the
boundaries are preserved and the simplification leads to anisotropic triangles with
most edges aligned with minimum curvature directions as expected.

Figure 5.9 illustrates the behavior of our approach on two intersecting planar
polygons. The algorithm behaves well down to 10 vertices, and the simplicial
complex maintains the initial topology during decimation. Going down to 8 vertices
(the expected minimum number of vertices) would require a richer set of topological
operators than simply the edge collapse and vertex relocation in order to disconnect
the intersecting edge before pursuing decimation.

Figure 5.10 shows the performance of the method on a noisy aerial LiDAR point
cloud. Even with these noisy data, our method recovers the features of the shapes
and produces a low complexity mesh.
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Fig. 5.6: Reconstruction of the blade model containing 30K sample points. Top: our
reconstruction. Bottom: the output of the Poisson reconstruction method (with
Delaunay refinement used for contouring the resulting implicit function), and
closeup on a sharp crease subtending a small angle, where the implicit approach
fails.

Fig. 5.7: Reconstruction of a cone. Left: input point set. Middle: input point set and
final simplicial complex with (nearly uniform) facet densities shown. Right: final
complex.

Weaknesses. Given the efficiency of current linear program solvers, results of our
approach come at the price of intensive computations, currently preventing its
use on large point sets. Another issue is that nothing in our formulation favors
2-manifoldness, as the main data structure is a simplicial complex initialized by the
facets of a 3D triangulation; this can lead, to invalid embedding as well as multiple
facets covering the same area (see Figure 5.11). The latter issue is more complex
than just ensuring a 2-manifold reconstruction, as complex features may correspond
to non-manifold shapes. One could define a notion of “effectiveness” per facet,
but this would lead to a non-linear objective function and require a richer set of
topological operators such as facet deletion.

5.3 Feature Recovery
Another application of the Optimal Transport driven metric is to recover sharp
features and boundaries from the output of reconstruction methods that are designed
to produce smooth, closed surfaces (e.g., Poisson reconstruction [KBH06]). These
approaches are in general scalable and robust to noise, but they round off sharp
features and fill up holes, even if a data fitting term is added. We can remediate
these artifacts via vertex relocation and facet filtering.
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Fig. 5.8: Reconstruction and simplification of a cylinder. Left: 10K noisy sample points
and reconstruction with 12 vertices (facet density shown). Middle: transport plan
between point samples and bin centroids. Right: simplicial complex and facet
density.

Fig. 5.9: Reconstructing and simplification of two intersecting planar polygons until 10
vertices.

The input of the algorithm is a surface triangle mesh (the output of a smooth
reconstruction algorithm) and the original point set used for reconstruction. Bins are
first sampled on the mesh. The initial assignment is performed through relaxation
as described in Section 5.1.5: each sample is assigned to the nearest mesh vertex,
and local reassignments are iterated until a local minimum for the transport cost
is reached. Each mesh vertex is then relocated as described in Section 5.2.4, by
computing the relocation direction, moving the point in this direction, and updating
the transport plan. One should notice that this process depends on the mesh vertices
traversal order: the first vertex is moved at the midpoint between its current position
and the computed optimal position, then the local transport plan is updated, and
then the next vertex is handled. The traversal order could be randomized between
relocation iterations to avoid potential artifacts. However, all our experiments
were obtained using the same traversal order with no visual bias due to this fixed
order. Figure 5.12 demonstrates how sharpness is recovered with this simple post-
processing phase.

For open surfaces this method recovers boundaries of the surface through the last
filtering step (section 5.2.5) as can be seen on the church example (Figure 5.14).
On the latter, the relocation seems incorrect at first glance on the bell tower, but
the seemingly spurious triangles created by the relocation procedure correspond to
actual geometry in the point set: these details of the shape were lost by the Poisson
reconstruction. On the challenging synthetic point set used in Figure 5.15 the vertex
relocation recovers the sharpness of the features as well. In terms of computational
cost applying the vertex relocation algorithm on the church mesh (23K vertices, 232K
input points) takes around 10 minutes.
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Fig. 5.10: Reconstruction of a noisy aerial LiDAR point cloud capturing the rooftop of a
house. Top: input point set, middle: final reconstruction, bottom: two other
views. The reconstruction yields a very simplified mesh despite the noise. Point
set courtesy of Qian-Yi Zhou and Ulrich Neumann.

Fig. 5.11: Reconstruction and simplification of a scene composed of two boxes. Left:
10K noisy sample points. Right: reconstruction with 16 vertices. The level of
anisotropy matches our expectations but some facets of the boxes are covered
twice.

5.4 Conclusion

This chapter described a distance between a point set and a simplicial complex,
which exhibits both robustness to noise and outliers, as well as preservation of
sharp features and boundaries. This distance is used to guide a mesh reconstruction
process by decimation of a simplicial complex. This error metric was also shown
useful in a post-processing phase to recover features from smooth reconstructed
shapes.

The main drawback is the computational cost: despite our efforts to introduce local
relaxation, parallelization, and multiple-choice accelerations, we cannot reconstruct
large point sets in reasonable time. The main strength of our approach lies in the
simplicity of its formulation: it is expressed directly on the simplicial complex being
reconstructed, departing from common robust operators that require subsequent
contouring to obtain the final reconstructed (but not simplified) surface mesh. In
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Fig. 5.12: Anchor. Noisy point set (left), Poisson reconstruction (middle ), improved recon-
struction (right) and associated closeups.

Fig. 5.13: Blade. Poisson reconstruction (2 top rows) and improved reconstruction (2
bottom rows). The input point set is depicted with black dots on the global views
and is not depicted on the close-ups for clarity. Neither remeshing nor edge
flips are applied: the spurious topological handles shown in Figure 5.6 are not
repaired, triangles are only pulled closer toward the point set.
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Fig. 5.14: Church. Point set (left), Poisson reconstruction (middle) and relocated mesh
(right).

Fig. 5.15: Sharp sphere. Left column: pointset; middle column: poisson reconstruction;
right column: relocation improvement. top row: global view; bottom row:
close-up. Features are recovered through vertex relocation.
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addition, our formulation can be trivially extended to allow for the reconstruction
of curves embedded in R3 by simply adding edge bins to vertex and facet bins.
Furthermore, our formulation provides us with a transport plan, which can be used
for further geometry processing of the resulting simplicial complex.

Related Publication:

• Feature-Preserving Surface Reconstruction and Simplification from Defect-Laden
Point Sets, Julie Digne, David Cohen-Steiner, Pierre Alliez, Mathieu Desbrun,
Fernando de Goes, Journal of Mathematical Imaging and Vision, Springer,
2014.
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6Conclusion and Perspectives

This manuscript described several contributions to shape analysis in various con-
texts be it for improving the geometric measure, through the consideration of
self-similarity for early geometry processing tasks, such as denoising, compression,
resampling, or super-resolution; to merge information conveyed by laser scanner
acquisitions and information conveyed by pictures taken from the same scene; or to
reconstruct piecewise smooth meshes out of point sets. While many of the works pre-
sented in this habilitation are ongoing, I plan to focus my research in years to come
around some important challenges. The first one is to define efficient approximate
nearest patch searches methods on surfaces, in a PatchMatch [Bar+09] or Coherence
Sensitive Hashing [KA16] manner which is difficult when no regular underlying
structure exists. The second one is to be able to define Machine Learning methods
on surfaces. Indeed the recent works on Machine Learning, have proved successful
for images or audio signals, but it makes extensive use of the structure underlying
the data. The goal pursued here is to become independent of the structure and be
therefore resilient to sampling variations and reordering. The third research axis I
plan to focus on is the joint processing of images or surface data acquired by different
means, such as videos and 3D scanners, or images and videos, or even videos of
various quality or viewpoints.

PatchMatch on Surfaces

The first research axis I plan to explore in the coming years is linked to Chapters 2
and 3 of this manuscript. Indeed most patch-based methods make extensive use of
nearest patch search and some of the methods described especially in Chapter 2 fall
in this category. While kd-trees methods are efficient structures for exact nearest
patch search, they are oblivious of the ambient space and the spatial layout of the
patches. In Image Processing, efficient approximate nearest patch search have been
devised by taking into account the spatial layout of the patches in the image, as
illustrated on Figure 6.1.

This patch search uses the image grid structure extensively, since patches are centered
at grid pixels. On surfaces, as has been frequently pointed out throughout this
manuscript, no such structure exist which makes the problem more difficult. A
solution has been explored previously [Che+12] but it does not address the regular
neighboring relationship question, but substitutes it by vertex adjacency.

Finding an efficient way to get a neighbor in a prescribed direction in the tangent
plane, at a given geodesic distance, and to be able to sample a patch there would
yield a true analogy to the PatchMatch algorithm. Several of the tools explained in
this manuscript could be used to solve this problem. For example, computing the
best rotation to match two feature descriptions is easily done using our Wavejets
formulation described in Chapter 2, since this formulation transforms a rotation in
the tangent plane in a phase shift. Furthermore, Wavejets provide stable curvature
direction surrogates using the a±2 values. These can be used to navigate more easily
between neighbors on surfaces defined by a mesh or a point set.

It would be even more interesting to adapt the Coherency Sensitive Hashing proce-
dure (CSH) [KA16] which combines the PatchMatch approach with Locality Sensitive
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Fig. 6.1: PatchMatch principle: assume P and Q are two spatially neighboring patches, then
the nearest patch P ′ to P has good chances to be spatially close to the nearest
patch Q′ of Q (Image reproduced from [Bar+09]).

Hashing resulting in an improved accuracy and speed of the correspondence search.
CSH combines a PatchMatch-like propagation in image space with a propagation in
feature space.

Both these methods need to properly define the neighborhood relationship on a
surface that is known only through some samples. This research direction would
permit to easily transpose many applications of Image Processing and Vision to
surfaces such as inpainting or shape retargeting.

Towards a deeper understanding of point sets surfaces

The second axis I plan to explore in the coming years is the problem of machine
learning in unstructured geometric data. Indeed, while many different properties can
now be learned from structured data such as audio files (regularly sampled signals)
or images (pixels on a grid), non-structured data is a challenging problem since the
neighborhood relationship cannot be represented by a linear operation, as would a
convolution on a regular grid. Geometric surfaces fall directly in the non-structured
data case, which makes them a grand challenge, be it for classification or generative
tasks. The generalization of learning on non-structured data raises the same kind of
challenges as the PatchMatch extension.

Learning in point clouds is traditionally performed by embedding the information
into a set of descriptors (spherical harmonics, heat kernel signatures...) and learning
on those descriptors. However this requires the careful design of descriptors, whose
efficiency is mostly proven experimentally. Recently, the trend in Machine Learning
is to feed the system with raw data and let it design the descriptors best suited to
the task, which can be extracted as the mid-layer feature maps. Most techniques
cast this problem by turning the non-structured data into structured data either by
considering voxel grids [Wu+15b] or by using multi-view renderings of the shape
[Su+15]. As an alternative to this data reformating, special network architectures
have been proposed [Qi+17a], to classify point clouds - possibly irregularly - sampled
on surfaces without enforcing a data structure (Figure 6.2). These methods are
efficient for classification tasks, or curvature estimation but do not take well into
account the multiscale aspect of surfaces and the relationships between local and
global structure. Furthermore, no generative framework based on this new type of
deep network has been proposed yet.
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Fig. 6.2: Typical tasks addressed by the PointNet learning algorithm (Image reproduced
from [Qi+17a]).

Fig. 6.3: An animated sequence captured by a LiDAR scanner (left) and a kinect (three
frames on the right).

A solution to this problem would be to resort to Local Probing Fields (Chapter 3),
which is a conservative local description: it is possible to resample directly from it,
without any information loss, under mild sampling conditions. It would however
require to encode the larger scale structure jointly with the LPFs. It would be
particularly interesting to use this kind of network for denoising or super-resolution,
tasks that have been tackled from a patch-based perspective in Chapter 2.

Mixing acquisition data

The last research axis that I plan to explore is the mixing of data acquired through
various captors. It is linked to Chapter 4 and to the starting PhD thesis of Beatrix
Fulop-Balogh, co-advised with Nicolas Bonneel. The goal is to merge data acquired
from various captors such as a LiDAR scanner and a kinect or a set of video cameras
and still photographs and to take advantage of each of these captors strengths while
alleviating their weaknesses.

For instance a typical problem can be the acquisition of high precision animated
scenes by merging data acquired through a LiDAR scanner and a depth sensor
camera. Indeed while the depth sensor produces dense low-resolution depth map at
a high rate, the LiDAR scanner produces highly accurate measures but each measure
corresponds to a single time stamp, hence resulting in distorted point clouds, as
shown in Figure 6.3. Using the depth sensor sequence as a guide to un-distort the
LiDAR sequence can provide a high resolution animated point set. This involves
registering the data in space-time.

Another related problem is the retargeting of videos, when an animated scene is cap-
tured by several cameras with different qualities, possibly only partially overlapping
(i.e. starting and stopping not at the same time), finding a way to compute a new
pose for the camera and rendering the video from this viewpoint is an interesting
challenge with many applications. To go one step further, the process might be
helped by a low-resolution depth sensor or even a LiDAR scanner, once an efficient
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distortion correction method has been devised. Alternatively one might even want
to combine high resolution stills to enhance the video.

All these topics raise several challenges that can be tackled using the various tools
introduced in this manuscript.
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Maximilien Guislain, Julie Digne, Raphaëlle Chaine, Dimitri Kudelski, Pascal
Lefebvre-Albaret, Proceedings 3DV2016, Stanford, October 2016.

• Similarity based filtering of point clouds, Julie Digne, Proceedings Workshops
CVPR2012 (International Workshop on Point Cloud Processing), 2012.

• Mesh Segmentation and Model Extraction, Julie Digne, Jean-Michel Morel, Char-
yar Mehdi Souzani, Claire Lartigue,Lecture Notes in Computer Science,Springer,
2011.

• The Level Set Tree on Meshes, Julie Digne, Jean-Michel Morel, Nicolas Audfray,
Charyar Mehdi-Souzani, Proc. 3DPVT 2010.

• Feature extraction from high-density point clouds: toward automation of an
intelligent 3D contact less digitizing strategy, Charyar Mehdi-Souzani, Julie
Digne, Nicolas Audfray, Claire Lartigue, Jean-Michel Morel, 10th International
Conference on Computer Aided Design, June 21-25, Dubai (UAE), 2010

7.3 Chapitre d’ouvrage

• Neighborhood filters and the recovery of 3D information, Julie Digne, Mariella
Dimiccoli, Neus Sabater, Philippe Salembier, chapter in Handbook of Math-
ematical Methods in Imaging, Springer Verlag, pp 1203-1229, 2012. 2ème
édition 2015.
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7.4 Communications à des congrès, symposiums
nationaux

• Surface derivatives computation using Fourier Transform, Yohann Béarzi, Julie
Digne, communcation JFIG 2016, prix du meilleur papier.

• Recalage d’image dans des nuages de points de scènes urbaines, Maximilien
Guislain, Julie Digne, Raphaëlle Chaine, Gilles Monnier, Actes des Journées
du Groupe de Travail en Modélisation Géométrique 2016, Dijon, France, Mars
2016.

• Auto-similarité pour la compression haute précision des surfaces échantillonnées,
Julie Digne, Raphaëlle Chaine, Sébastien Valette, actes du GTMG 2014, Lyon,
Mars 2014

• Transport optimal pour la reconstruction robuste de formes à partir de nuages de
points, Julie Digne, Pierre Alliez, David Cohen-Steiner, actes du GTMG 2013,
Marseille, Mars 2013

• Segmentation de maillages et extraction de primitives géométriques simples, Julie
Digne, Nicolas Audfray, Charyar Mehdi-Souzani, Claire Lartigue, Jean-Michel
Morel, actes de GTMG 2011 (Mars 2011)

• Traitement des données issues de la numérisation 3D pour des applications en
métrologie, Nicolas Audfray, Charyar Mehdi-Souzani, Claire Lartigue, Julie
Digne, 15ème congrès international de métrologie, Paris, 3-6 octobre 2011

7.5 Logiciels

• The Bilteral Filter for Point Clouds, Julie Digne, Carlo De Franchis, Image
Processing On Line (IPOL), 2017, code publié sous lience GPL.

• An Implementation and Parallelization of the Scale Space Meshing Algorithm,
Julie Digne, Image Processing On Line (IPOL), 2015, 5, pp.282-295, code
publié sous licence GPL dans l’article IPOL.

• An analysis and implementation of a parallel ball pivoting algorithm, Julie
Digne, Image Processing On Line (IPOL), vol. 4 pp 149-168, 2014: code publié
sous licence GPL dans l’article IPOL.

7.6 Rapports

• Fusion de MNE issues de données InterAtlas, rapport pour le Centre National
d’Etudes Spatiales (CNES), Pascal Monasse, Julie Digne, Jean-Michel Morel,
Mai 2011
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7.7 Thèse de doctorat
• Inverse Geometry: From the raw point cloud to the 3D surface - Theory and

Algorithms defended on 2010/11/23 at ENS Cachan.
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8Curriculum Vitae

Postes

Depuis
2012

Chargée de recherche CNRS dans l’équipe GéoMod au LIRIS (Uni-
versité Claude Bernard Lyon 1) CR1 depuis Octobre 2016.

2011-2012 Post-doctorat à l’INRIA Sophia Antipolis dans l’équipe GEOMETRICA
en collaboration avec Caltech (California Institute of Technology). Col-
laboration avec Pierre Alliez, David Cohen-Steiner, Mathieu Desbrun
et Fernando de Goes.

2010-2011 Post-doctorat au Centre de Mathématiques et de Leurs Applications
(École Normale Supérieure de Cachan).

2007-2010 Thèse de Doctorat Centre de Mathématiques et de Leurs Applica-
tions (CMLA), ENS Cachan, sous la direction de Jean-Michel Morel,
soutenue le 23/11/2010 (Financement DGA).
Prix de thèse de la fondation Mathématique Jacques Hadamard
(FMJH) 2012.

2007 Stage de Master à l’ENS Cachan, sous la direction de Jean-Michel
Morel

2005 Stage Ingénieur à ATR, centre de recherche situé à Kyoto au Japon
(Neurosciences et Traitement de l’Image) - 6 mois.

Formation

2007–2010 Thèse de Mathématiques appliquées à L’ENS Cachan (voir ci dessus)
2006–2007 Master Mathématiques, Vision, Apprentissage (ENS Cachan). Men-

tion Très Bien.
2003–2006 Élève à Télécom ParisTech (anciennement École Nationale

Supérieure des Télécommunications).
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Conférences et Colloques

Conférencière Invitée

• Exposé au workshop Nonlinear Data: Theory and Algorithms - Oberwol-
fach, 26 Mai 2018.

• Journée SMAI-SIGMA (Jussieu), 15 Novembre 2017.

• Journée des 10 ans de l’institut Farman (ENS Cachan), 27 Septembre 2017.

• Séminaire de Géométrie Algorithmique et Combinatoire (Institut Henri
Poincaré), 9 Juin 2016.

• Séminaire SMATI commun au MAP5 (Paris 5) et le LTCI (Télécom ParisTech),
4 Juin 2015.

• Colloquium du LAMFA, 2 Avril 2015

• Conférence à Technicolor, Rennes, 5 Juillet 2013

• High resolution point clouds: how to process them?, Journée Scientifique
LIMA 2, Lyon, Janvier 2013.

• ENS Lyon Seminar, Lyon, France, Décembre 2012

• LJK seminar, Grenoble, France, Mars 2012

• An optimal transport approach to the surface reconstruction problem,
séminaire du GREYC (Université de Caen), 23 Février 2012.

• An optimal transport approach to the surface reconstruction problem, con-
férence "Mathematics and Image Analysis 2012", Institut Henri Poincaré, 16-
17-18 Janvier 2012.

• A scale space approach to the processing of point clouds, séminaire au Keck
Institute for Space Studies seminar, Caltech (California Institute of Technology),
18 Novembre 2011.

• Scale Space for point clouds and applications, Geometrica team, INRIA
Sophia Antipolis, May 23rd, 2011.

• Scale Space for point clouds and applications, conférence à Heidelberg uni-
versity, 21 Avril 2011.

• Espace échelle pour les nuages de points et applications, "Image Seminar",
Paris 6University, March 29th, 2011.
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• Structuration des nuages de points par espace-échelle, conférence pleinière
à "Géométrie complexe et riemannienne: Flots géométriques", CIRM, 28 Février
- 4 Mars 2011

• Talk at "Trends in Mathematical Imaging and Surface Processing", Ober-
wolfach workshop (Allemagne), Organisateurs: Vicent Caselles, Martin Rumpf,
Guillermo Sapiro et Peter Schröder, Février 2011.

• Structuration des nuages de points par espace-échelle, seminaire à l’université
Paris 5, Groupe de travail Modélisation numérique et Images, 14 Janvier 2011.

• Traitement de nuages de points, conference "Image, EDP et Géométrie", Insti-
tut Fourier, Grenoble, 19 Mars 2010.

Conférences et Colloques Internationaux

• Presentation at Eurographics 2018, Avril 2018

• SIGMA Workshop 2016, Novembre 2016

• Présentation à Eurographics 2014, Avril 2014

• High Fidelity Scan Merging, Symposium on Geometry Processing 2010.

• Mesh Segmentation and Model Extraction, 7th Conference on Curves and
Surfaces, 2010.

• The Level Set Tree on Meshes, 3DPVT 2010, 2010.

• Scale Space Meshing, Workshop Recent Advances on Topological and Geomet-
ric Data Analysis, Institut des Systèmes Complexes, Paris, July 2009

Colloques Nationaux

• Exposé aux journées nationales du GDR-IM, Ecole Polytechnique, Avril 2018.

• Exposé au thinktank EDF-Imaginove, Janvier 2018.

• Exposé au Groupe de Travail en Modélisation Géométrique (GTMG), journées
du GTMG, Lyon, 2014.

• Exposé au Groupe de Travail en Modélisation Géométrique (GTMG), journées
du GTMG, Grenoble, 2011.

Encadrement de doctorants et de stagiaires

• Beatrix Fulop-Balogh, thèse allocation élève normalien commencée en
Septembre 2017 (fin prévue en 2020) co-encadrée avec Nicolas Bonneel.
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• Tong Fu, thèse ANR eRoma commencée en Novembre 2017 (fin prévue en
2020) co-encadrée avec Raphaëlle Chaine.

• Yohann Béarzi, thèse ANR PAPS commencée en septembre 2015 (fin prévue
en septembre 2018) co-encadrée avec Raphaëlle Chaine.

• Maximilien Guislain, thèse CIFRE avec l’entreprise Technodigit 2014-2017
(soutenue le 19 Octobre 2017) co-encadrée avec Raphaëlle. Chaine

• Martin Guy, master ENS Lyon, (co-supervisé avec Nicolas Bonneel et Jean-
Claude Iehl), Février - Juin 2018

• Beatrix Fulop, master ENS Lyon, (co-supervisée avec Nicolas Bonneel), ANR
PAPS Février - Juin 2017

• Agathe Herroux, master ENS Lyon (co-supervisée avec Nicolas Bonneel),
Février - Juin 2017

• Prisca Bonnet, stage de fin d’étude de l’INSA (co-supervisée avec Sébastien
Valette et Raphaëlle Chaine), Février - Juillet 2015

• Yohann Bearzi, master Lyon 1, Février - Juillet 2015

• Thibault Dupont, master Lyon 1, co-supervisé avec Adrien Peytavie, Février -
Juillet 2015

• Azzouz Hamdi-Cherif, master Lyon 1, Mars - Juillet 2014

Participation à des projets de recherche

• Projet PAPS Patch-aware processing of surfaces. Porteuse du projet. ANR
jeune chercheur/jeune chercheuse obtenu en 2014, démarré en Janvier 2015
(fin en 2019). Ce projet vise à démontrer le gain de qualité qu’il y a à ne plus
considérer les nuages de points comme une suite de coordonnées 3D, mais
comme un ensemble de voisinages permettant de mieux capturer les propriétés
locales de la surface. Ce projet vise aussi bien à traiter des données acquises
par scanner laser que par de la stéréoscopie satellitaire ou la stéréoscopie sans
bruit.

• Projet eRoma. Membre du projet. Ce projet collaboratif porté par Raphaëlle
Chaine (LIRIS) projet est un projet commun au LIRIS à l’INRIA Rhône-Alpes à la
Sorbonne et au musée Gallo-Romain de Lyon Fourvière. Le but de ce projet est
de proposer des outils de restauration virtuelle des collections du musée Gallo-
Romain qui soit une expérience de sculpture interactive, en tenant compte à la
fois du nuage de points numérisé mais également des connaissances du style
de sculpture pour inférer l’état original des pièces.
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• Projet Papaya. Membre du projet. Ce projet “Investissement d’Avenir” est
mené entre Ubisoft, le LIRIS, Télécom ParisTech, l’université Paris Est Marne
La Vallée. Dans ce projet, l’équipe Geomod apporte son expertise dans la
génération procédurale pour les effets atmosphériques, l’animation de rivières,
et la génération de terrains très vastes.

• Projet IPOL (CMLA). Ce projet vise à mettre en place un nouveau journal,
Image Processing On Line (IPOL). La spécificité de ce journal est qu’un auteur
soumet un article donnant description précise et rigoureuse d’une implémenta-
tion d’un algorithme ainsi que le code source lui-même qui est validé par des
rapporteurs, permettant d’améliorer la reproducibilité de la recherche. Je fais
maintenant partie du comité éditorial de ce journal.

Enseignement

2017-2018 : Cours du Master 3DMT à l’Université de Saint Etienne Advanced
Image Processing

2016-2018 : Cours du Master 2 informatique fondamentale à l’ENS Lyon
(Mathematical methods for image synthesis) avec Nicolas Bonneel.
Cours de Master 2 ID3D (Modèles statistiques pour l’image - cours
et TP), Cours de Majeure Image à l’école d’ingénieur CPE.

2015-2016 : Cours de Master 2 Recherche Informatique Graphique et Im-
age, Cours de Master 2 Pro Image (Modèles statistiques pour
l’image), Cours de Majeure Image à l’école d’ingénieur CPE. TD
d’algorithmique à l’INSA, TD d’algorithmique en licence 3 à Lyon
1. Encadrement d’élèves de Master en projet d’initiation à la
Recherche.

2014-2015 : Cours de Master 2 Recherche Informatique Graphique et Image, TD
d’algorithmique à l’INSA, TD et TP d’algorithmique en licence 3 à
Lyon 1. Encadrement d’élèves de Master en projet d’initiation à la
Recherche.

2013-2014 : Cours de Master 2 Recherche Informatique Graphique et Image,
TD d’algorithmique à l’INSA, TD d’algorithmique en licence 3 à
Lyon 1. Encadrement d’élèves de Master en projet d’initiation à la
Recherche.

Responsabilités administratives

• Membre du comité de pilotage du groupe SIGMA de la SMAI depuis Janvier
2018.
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• Représentante du LIRIS au Conseil d’Administration de l’AFIG depuis 2016.

• Responsable adjointe de l’équipe GeoMod depuis Janvier 2015

• Membre élue du conseil de laboratoire (depuis Septembre 2015)

• Membre de la commission des thèses du LIRIS (depuis 2014)

• Correspondante du LIRIS pour le Groupe de Travail Modélisation Géométrique
(depuis 2012)

Comités de Programmes

• Comité de Programme des Eurographics - Short Papers (2017, 2018)

• Comité de Programme Computer Graphics International - CGI (2018)

• Comité de Programme des Eurographics - State of the Art Reports (2017)

• Editrice pour le journal Image Processing OnLine IPOL favorisant la repro-
ducibilité des résultats

• Comité de Programme de la conférence Geometry Modeling and Processing
(GMP) 2014-2015-2016-2017-2018

• Comité de Programme de la conférence Digital Heritage (2013 and 2015)

• Comité de Programme de Siggraph Asia Posters and Technical Briefs (2014 et
2016)

• Chair du programme du meilleur papier de l’AFIG et du chapitre français
d’Eurographics depuis 2016 (dans le comité depuis 2014)

• Rapporteuse régulière pour les journaux et conférences suivantes (entre
autres): IPOL, TOG Transaction on Graphics, Computer Graphics Forum, SIG-
GRAPH, SIGGRAPH Asia, Eurographics, Pattern Recognition, et IEEE - TVCG.

Activités de Vulgarisation
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• Participation au montage de l’exposition “Sous la surface, les maths!” (IHP),
dirigée par Olivier Druet, 2018.

• Conférence au cours de la journée Mathématiques en Mouvement et participa-
tion à la table ronde - journée organisée par la fédération mathématiques de
paris – Institut Henri Poincaré, Paris (public d’étudiants), 21 Mai 2016.

• Présentation pour un public de lycéens pour l’association "Math en Jeans", 27
Mars 2015

• Présentation pour des lycéens dans le cadre de l’association "Plaisir Maths" à
l’Institut Camille Jordan, 25 Juin 2014

• Présentation au Lycée Paul Eluard, Saint-Denis (93), Les Mathématiques pour
le traitement d’images et de surfaces 3D, 22 Mai 2014

Organisation de conférences internationales et nationales

• Membre du comité d’organisation des journées Informatique Géométrique
2018 Lyon en Juin 2018 (40 participants attendus environ).

• Membre du comité d’organisation de la conférence internationale Eurographics
2017 en Avril 2017 à Lyon (environ 400).

• Chair du programme Eurographics - Workshops avec Brian Wyvill (University
of Victoria, Canada).

• Membre du comité d’organisation des journées de l’AFIG 2015 à Lyon en
novembre 2015 (100 participants) et notamment organisation de la journée
jeunes chercheurs (40 participants).

• Membre du comité d’organisation des conférences internationales EGSR et
HPG 2014 à Lyon (environ 100 participants).

• Principale organisatrice de journées du groupe de travail en modélisation
géométrique à Lyon – 28-29 Mars 2014 (60 participants).

Jurys de thèse et Comités de sélection
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• Examinatrice des thèses de Mathis Hudon dirigée par Kadi Bouatouch, 14
Octobre 2016 et Hamzah Chouh, dirigée par Victor, 22 Novembre 2016

• Comité de Sélection - Maitre de conférence: Université de Grenoble (2018),
IUT d’Arles (2018), IUT Saint Dié (2017), Université Paris 6 - Institut du Calcul
Scientifique (2016), Département de mathématiques de l’ENS Cachan(2014).

Prix et distinctions

• Mention honorable du Prix Gunter Enderle, Eurographics 2018 pour le
papier Wavejets: A Local Frequency Framework for Shape Details Amplification.

• Prix de thèse de la fondation Mathématique Jacques Hadamard (FMJH)
2012.
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